
Stateflow®

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Stateflow® User’s Guide

© COPYRIGHT 1997–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
May 1997 First printing New
January 1999 Second printing Revised for Version 2.0 (Release 11)
September 2000 Third printing Revised for Version 4.0 (Release 12))
June 2001 Fourth printing Revised for Version 4.1 (Release 12.1)
July 2002 Fifth printing Revised for Version 5.0 (Release 13)
January 2003 Online only Revised for Version 5.1 (Release 13SP1)
June 2004 Online only Revised for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.21 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
March 2007 Online only Revised for Version 6.6 (Release 2007a)
September 2007 Online only Revised for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Online only Revised for Version 7.7 (Release 2011a)
September 2011 Online only Revised for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)

Contents

Stateflow Chart Concepts

1
Finite State Machine Concepts . 1-2
What Is a Finite State Machine? . 1-2
Finite State Machine Representations 1-2
Stateflow Chart Representations . 1-2
Notation . 1-3
Semantics . 1-3

Stateflow Charts and Simulink Models 1-4
The Simulink Model and the Stateflow Machine 1-4
Overview of Defining Stateflow Block Interfaces to Simulink
Models . 1-4

Stateflow Chart Objects . 1-6

Stateflow Hierarchy of Objects . 1-9

Bibliography . 1-11

Stateflow Chart Notation

2
Overview of Stateflow Objects . 2-2
Graphical Objects . 2-2
Nongraphical Objects . 2-3

Rules for Naming Stateflow Objects 2-4
Characters You Can Use . 2-4
Restriction on Name Length . 2-4
Keywords to Avoid When Naming Chart Objects 2-4

v

States . 2-7
What Is a State? . 2-7
State Hierarchy . 2-7
State Decomposition . 2-9
State Labels . 2-11

Transitions . 2-15
What Is a Transition? . 2-15
Transition Hierarchy . 2-16
Transition Label Notation . 2-17
Valid Transitions . 2-19

Transition Connections . 2-20
Transitions to and from Exclusive (OR) States 2-20
Transitions to and from Junctions . 2-21
Transitions to and from Exclusive (OR) Superstates 2-21
Transitions to and from Substates . 2-22
Self-Loop Transitions . 2-23
Inner Transitions . 2-25

Default Transitions . 2-30
What Is a Default Transition? . 2-30
Drawing Default Transitions . 2-30
Label Default Transitions . 2-30
Default Transition Examples . 2-31

Connective Junctions . 2-35
What Is a Connective Junction? . 2-35
Flow Chart Notation with Connective Junctions 2-35

History Junctions . 2-42
What Is a History Junction? . 2-42
History Junctions and Inner Transitions 2-43

Boxes . 2-44
What Is a Box? . 2-44
Example of Using a Box . 2-44

When to Use Reusable Functions in Charts 2-45

vi Contents

Stateflow Chart Semantics

3
What Do Semantics Mean for Stateflow Charts? 3-2
What Are Chart Semantics? . 3-2
Common Graphical and Nongraphical Constructs 3-3
References for Chart Semantics . 3-7

How Chart Constructs Interact During Execution 3-8
Overview of the Example Model . 3-8
Model of the Check-In Process for a Hotel 3-8
How the Chart Interacts with Simulink Blocks 3-12
Phases of Chart Execution . 3-13

Modeling Guidelines for Stateflow Charts 3-33

How Events Drive Chart Execution 3-36
How Stateflow Charts Respond to Events 3-36
Sources for Stateflow Events . 3-37
How Charts Process Events . 3-37

Types of Chart Execution . 3-39
Lifecycle of a Stateflow Chart . 3-39
Execution of an Inactive Chart . 3-39
Execution of an Active Chart . 3-40
Execution of a Chart with Super Step Semantics 3-40
Execution of a Chart at Initialization 3-49

Process for Grouping and Executing Transitions 3-51
Transition Flow Chart Types . 3-51
Order of Execution for a Set of Flow Charts 3-52

Evaluation Order for Outgoing Transitions 3-54
What Does Ordering Mean for Outgoing Transitions? 3-54
Detection of Transition Shadowing 3-55
Explicit Ordering of Outgoing Transitions 3-55
Implicit Ordering of Outgoing Transitions 3-59
What Happens When You Switch Between Explicit and
Implicit Ordering . 3-63

Transition Testing Order in Multilevel State Hierarchy . . 3-64

vii

Process for Entering, Executing, and Exiting States . . 3-68
Steps for Entering a State . 3-68
Steps for Executing an Active State 3-69
Steps for Exiting an Active State . 3-70
State Execution Example . 3-70

Execution Order for Parallel States 3-73
Ordering for Parallel States . 3-73
Explicit Ordering of Parallel States 3-74
Implicit Ordering of Parallel States 3-75
Order Maintenance for Parallel States 3-76
Execution Priorities in Restored States 3-79
Switching Between Explicit and Implicit Ordering 3-80
Execution Order of Parallel States in Boxes and
Subcharts . 3-80

Early Return Logic for Event Broadcasts 3-81
Guidelines for Proper Chart Behavior 3-81
How Early Return Logic Works . 3-81
Example of Early Return Logic . 3-82

Create Stateflow Charts

4
Basic Approach for Modeling Event-Driven Systems . . 4-2
Identify System Attributes . 4-2
Select a State Machine Type . 4-2
Specify State Actions and Transition Conditions 4-3
Define Persistent Data to Store State Variables 4-4
Simplify State Actions and Transition Conditions with
Function Calls . 4-4

Check That Your System Representation Is Complete 4-5

Represent Operating Modes Using States 4-6
Create a State . 4-6
Move and Resize States . 4-7
Create Substates and Superstates . 4-7
Group States . 4-8
Specify Substate Decomposition . 4-9

viii Contents

Specify Activation Order for Parallel States 4-10
Change State Properties . 4-10
Label States . 4-18

Transition Between Operating Modes 4-22
Create a Transition . 4-22
Label Transitions . 4-23
Move Transitions . 4-24
Change Transition Arrowhead Size 4-26
Create Self-Loop Transitions . 4-26
Create Default Transitions . 4-27
Change Transition Properties . 4-27

Stateflow Editor Operations . 4-30
Stateflow Editor . 4-30
Undo and Redo Editor Operations . 4-34
Specify Colors and Fonts in a Chart 4-35
Content Preview for Stateflow Objects 4-38
Intelligent Tab Completion for Stateflow Charts 4-40
Differentiate Elements of Action Language Syntax 4-40
Select and Deselect Graphical Objects 4-42
Cut and Paste Graphical Objects . 4-43
Copy Graphical Objects . 4-43
Format Chart Objects . 4-43
Generate a Model Report . 4-58

Model Logic Patterns and Iterative Loops Using
Flow Charts

5
What Is a Flow Chart? . 5-2

Difference Between Flow Charts and State Transition
Diagrams . 5-3

When to Use Flow Charts . 5-4

Create Flow Charts with the Pattern Wizard 5-5

ix

Why Use the Pattern Wizard? . 5-5
How to Create Reusable Flow Charts 5-5
Insert a Logic Pattern Using the Pattern Wizard 5-7
Save and Reuse Flow Chart Patterns 5-10
MAAB-Compliant Patterns from the Pattern Wizard 5-13
Create and Reuse a Custom Pattern with the Pattern
Wizard . 5-22

Draw and Customize Flow Charts By Hand 5-30
How to Draw a Flow Chart . 5-30
How to Change Connective Junction Size 5-30
How to Modify Junction Properties 5-31

Best Practices for Creating Flow Charts 5-33

Enhance Readability of Code for Flow Charts 5-35
Appearance of Generated Code for Flow Charts 5-35
Convert If-Elseif-Else Code to Switch-Case Statements . . 5-39
Example of Converting Code to Switch-Case Statements . . 5-41

Build Mealy and Moore Charts

6
Overview of Mealy and Moore Machines 6-2
Semantics of Mealy and Moore Machines 6-2
Model with Mealy and Moore Machines 6-3
Default State Machine Type . 6-3
Availability of Output . 6-3
Advantages of Mealy and Moore Charts 6-4

Create Mealy and Moore Charts . 6-5

Model a Vending Machine Using Mealy Semantics 6-6
Open the Model . 6-6
Logic of the Mealy Vending Machine 6-7
Design Rules in Mealy Vending Machine 6-8

Design Considerations for Mealy Charts 6-9

x Contents

Mealy Semantics . 6-9
Design Rules for Mealy Charts . 6-9

Design Considerations for Moore Charts 6-13
Moore Semantics . 6-13
Design Rules for Moore Charts . 6-13

Model a Traffic Light Using Moore Semantics 6-21
Open the Model . 6-21
Logic of the Moore Traffic Light . 6-21
Design Rules in Moore Traffic Light 6-23

Effects of Changing the Chart Type 6-24

Debug Mealy and Moore Charts . 6-25

Techniques for Streamlining Chart Design

7
Record State Activity Using History Junctions 7-2
What Is a History Junction? . 7-2
Create a History Junction . 7-2
Change History Junction Size . 7-3
Change History Junction Properties 7-3

Encapsulate Modal Logic Using Subcharts 7-6
What Is a Subchart? . 7-6
Create a Subchart . 7-7
Rules of Subchart Conversion . 7-7
Convert a State to a Subchart . 7-7
Manipulate Subcharts as Objects . 7-9
Open a Subchart . 7-9
Edit a Subchart . 7-10
Navigate Subcharts . 7-10

Move Between Levels of Hierarchy Using
Supertransitions . 7-12
What Is a Supertransition? . 7-12

xi

Draw a Supertransition Into a Subchart 7-15
Draw a Supertransition Out of a Subchart 7-19
Label Supertransitions . 7-23

Define a Graphical Function . 7-25
Create a Graphical Function . 7-25
Program a Graphical Function . 7-26
Define Graphical Function Data . 7-26

Manage Large Graphical Functions 7-29

Call Graphical Functions in States and Transitions . . . 7-31
Syntax . 7-31
Example . 7-31

Specify Graphical Function Properties 7-32

Reuse Logic Patterns Using Graphical Functions 7-35
What Is a Graphical Function? . 7-35
Why Use a Graphical Function in a Stateflow Chart? 7-35
Where to Use a Graphical Function 7-35

Export Functions for Reuse in Other Charts 7-37
Why Export Chart-Level Functions? 7-37
How to Export Chart-Level Functions 7-37
Rules for Exporting Chart-Level Functions 7-37
Export Chart-Level Functions . 7-38

Group Chart Objects Using Boxes 7-44
When to Use Boxes . 7-44
Semantics of Stateflow Boxes . 7-44
Rules for Using Boxes . 7-45
Draw and Edit a Box . 7-45
Examples of Using Boxes . 7-47

Reuse Functions with an Atomic Box 7-51
What Is an Atomic Box? . 7-51
Rationale for Using an Atomic Box 7-51
How to Reuse Functions with an Atomic Box 7-52
Example of Reusing a Timer Function Multiple Times . . . 7-52

xii Contents

Add Descriptive Comments in a Chart 7-58
Create Notes . 7-58
Change Note Properties . 7-58
Change Note Font and Color . 7-58
TeX Instructions . 7-59

Define Data

8
Add Data . 8-2
When to Add Data . 8-2
Where You Can Use Data . 8-2
Diagnostic for Detecting Unused Data 8-2
Add Data Using the Stateflow Editor 8-3
How to Add Data Using the Model Explorer 8-3

Set Data Properties . 8-5
What Is the Data Properties Dialog Box? 8-5
When to Use the Data Properties Dialog Box 8-7
Open the Data Properties Dialog Box 8-7
Properties You Can Set in the General Pane 8-8
Properties You Can Set in the Logging Pane 8-24
Properties You Can Set in the Description Pane 8-26
Enter Expressions and Parameters for Data Properties . . 8-27

Share Data with Simulink and MATLAB Workspace . . 8-30
Share Input Data with Simulink . 8-30
Share Output Data with Simulink . 8-31
Share Simulink Parameters with Charts 8-32
Initialize Data from the MATLAB Base Workspace 8-32
Save Data to the MATLAB Workspace 8-34

Share Global Data with Multiple Charts 8-35
About Data Stores . 8-35
How Charts Work with Local and Global Data Stores 8-35
Access Data Store Memory from a Chart 8-36
Diagnostics for Sharing Data Between Charts and Simulink
Blocks . 8-39

Create a Global Data Store Across Multiple Models 8-40

xiii

Best Practices for Using Data Stores in Charts 8-41

Type Stateflow Data . 8-42
What Is Data Type? . 8-42
Specify Data Type and Mode . 8-42
Built-In Data Types . 8-45
Inherit Data Types from Simulink Objects 8-46
Derive Data Types from Previously Defined Data 8-47
Type Data by Using an Alias . 8-48
Strong Data Typing with Simulink I/O 8-49

Size Stateflow Data . 8-51
Methods for Sizing Stateflow Data 8-51
How to Specify Data Size . 8-52
Inherit Input or Output Size from Simulink Signals 8-52
Guidelines for Sizing Data with Numeric Values 8-53
Guidelines for Sizing Data with MATLAB Expressions . . . 8-54
Examples of Valid Data Size Expressions 8-55
Name Conflict Resolution for Variables in Size
Expressions . 8-55

Best Practices for Sizing Stateflow Data 8-56

Handle Integer Overflow for Chart Data 8-57
When Integer Overflow Can Occur 8-57
Support for Handling Integer Overflow in Charts 8-58
Effect of Integer Promotion Rules on Saturation 8-59
Impact of Saturation on Debugger Checks 8-61

Define Temporary Data . 8-62
When to Define Temporary Data . 8-62
How to Define Temporary Data . 8-62

Identify Data Using Dot Notation 8-63
What Is Dot Notation? . 8-63
Resolution of Qualified Data Names with Dot Notation . . . 8-64
Best Practices for Using Dot Notation in Qualified Data
Names . 8-65

Resolve Data Properties from Simulink Signal
Objects . 8-69
About Explicit Signal Resolution . 8-69

xiv Contents

Inherited Properties . 8-69
Enable Explicit Signal Resolution . 8-70
A Simple Example . 8-70

Best Practices for Using Data in Charts 8-74
Avoid inheriting output data properties from Simulink
blocks . 8-74

Restrict use of machine-parented data 8-74

Transfer Data Across Models . 8-76
Copy Data Objects . 8-76
Move Data Objects . 8-76

Define Events

9
How Events Work in Stateflow Charts 9-2
What Is an Event? . 9-2
When to Use Events . 9-2
Types of Events . 9-3
Where You Can Use Events . 9-3
Diagnostic for Detecting Unused Events 9-4

Define Events . 9-5
How to Add Events Using the Stateflow Editor 9-5
How to Add Events Using the Model Explorer 9-5

Set Properties for an Event . 9-7
When to Use the Event Properties Dialog Box 9-7
Access the Event Properties Dialog Box 9-9
Property Fields . 9-10

Activate a Stateflow Chart Using Input Events 9-12
What Is an Input Event? . 9-12
Activate a Stateflow Chart Using Edge Triggers 9-12
Activate a Stateflow Chart Using Function Calls 9-14
Association of Input Events with Control Signals 9-15

xv

Control States When Function-Call Inputs Reenable
Charts . 9-17
Set Behavior for a Reenabled Chart 9-17
Behavior When the Parent Is the Model Root 9-18
Behavior When the Chart Is Inside a Model Block 9-21

Activate a Simulink Block Using Output Events 9-25
What Is an Output Event? . 9-25
Activate a Simulink Block Using Edge Triggers 9-25
Activate a Simulink Block Using Function Calls 9-34
Association of Output Events with Output Ports 9-37
Access Simulink Subsystems Triggered By Output
Events . 9-38

Control Chart Execution Using Implicit Events 9-39
What Are Implicit Events? . 9-39
Keywords for Implicit Events . 9-39
Transition Between States Using Implicit Events 9-40
Execution Order of Transitions with Implicit Events 9-41

Count Events . 9-44
When to Count Events . 9-44
How to Count Events . 9-44
Collect and Store Input Data in a Vector 9-44

Best Practices for Using Events in Stateflow Charts . . 9-46

Use Actions in Charts

10
Supported Action Types for States and Transitions . . . 10-2
State Action Types . 10-2
Transition Action Types . 10-7
Execution of Actions in States and Transitions 10-12

Combine State Actions to Eliminate Redundant
Code . 10-16
State Actions You Can Combine . 10-16

xvi Contents

Why Combine State Actions . 10-16
How to Combine State Actions . 10-17
Order of Execution of Combined Actions 10-18
Rules for Combining State Actions 10-19

Supported Operations on Chart Data 10-20
Binary and Bitwise Operations . 10-20
Unary Operations . 10-22
Unary Actions . 10-23
Assignment Operations . 10-23
Pointer and Address Operations . 10-24
Type Cast Operations . 10-25
Replace Operators with Target-Specific
Implementations . 10-26

Supported Symbols in Actions . 10-28
Boolean Symbols, true and false . 10-28
Comment Symbols, %, //, /* . 10-29
Hexadecimal Notation Symbols, 0xFF 10-29
Infinity Symbol, inf . 10-29
Line Continuation Symbol, ... 10-30
Literal Code Symbol, $. 10-30
MATLAB Display Symbol, ; . 10-30
Single-Precision Floating-Point Number Symbol, F 10-30
Time Symbol, t . 10-31

Call C Functions in C Charts . 10-32
Call C Library Functions . 10-32
Call the abs Function . 10-33
Call min and max Functions . 10-33
Replacement of C Math Library Functions with
Target-Specific Implementations 10-34

Call Custom C Code Functions . 10-36

Access Built-In MATLAB Functions and Workspace
Data . 10-41
MATLAB Functions and Stateflow Code Generation 10-41
ml Namespace Operator . 10-41
ml Function . 10-42
ml Expressions . 10-44
Which ml Should I Use? . 10-45
ml Data Type . 10-46

xvii

How Charts Infer the Return Size for ml Expressions 10-49

Use Data and Event Arguments in Actions 10-54

Use Arrays in Actions . 10-55
Array Notation . 10-55
Arrays and Custom Code . 10-56

Broadcast Events to Synchronize States 10-57
Directed Event Broadcasting . 10-57
Directed Local Event Broadcast Using send 10-57
Directed Local Event Broadcast Using Qualified Event
Names . 10-59

Diagnostic for Detecting Undirected Local Event
Broadcasts . 10-60

Control Chart Execution Using Temporal Logic 10-61
What Is Temporal Logic? . 10-61
Rules for Using Temporal Logic Operators 10-61
Operators for Event-Based Temporal Logic 10-62
Examples of Event-Based Temporal Logic 10-64
Notations for Event-Based Temporal Logic 10-66
Operators for Absolute-Time Temporal Logic 10-68
Define Time Delays with Temporal Logic 10-70
Examples of Absolute-Time Temporal Logic 10-72
Run a Model That Uses Absolute-Time Temporal Logic . . 10-73
Absolute-Time Temporal Logic in Conditionally Executed
Subsystems . 10-73

How Sample Time Affects Chart Execution 10-77
Best Practices for Absolute-Time Temporal Logic 10-78

Detect Changes in Data Values . 10-81
Types of Data Value Changes That You Can Detect 10-81
Run a Model That Uses Change Detection 10-82
How Change Detection Works . 10-84
Change Detection Operators . 10-86
Chart with Change Detection . 10-91

Check State Activity . 10-94
When to Check State Activity . 10-94
How to Check State Activity . 10-94

xviii Contents

The in Operator . 10-94
How Checking State Activity Works 10-95
State Resolution for Identically Named Substates 10-98
Best Practices for Checking State Activity 10-100

Control Function-Call Subsystems Using Bind
Actions . 10-104
What Are Bind Actions? . 10-104
Bind a Function-Call Subsystem to a State 10-104
Model That Binds a Function-Call Subsystem to a State . . 10-109
Behavior of a Bound Function-Call Subsystem 10-112
Why Avoid Muxed Trigger Events with Binding 10-118

MATLAB Syntax Support for States and
Transitions

11
Modify the Action Language for a Chart 11-2
Change the default action language 11-2
C to MATLAB syntax conversion . 11-3
Rules for using MATLAB as the action language 11-3

Action Language Auto Correction 11-6

Differences Between MATLAB and C as Action
Language Syntax . 11-8

Model Event-Driven System . 11-11
Typical Approaches to Chart Programming 11-11
Design Requirements . 11-11
Identify System Attributes . 11-12
Build the Model Yourself or Use the Supplied Model 11-13
Add a Stateflow Chart to the Feeder Model 11-13
Add States to Represent Operating Modes 11-16
Implement State Actions . 11-17
Specify Transition Conditions . 11-20
Define Data for Your System . 11-23
Verify the System Representation . 11-25
Alternative Approach: Event-Based Chart 11-27

xix

Feeder Chart Activated by Input Events 11-27

Tabular Expression of Modal Logic

12
What Is a State Transition Table? 12-2

Differences Between State Transition Tables and
Charts . 12-5

Anatomy of a State Transition Table 12-6

Create State Transition Table and Specify
Properties . 12-8
How to Create a New State Transition Table 12-8
Properties for State Transition Tables 12-8

Generate Diagrams from State Transition Tables 12-10

Highlight Flow of Logic . 12-11

When to Use Automatically Generated Diagrams 12-14

State Transition Table Editor Operations 12-15
Insert Rows and Columns . 12-15
Move Rows and Cells . 12-16
Copy Rows and Transition Cells . 12-16
Set Default State . 12-17
Add History Junction . 12-17
Print State Transition Tables . 12-17
Select and Deselect Table Elements 12-17
Undo and Redo Edit Operations . 12-17

Rules for Using State Transition Tables 12-18

State Transition Table Diagnostics 12-19

xx Contents

Traceability of State Transition Tables 12-20

Model Bang-Bang Controller with State Transition
Table . 12-24
Why Use State Transition Tables? . 12-24
Design Requirements . 12-25
Identify System Attributes . 12-25
Build the Controller or Use the Supplied Model 12-26
Create a New State Transition Table 12-26
Add States and Hierarchy . 12-28
Specify State Actions . 12-30
Specify Transition Conditions and Actions 12-33
Define Data . 12-36
Connect the Transition Table and Run the Model 12-38
View the Graphical Representation 12-39

Make States Reusable with Atomic Subcharts

13
What Is an Atomic Subchart? . 13-2

When to Use Atomic Subcharts . 13-4

Benefits of Using Atomic Subcharts 13-5
Comparison of Modeling Methods . 13-5
Comparison of Simulation Methods 13-6
Comparison of Editing Methods . 13-7
Comparison of Code Generation Methods 13-7

Restrictions for Converting to Atomic Subcharts 13-11
Rationale for Restrictions . 13-11
Access to Data, Graphical Functions, and Events 13-11
Use of Event Broadcasts . 13-12
Access to Local Data with a Nonzero First Index 13-12
Use of Machine-Parented Data . 13-12
Use of Strong Data Typing with Simulink Inputs and
Outputs . 13-12

Use of Supertransitions . 13-13
Masked Library Chart . 13-13

xxi

Convert to and from Atomic Subcharts 13-14
Convert a State or Subchart to an Atomic Subchart 13-14
Convert an Atomic Subchart to a State or Subchart 13-17
Restrictions for Converting an Atomic Subchart to a State
or Subchart . 13-18

Map Variables for Atomic Subcharts 13-19
Why Map Variables for Atomic Subcharts? 13-19
How to Map Variables in an Atomic Subchart 13-19
Map Input and Output Data for an Atomic Subchart 13-20
Map Data Store Memory for an Atomic Subchart 13-24
Map Parameter Data for an Atomic Subchart 13-28
Map Input Events for an Atomic Subchart 13-32

Generate Reusable Code for Unit Testing 13-36
How to Generate Reusable Code for Linked Atomic
Subcharts . 13-36

How to Generate Reusable Code for Unlinked Atomic
Subcharts . 13-37

Rules for Using Atomic Subcharts 13-39

Reuse a State Multiple Times in a Chart 13-43
Goal of the Tutorial . 13-43
Edit a Model to Use Atomic Subcharts 13-45
Run the New Model . 13-51
Propagate a Change in the Library Chart 13-51

Reduce the Compilation Time of a Chart 13-53
Goal of the Tutorial . 13-53
Edit a Model to Use Atomic Subcharts 13-54

Divide a Chart into Separate Units 13-55
Goal of the Tutorial . 13-55
Edit a Model to Use Atomic Subcharts 13-56

Generate Reusable Code for Unit Testing 13-58
Goal of the Tutorial . 13-58
Convert a State to an Atomic Subchart 13-60
Specify Code Generation Parameters 13-60
Generate Code for Only the Atomic Subchart 13-61

xxii Contents

Save and Restore Simulations with SimState

14
What Is a SimState? . 14-2

Benefits of Using a Snapshot of the Simulation State . . 14-4
Division of a Long Simulation into Segments 14-4
Test of a Chart Response to Different Settings 14-4

Divide a Long Simulation into Segments 14-5
Goal of the Tutorial . 14-5
Define the SimState . 14-6
Load the SimState . 14-8
Simulate the Specific Segment . 14-9

Test a Unique Chart Configuration 14-10
Goal of the Tutorial . 14-10
Define the SimState . 14-11
Load the SimState and Modify Values 14-14
Test the Modified SimState . 14-19

Test a Chart with Fault Detection and Redundant
Logic . 14-21
Goal of the Tutorial . 14-21
Define the SimState . 14-24
Modify SimState Values for One Actuator Failure 14-26
Test the SimState for One Failure . 14-31
Modify SimState Values for Two Actuator Failures 14-34
Test the SimState for Two Failures 14-34

Methods for Interacting with the SimState of a
Chart . 14-36

Rules for Using the SimState of a Chart 14-39
Limitations on Values You Can Modify 14-39
Rules for Modifying Data Values . 14-39
Rules for Modifying State Activity . 14-40
Restriction on Continuous-Time Charts 14-40
No Partial Loading of a SimState . 14-41
Restriction on Copying SimState Values 14-41

xxiii

SimState Limitations That Apply to All Blocks in a
Model . 14-41

Best Practices for Using the SimState of a Chart 14-42
Use MAT-Files to Save a SimState for Future Use 14-42
Use Scripts to Save SimState Commands for Future
Use . 14-42

Vectors and Matrices in C Charts

15
How Vectors and Matrices Work in C Charts 15-2
When to Use Vectors and Matrices 15-2
Where You Can Use Vectors and Matrices 15-2

Define Vectors and Matrices . 15-4
Define a Vector . 15-4
Define a Matrix . 15-5

Scalar Expansion for Converting Scalars to
Nonscalars . 15-6
What Is Scalar Expansion? . 15-6
How Scalar Expansion Works for Functions 15-6

Assign and Access Vector and Matrix Values 15-8
Notation for Vectors and Matrices . 15-8
Assign and Access Values of Vectors 15-9
Assign and Access Values of Matrices 15-9
Assign Values of a Vector or Matrix Using Scalar
Expansion . 15-10

Operations For Vectors and Matrices in C Charts 15-11
Binary Operations . 15-11
Unary Operations and Actions . 15-11
Assignment Operations . 15-12

Rules for Vectors and Matrices in C Charts 15-13

xxiv Contents

Best Practices for Vectors and Matrices in C Charts . . 15-14
Perform Matrix Multiplication and Division Using
MATLAB Functions . 15-14

Index a Vector Using the temporalCount Operator 15-15

Find Pattern in Data Transmission Using Vectors 15-17
Storage of Complex Data in a Vector 15-18
Scalar Expansion of a Vector . 15-18

Calculate Motion Using Matrices . 15-19
How the Model Works . 15-19
Storage of Two-Dimensional Data in Matrices 15-20
Calculation of Two-Dimensional Dynamics of Each Ball . . 15-21
Run the Model . 15-22

Variable-Size Data in Stateflow Charts

16
What Is Variable-Size Data? . 16-2

How Charts Implement Variable-Size Data 16-3

Enable Support for Variable-Size Data 16-4

Declare Variable-Size Inputs and Outputs 16-5

Compute Output Based on Size of Input Signal 16-7
About the Model . 16-7
Chart: VarSizeSignalSource . 16-9
Chart: size_based_processing . 16-11
Simulate the Model . 16-15

Rules for Using Variable-Size Data in Stateflow
Charts . 16-16

xxv

Enumerated Data in Charts

17
What Is Enumerated Data? . 17-2

Benefits of Using Enumerated Data in a Chart 17-3

Where to Use Enumerated Data . 17-4

Elements of an Enumerated Data Type Definition 17-5

Define Enumerated Data in a Chart 17-8
Tasks for Defining Enumerated Data in a Chart 17-8
Define an Enumerated Data Type in a File 17-8
Add Enumerated Data to a Chart . 17-9

Ensure That Changes in Data Type Definition Take
Effect . 17-11

Notation for Enumerated Values in C Charts 17-12
Nonprefixed Notation for Enumerated Values 17-12
Prefixed Notation for Enumerated Values 17-13

Enumerated Data Operations for C Charts 17-14

View Enumerated Values in a Chart 17-15
View Values of Enumerated Data During Simulation 17-15
View Values of Enumerated Data After Simulation 17-15

Rules for Using Enumerated Data in a Chart 17-17

Best Practices for Using Enumerated Data in a
Chart . 17-20

Model CD Player Using Enumerated Data 17-22
Overview of CD Player Model . 17-22
Benefits of Using Enumerated Types in This Model 17-24
Run the CD Player Model . 17-25

xxvi Contents

How the UserRequest Chart Works 17-27
How the CdPlayerModeManager Chart Works 17-28
How the CdPlayerBehaviorModel Chart Works 17-31

Assign Enumerated Values in a Chart 17-34
Goal of the Tutorial . 17-34
Build the Chart . 17-34
View Results for Simulation . 17-37
How the Chart Works . 17-40

Continuous-Time Systems in Stateflow Charts

18
About Continuous-Time Modeling 18-2
What Is Continuous-Time Modeling? 18-2
When To Use Stateflow Charts for Continuous-Time
Modeling . 18-3

Model Continuous-Time Using Zero-Crossing Detection . . 18-4

Model Hybrid Systems with Model Logic 18-5

Configure a Stateflow Chart to Update in Continuous
Time . 18-6

When to Enable Zero-Crossing Detection 18-9

Define Continuous-Time Variables 18-10
Purpose of Continuous-Time Variables 18-10
Implicit Time Derivatives . 18-10
Rules for Using Continuous-Time Variables 18-10
How to Define Continuous-Time Variables 18-11
Expose Continuous States to a Simulink Model 18-11

Model a Bouncing Ball in Continuous Time 18-12
Try It . 18-12
Dynamics of a Bouncing Ball . 18-12
Model the Bouncing Ball . 18-13

xxvii

Design Considerations for Continuous-Time Modeling
in Stateflow Charts . 18-24
Rationale for Design Considerations 18-24
Summary of Rules for Continuous-Time Modeling 18-24

Fixed-Point Data in Stateflow Charts

19
What Is Fixed-Point Data? . 19-2
Before You Begin . 19-2
Fixed-Point Numbers . 19-2
Fixed-Point Operations . 19-3

How Fixed-Point Data Works in Stateflow Charts 19-6
How Stateflow Software Defines Fixed-Point Data 19-6
Specify Fixed-Point Data . 19-7
Rules for Specifying Fixed-Point Word Length 19-8
Fixed-Point Context-Sensitive Constants 19-9
Tips for Using Fixed-Point Data . 19-10
Detect Overflow for Fixed-Point Types 19-11
Share Fixed-Point Data with Simulink Models 19-12

Use Fixed-Point Chart Inputs . 19-14
Run the Fixed-Point "Bang-Bang Control" Model 19-14
Explore the Fixed-Point "Bang-Bang Control" Model 19-15

Use Fixed-Point Parameters and Local Data 19-19
Goal of the Tutorial . 19-19
Build the Fixed-Point Butterworth Filter 19-19
Define the Model Callback Function 19-20
Add Other Blocks to the Model . 19-21
Set Model Configuration Parameters 19-23
Run the Model . 19-25

Operations with Fixed-Point Data 19-26
Supported Operations with Fixed-Point Operands 19-26
Promotion Rules for Fixed-Point Operations 19-28
Assignment (=, :=) Operations . 19-34
Fixed-Point Conversion Operations 19-41

xxviii Contents

Automatic Scaling of Stateflow Fixed-Point Data 19-43

Complex Data in C Charts

20
How Complex Data Works in C Charts 20-2
What Is Complex Data? . 20-2
When to Use Complex Data . 20-2
Where You Can Use Complex Data 20-2
How You Can Use Complex Data . 20-3

Define Complex Data Using the Editor 20-4

Complex Data Operations for Charts That Support C
Expressions . 20-7
Binary Operations . 20-7
Unary Operations and Actions . 20-7
Assignment Operations . 20-8

Define Complex Data Using Operators 20-9
Why Use Operators for Complex Numbers? 20-9
Define a Complex Number . 20-9
Access Real and Imaginary Parts of a Complex Number . . 20-10
Work with Vector Arguments . 20-11

Rules for Using Complex Data in C Charts 20-12

Best Practices for Using Complex Data in C Charts . . . 20-15
Perform Math Function Operations with a MATLAB
Function . 20-15

Perform Complex Division with a MATLAB Function 20-16

Detect Valid Transmission Data Using Frame
Synchronization . 20-19

Measure Frequency Response Using a Spectrum
Analyzer . 20-23

xxix

Define Interfaces to Simulink Models and the
MATLAB Workspace

21
Overview of Stateflow Block Interfaces 21-3
Stateflow Block Interfaces . 21-3
Typical Tasks to Define Stateflow Block Interfaces 21-4
Where to Find More Information on Events and Data 21-4

Specify Chart Properties . 21-5
About Chart Properties . 21-5
Set Properties for a Single Chart . 21-5
Set Properties for All Charts in the Model 21-14

Set the Stateflow Block Update Method 21-16

Implement Interfaces to Simulink Models 21-18
Define a Triggered Stateflow Block 21-18
Define a Sampled Stateflow Block . 21-19
Define an Inherited Stateflow Block 21-20
Define a Continuous Stateflow Block 21-21
Define Function-Call Output Events 21-21
Define Edge-Triggered Output Events 21-22

When to Use Chart Libraries . 21-23

Create Specialized Chart Libraries for Large-Scale
Modeling . 21-24

Properties You Can Specialize Across Instances of
Library Blocks . 21-25

Limitations of Library Charts . 21-27

MATLAB Workspace Interfaces . 21-28
About the MATLAB Workspace . 21-28
Examine the MATLAB Workspace 21-28
Interface the MATLAB Workspace with Charts 21-28

xxx Contents

About Masks . 21-30

Limitations on Stateflow Masks . 21-31

Mask Parameters . 21-32

Look Under a Mask . 21-34

Mask a Stateflow Block . 21-35
Create Mask . 21-35
Change the Icon . 21-35
Add a Parameter . 21-36
View the New Mask . 21-36
Edit the Mask . 21-37

About Active State Output . 21-38
State Activity Type . 21-38
State Activity Data Type . 21-38
Leaf state activity and parallel states 21-39

When to Use Active State Output . 21-42

Limitations for Active State Output 21-43

Use Active State Output . 21-44

Change the Port Name . 21-48

Define the Enum Name and Type 21-50

Structures and Bus Signals in Stateflow Charts

22
About Stateflow Structures . 22-2
What Is a Stateflow Structure? . 22-2
What You Can Do with Structures 22-2

xxxi

Connect Structures in Charts to External Bus
Signals . 22-3
Structure Definitions in sfbus_demo Stateflow Chart 22-4
Structure Definitions in sfbus_demo Stateflow Graphical
Function . 22-5

Simulink Bus Objects Define Stateflow Structures 22-5

Rules for Defining Structure Data Types in Charts . . . 22-8

Define Stateflow Structures . 22-9
Define Structure Inputs and Outputs 22-9
Define Local Structures . 22-12
Define Structures of Parameter Scope 22-13
Define Temporary Structures . 22-14
Define Structure Types with Expressions 22-15

Structure Operations . 22-17
Index Sub-Structures and Fields . 22-17
Guidelines for Assignment of Values 22-19
Get Addresses . 22-20

Integrate Custom Structures in Stateflow Charts 22-22

Debug Structures . 22-26

Stateflow Design Patterns

23
Debounce Signals . 23-2
Why Debounce Signals . 23-2
The Debouncer Model . 23-3
Key Behaviors of Debouncer Chart 23-4
Run the Debouncer . 23-5

Schedule Function Calls . 23-8

Schedule Execution of Simulink Subsystems 23-9

xxxii Contents

When to Implement Schedulers . 23-9
Types of Schedulers . 23-9

Schedule Multiple Subsystems in a Single Step 23-10
Key Behaviors of Ladder Logic Scheduler 23-11
Run the Ladder Logic Scheduler . 23-13

Schedule One Subsystem in a Single Step 23-15
Key Behaviors of Loop Scheduler . 23-16
Run the Loop Scheduler . 23-17

Schedule Subsystems to Execute at Specific Times . . . 23-19
Key Behaviors of Temporal Logic Scheduler 23-20
Run the Temporal Logic Scheduler 23-21

Implement Dynamic Test Vectors 23-23
When to Implement Test Vectors . 23-23
A Dynamic Test Vector Chart . 23-25
Key Behaviors of the Chart and Model 23-27
Run the Model with Stateflow Test Vectors 23-29

Map Fault Conditions to Actions in Truth Tables 23-32

Design for Isolation and Recovery in a Chart 23-36
Mode Logic for the Elevator Actuators 23-36
States for Failure and Isolation . 23-38
Transitions for Recovery . 23-38

Truth Table Functions for Decision-Making
Logic

24
What Is a Truth Table? . 24-2

Why Use a Truth Table in a Stateflow Chart? 24-4

xxxiii

Where to Use a Truth Table . 24-5

Language Options for Stateflow Truth Tables 24-6
C Truth Tables . 24-6
MATLAB Truth Tables . 24-6
Select a Language for Stateflow Truth Tables 24-7
Migration from C to MATLAB Truth Tables 24-7

Represent Combinatorial Logic Using Truth Tables . . 24-8

Build Model with Stateflow Truth Table 24-9
Methods for Adding Truth Tables to Simulink Models 24-9
Add a Stateflow Block that Calls a Truth Table Function . . 24-9

Program a Truth Table . 24-22
Open a Truth Table for Editing . 24-22
Select An Action Language . 24-24
Enter Truth Table Conditions . 24-24
Enter Truth Table Decisions . 24-27
Enter Truth Table Actions . 24-29
Assign Truth Table Actions to Decisions 24-40
Add Initial and Final Actions . 24-45

Debug a Truth Table . 24-48
Check Truth Tables for Errors . 24-48
Debug a Truth Table During Simulation 24-49

Correct Overspecified and Underspecified Truth
Tables . 24-63
Example of an Overspecified Truth Table 24-63
Example of an Underspecified Truth Table 24-67

How Stateflow Generates Content for Truth Tables . . . 24-74
Types of Generated Content . 24-74
View Generated Content . 24-74
How Stateflow Software Generates Graphical Functions for
Truth Tables . 24-75

How Stateflow Software Generates MATLAB Code for
Truth Tables . 24-79

xxxiv Contents

Truth Table Editor Operations . 24-83
Add or Modify Stateflow Data . 24-83
Append Rows and Columns . 24-83
Compact the Table . 24-84
Delete Text, Rows, and Columns . 24-84
Diagnose the Truth Table . 24-84
View Generated Content . 24-84
Edit Tables . 24-85
Insert Rows and Columns . 24-85
Move Rows and Columns . 24-85
Print Tables . 24-86
Select and Deselect Table Elements 24-86
Undo and Redo Edit Operations . 24-86
View the Stateflow Chart for the Truth Table 24-87

MATLAB Functions in Stateflow Charts

25
MATLAB Functions in a Chart . 25-2

Why Use a MATLAB Function in a Chart? 25-3

Where to Use a MATLAB Function 25-4

MATLAB Functions in a Stateflow Chart 25-5

Build Model with MATLAB Function in a Chart 25-7

Specify MATLAB Function Properties in a Chart 25-13
Set MATLAB Function Properties . 25-13

Program a MATLAB Function in a Chart 25-18

Debug a MATLAB Function in a Chart 25-22
Check MATLAB Functions for Syntax Errors 25-22
Run-Time Debugging for MATLAB Functions in Charts . . 25-24
Check for Data Range Violations . 25-26

xxxv

Connect Structures in MATLAB Functions to Bus
Signals in Simulink . 25-28
About Structures in MATLAB Functions 25-28
Define Structures in MATLAB Functions 25-28

Define Enumerated Data in MATLAB Functions 25-31

Declare Variable-Size Data in MATLAB Functions 25-32

Enhance Readability of Generated Code for MATLAB
Functions . 25-33

Simulink Functions in Stateflow Charts

26
What Is a Simulink Function? . 26-2

Differences Between Simulink Functions and
Function-Call Subsystems . 26-3

Why Use a Simulink Function in a Stateflow Chart? . . 26-4
Advantages of Using Simulink Functions in a Stateflow
Chart . 26-4

Benefits of Using a Simulink Function to Access Simulink
Blocks . 26-5

Benefits of Using a Simulink Function to Schedule
Execution of Multiple Controllers 26-7

Where to Use a Simulink Function 26-11

Basic Approach to Defining Simulink Functions in
Stateflow Charts . 26-12
Task 1: Add a Function to the Chart 26-12
Task 2: Define the Subsystem Elements of the Simulink
Function . 26-13

Task 3: Configure the Function Inputs 26-14

xxxvi Contents

How a Simulink Function Binds to a State 26-15
Bind Behavior of a Simulink Function 26-15
Control Subsystem Variables When the Simulink Function
Is Disabled . 26-17

Example of Binding a Simulink Function to a State 26-17

How a Simulink Function Behaves When Called from
Multiple Sites . 26-23

Rules for Using Simulink Functions in Stateflow
Charts . 26-24

Best Practices for Using Simulink Functions 26-26

Define a Function That Uses Simulink Blocks 26-27
Goal of the Tutorial . 26-27
Edit a Model to Use a Simulink Function 26-28
Run the New Model . 26-35

Schedule Execution of Multiple Controllers 26-37
Goal of the Tutorial . 26-37
Edit a Model to Use Simulink Functions 26-38
Run the New Model . 26-45

Build Targets

27
Targets You Can Build . 27-2
Code Generation for Stateflow Blocks 27-2
Software Requirements for Building Targets 27-3

Choose a Procedure to Simulate a Model 27-4
Guidelines for Simulation . 27-4
Choose the Right Procedure for Simulation 27-4

Integrate Custom C/C++ Code for Simulation 27-6
Start Simulation . 27-6

xxxvii

Integrate Custom C++ Code for Simulation 27-6
Integrate Custom C Code for Nonlibrary Charts for
Simulation . 27-8

Integrate Custom C Code for Library Charts for
Simulation . 27-11

Integrate Custom C Code for All Charts for Simulation . . 27-13

Speed Up Simulation . 27-16
Disable Simulation Target Options That Impact Execution
Speed . 27-16

Keep Charts Closed During Simulation 27-17
Keep Scope Blocks Closed During Simulation 27-17
Use Library Charts in Your Model . 27-17

Choose a Procedure to Generate Embeddable Code . . . 27-19
Guidelines for Embeddable Code Generation 27-19
Choose the Right Procedure for Embeddable Code
Generation . 27-19

Integrate Custom C/C++ Code for Code Generation . . . 27-21
Generate Code . 27-21
Integrate Custom C++ Code for Code Generation 27-21
Integrate Custom C Code for Nonlibrary Charts for Code
Generation . 27-23

Integrate Custom C Code for Library Charts for Code
Generation . 27-25

Integrate Custom C Code for All Charts for Code
Generation . 27-27

Optimize Generated Code . 27-30
How to Optimize Generated Code for Embeddable
Targets . 27-30

Design Tips for Optimizing Generated Code 27-30

Command-Line API to Set Simulation and Code
Generation Parameters . 27-32
How to Set Parameters at the Command Line 27-32
Simulation Parameters for Nonlibrary Models 27-33
Simulation Parameters for Library Models 27-35
Code Generation Parameters for Nonlibrary Models 27-37
Code Generation Parameters for Library Models 27-39

xxxviii Contents

Specify Relative Paths for Custom Code 27-41
Why Use Relative Paths? . 27-41
Search Relative Paths . 27-41
Path Syntax Rules . 27-41

Choose a Compiler . 27-43

Share Data Using Custom C Code 27-44
Use Custom Code to Define Global Constants 27-44
Use Custom Code to Define Global Constants, Variables,
and Functions . 27-47

What Happens During the Target Building Process? . . 27-54

Parse Stateflow Charts . 27-55
How the Stateflow Parser Works . 27-55
Calling the Stateflow Parser . 27-55

Resolve Undefined Symbols in Your Chart 27-56
Search for Undefined Symbols . 27-56
Define Chart Symbols Using the Symbol Wizard 27-57
Rules for Inferring the Scope of Unresolved Symbols 27-59
Inference of Size, Type, and Complexity 27-59

Generated Code Files for Targets You Build 27-60
S-Function MEX-Files . 27-60
Folder Structure of Generated Files 27-60
Code Files for a Simulation Target 27-61
Code Files for an Embeddable Target 27-63
Makefiles . 27-63

Traceability of Stateflow Objects in Generated Code . . 27-65
What Is Traceability? . 27-65
Traceability Requirements . 27-65
Traceable Stateflow Objects . 27-65
When to Use Traceability . 27-66
Basic Workflow for Using Traceability 27-67
Examples of Using Traceability . 27-67
Format of Traceability Comments . 27-77

xxxix

Inline State Functions in Generated Code 27-80
How Stateflow Software Inlines Generated Code for State
Functions . 27-80

How to Set the State Function Inline Option 27-82
Best Practices for Controlling State Function Inlining . . . 27-83

Debug and Test Stateflow Charts

28
Basic Approach to Debugging Charts 28-3

When to Use the Stateflow Debugger 28-4

Open the Stateflow Debugger . 28-5
How to Open the Debugger Using the Editor 28-5
How to Open the Debugger at the Command Line 28-5

Animate Stateflow Charts . 28-6
Animation Modes . 28-6
Animate Stateflow Charts in Normal Mode 28-6
Animate Stateflow Charts in External Mode 28-7

Set Breakpoints to Debug Charts 28-10
Types of Breakpoints . 28-10
Set Local Breakpoints . 28-13
Set Global Breakpoints . 28-16
Edit Breakpoints . 28-16
Disable Local Breakpoints . 28-19
Disable All Breakpoints . 28-21
Clear All Breakpoints . 28-21
Visual Indication of Execution at Breakpoints 28-23

Relationship Between Breakpoints and the
Debugger . 28-26

Enable Debugging for Charts . 28-27
Enable Debugging for Charts in a Model 28-27
Configure a Model to Debug a Single Chart 28-27

xl Contents

Control Chart Execution in the Debugger 28-32
Start Simulation in the Debugger . 28-32
Control Execution Rate in the Debugger 28-33
Error Checking in the Debugger . 28-34
Control Chart Animation . 28-35
Control the Output Display Pane . 28-35

Control Chart Execution from the Stateflow Editor . . . 28-37

Debug Run-Time Errors in a Chart 28-39
Create the Model and the Stateflow Chart 28-39
Debug the Stateflow Chart . 28-41
Correct the Run-Time Error . 28-42
Identify Stateflow Objects in Error Messages 28-43

Common Modeling Errors the Debugger Can Detect . . 28-44
State Inconsistencies in a Chart . 28-44
Conflicting Transitions in a Chart . 28-46
Data Range Violations in a Chart . 28-48
Cyclic Behavior in a Chart . 28-49

Guidelines for Avoiding Unwanted Recursion in a
Chart . 28-53

Watch Data Values During Simulation 28-55
Watch Data in the Stateflow Chart 28-55
Watch Data in the Stateflow Debugger 28-57
Watch Stateflow Data in the MATLAB Command
Window . 28-59

Change Data Values During Simulation 28-62
How to Change Values of Stateflow Data 28-62
Examples of Changing Data Values 28-62
Limitations on Changing Data Values 28-65

Monitor Test Points in Stateflow Charts 28-68
About Test Points in Stateflow Charts 28-68
Set Test Points for Stateflow States and Local Data with
the Model Explorer . 28-69

Monitor Data Values and State Self Activity Using a
Floating Scope . 28-71

xli

What You Can Log During Chart Simulation 28-75
See Also . 28-75

Basic Approach to Logging States and Local Data 28-76

Enable Signal Logging . 28-77

Configure States and Local Data for Logging 28-78
Properties to Configure for Logging 28-78
Choose a Configuration Method for Logging 28-79
Log Individual States and Data . 28-79
Log Multiple Signals At Once . 28-80
Log Chart Signals Using the Command-Line API 28-81

Access Logged Data . 28-83
Signal Logging Object . 28-83
Access Logged Data Saved in Dataset Format 28-83

View Logged Data . 28-87

Log Data in Library Charts . 28-88
How Library Log Settings Influence Linked Instances . . . 28-88
Override Logging Properties in Chart Instances 28-88
Override Logging Properties in Atomic Subcharts 28-88

How Stateflow Logs Multidimensional Data 28-94

Limitations on Logging Data . 28-95

Explore and Modify Charts

29
Use the Model Explorer with Stateflow Objects 29-2
View Stateflow Objects in the Model Explorer 29-2
Edit Chart Objects in the Model Explorer 29-4
Add Data and Events in the Model Explorer 29-4
Rename Objects in the Model Explorer 29-4

xlii Contents

Set Properties for Chart Objects in the Model Explorer . . . 29-5
Move and Copy Data and Events in the Model Explorer . . 29-6
Change the Port Order of Input and Output Data and
Events . 29-7

Delete Data and Events in the Model Explorer 29-7

Use the Search & Replace Tool . 29-8
Open the Search & Replace Tool . 29-8
Refine Searches . 29-11
Specify the Search Scope . 29-13
Use the Search Button and View Area 29-14
Specify the Replacement Text . 29-17
Use Replace Buttons . 29-18
Search and Replace Messages . 29-19

Find Stateflow Objects . 29-21

Semantic Rules Summary

A
Summary of Chart Semantic Rules A-2
Enter a Chart . A-2
Execute an Active Chart . A-2
Enter a State . A-2
Execute an Active State . A-3
Exit an Active State . A-4
Execute a Set of Flow Charts . A-4
Execute an Event Broadcast . A-5

Semantic Examples

B
Categories of Semantic Examples B-2

Transition to and from Exclusive (OR) States B-4

xliii

Label Format for a State-to-State Transition B-4
Transition from State to State with Events B-5
Transition from a Substate to a Substate with Events B-8

Control Chart Execution Using Condition Actions B-10
Condition Action Behavior . B-10
Condition and Transition Action Behavior B-11
Create Condition Actions Using a For-Loop B-13
Broadcast Events to Parallel (AND) States Using Condition
Actions . B-14

Avoid Cyclic Behavior . B-15

Control Chart Execution Using Default Transitions . . B-17
Default Transition in Exclusive (OR) Decomposition B-17
Default Transition to a Junction . B-18
Default Transition and a History Junction B-19
Labeled Default Transitions . B-20

Process Events Using Inner Transitions B-23
Process Events with an Inner Transition in an Exclusive
(OR) State . B-23

Process Events with an Inner Transition to a Connective
Junction . B-26

Inner Transition to a History Junction B-29

Use Connective Junctions to Represent Multiple
Paths . B-31
Label Format for Transition Segments B-31
If-Then-Else Decision Construct . B-32
Self-Loop Transition . B-34
For-Loop Construct . B-35
Flow Chart Notation . B-36
Transition from a Common Source to Multiple
Destinations . B-38

Transition from Multiple Sources to a Common
Destination . B-39

Transition from a Source to a Destination Based on a
Common Event . B-40

Backtrack in Flow Charts . B-41

Control Chart Execution Using Event Actions in a
Superstate . B-44

xliv Contents

Broadcast Events in Parallel (AND) States B-45
Broadcast Events in Parallel States B-45
Broadcast Events in a Transition Action with a Nested
Event Broadcast . B-48

Broadcast Condition Action Event in Parallel State B-51

Directly Broadcast Events . B-55
Directed Event Broadcast Using Send B-55
Directed Event Broadcast Using Qualified Event Name . . B-56

Glossary

xlv

xlvi Contents

1

Stateflow Chart Concepts

• “Finite State Machine Concepts” on page 1-2

• “Stateflow Charts and Simulink Models” on page 1-4

• “Stateflow Chart Objects” on page 1-6

• “Stateflow Hierarchy of Objects” on page 1-9

• “Bibliography” on page 1-11

1 Stateflow® Chart Concepts

Finite State Machine Concepts

In this section...

“What Is a Finite State Machine?” on page 1-2

“Finite State Machine Representations” on page 1-2

“Stateflow Chart Representations” on page 1-2

“Notation” on page 1-3

“Semantics” on page 1-3

What Is a Finite State Machine?
Stateflow® charts can contain sequential decision logic based on state
machines. A finite state machine is a representation of an event-driven
(reactive) system. In an event-driven system, the system makes a transition
from one state (mode) to another, if the condition defining the change is true.

For example, you can use a state machine to represent the automatic
transmission of a car. The transmission has these operating states: park,
reverse, neutral, drive, and low. As the driver shifts from one position
to another, the system makes a transition from one state to another, for
example, from park to reverse.

Finite State Machine Representations
Traditionally, designers used truth tables to represent relationships among
the inputs, outputs, and states of a finite state machine. The resulting table
describes the logic necessary to control the behavior of the system under
study. Another approach to designing event-driven systems is to model
the behavior of the system by describing it in terms of transitions among
states. The occurrence of events under certain conditions determine the
state that is active. State-transition charts and bubble charts are graphical
representations based on this approach.

Stateflow Chart Representations
A Stateflow chart can contain sequential and combinatorial logic in the form
of state transition diagrams, flow charts, state transition tables, and truth

1-2

Finite State Machine Concepts

tables. A state transition diagram is a graphical representation of a finite
state machine. States and transitions form the basic building blocks of a
sequential logic system. Another way to represent sequential logic is a state
transition table, which allows you to enter the state logic in tabular form.
You can also represent combinatorial logic in a chart with flow charts and
truth tables.

You can include Stateflow charts as blocks in a Simulink® model. The
collection of these blocks in a Simulink model is the Stateflow machine.

A Stateflow chart enables the representation of hierarchy, parallelism,
and history. You can organize complex systems by defining a parent and
offspring object structure [1]. For example, you can organize states within
other higher-level states. A system with parallelism can have two or more
orthogonal states active at the same time. You can also specify the destination
state of a transition based on historical information.

Notation
Notation defines a set of objects and the rules that govern the relationships
between those objects. Stateflow chart notation provides a way to
communicate the design information in a Stateflow chart.

Stateflow chart notation consists of these elements:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

Semantics
Semantics describe how to interpret chart notation. A typical Stateflow
chart contains actions associated with transitions and states. The semantics
describe the sequence of these actions during chart execution.

1-3

1 Stateflow® Chart Concepts

Stateflow Charts and Simulink Models

In this section...

“The Simulink Model and the Stateflow Machine” on page 1-4

“Overview of Defining Stateflow Block Interfaces to Simulink Models” on
page 1-4

The Simulink Model and the Stateflow Machine
A Stateflow chart functions as a finite state machine within a Simulink model.
The Stateflow machine is the collection of Stateflow blocks in a Simulink
model. The Simulink model and the Stateflow machine work seamlessly
together. Running a simulation automatically executes both the Simulink
blocks and the Stateflow charts of the model.

A Simulink model can consist of combinations of Simulink blocks, toolbox
blocks, and Stateflow blocks (charts). A chart consists of graphical objects
(states, boxes, functions, notes, transitions, connective junctions, and history
junctions) and nongraphical objects (events, and data).

There is a one-to-one correspondence between the Simulink model and the
Stateflow machine. Each Stateflow block in the Simulink model appears as a
single Stateflow chart. Each Stateflow machine has its own object hierarchy.
The Stateflow machine is the highest level in the Stateflow hierarchy. The
object hierarchy beneath the Stateflow machine consists of combinations of
graphical and nongraphical objects. See “Stateflow Hierarchy of Objects”
on page 1-9.

Overview of Defining Stateflow Block Interfaces to
Simulink Models
Each Stateflow block corresponds to a single Stateflow chart. The Stateflow
block interfaces to its Simulink model. The Stateflow block can interface to
code sources external to the Simulink model (data, events, custom code).

Stateflow charts are event-driven. Events can be local to the Stateflow block
or can propagate to and from the Simulink model. Data can be local to the

1-4

Stateflow® Charts and Simulink® Models

Stateflow block or can pass to and from the Simulink model and external
code sources.

Defining the interface for a Stateflow block can involve some or all these tasks:

• Defining the Stateflow block update method

• Defining Output to Simulink events

• Adding and defining nonlocal events and nonlocal data within the Stateflow
chart

• Defining relationships with any external sources

In the following example, the Simulink model consists of a Sine Wave block, a
Scope block, and a single Stateflow block, titled On_off.

1-5

1 Stateflow® Chart Concepts

Stateflow Chart Objects
Stateflow charts consist of graphical and nongraphical objects:

1-6

Stateflow® Chart Objects

1-7

1 Stateflow® Chart Concepts

To learn how these objects interact, see “How Chart Constructs Interact
During Execution” on page 3-8.

1-8

Stateflow® Hierarchy of Objects

Stateflow Hierarchy of Objects
Stateflow machines arrange Stateflow objects in a hierarchy based on
containment. That is, one Stateflow object can contain other Stateflow objects.

The highest object in Stateflow hierarchy is the Stateflow machine. This
object contains all other Stateflow objects in a Simulink model. The Stateflow
machine contains all the charts in a model. In addition, the Stateflow machine
for a model can contain its own data.

1-9

1 Stateflow® Chart Concepts

Similarly, charts can contain state, box, function, data, event, transition,
junction, and note objects. Continuing with the Stateflow hierarchy, states
can contain all these objects as well, including other states. You can represent
state hierarchy with superstates and substates.

A transition out of a superstate implies transitions out of any of its active
substates. Transitions can cross superstate boundaries to specify a substate
destination. If a substate becomes active, its parent superstate also becomes
active.

You can organize complex charts by defining a containment structure. A
hierarchical design usually reduces the number of transitions and produces
neat, manageable charts.

• To manage graphical objects, use the Stateflow Editor.

• To manage nongraphical objects, use the Model Explorer.

1-10

Bibliography

Bibliography
[1] Hatley, D. J. and I. A. Pirbhai. Strategies for Real-Time System
Specification. New York, NY: Dorset House Publishing, 1988.

1-11

1 Stateflow® Chart Concepts

1-12

2

Stateflow Chart Notation

• “Overview of Stateflow Objects” on page 2-2

• “Rules for Naming Stateflow Objects” on page 2-4

• “States” on page 2-7

• “Transitions” on page 2-15

• “Transition Connections” on page 2-20

• “Default Transitions” on page 2-30

• “Connective Junctions” on page 2-35

• “History Junctions” on page 2-42

• “Boxes” on page 2-44

• “When to Use Reusable Functions in Charts” on page 2-45

2 Stateflow® Chart Notation

Overview of Stateflow Objects

In this section...

“Graphical Objects” on page 2-2

“Nongraphical Objects” on page 2-3

Graphical Objects
The following table lists each type of graphical object you can draw in a chart
and the toolbar icon to use for drawing the object.

Type of Graphical Object Toolbar Icon

State

Transition Not applicable

History junction

Default transition

Connective junction

Truth table function

Graphical function

MATLAB® function

2-2

Overview of Stateflow® Objects

Type of Graphical Object Toolbar Icon

Box

Simulink function

Nongraphical Objects
You can define data, event, and target objects that do not appear graphically
in the Stateflow Editor. However, you can see them in the Model Explorer.
See “Use the Model Explorer with Stateflow Objects” on page 29-2.

Data Objects
A Stateflow chart stores and retrieves data that it uses to control its execution.
Stateflow data resides in its own workspace, but you can also access data
that resides externally in the Simulink model or application that embeds
the Stateflow machine. You must define any internal or external data that
you use in a Stateflow chart.

Event Objects
An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting
to events, you specify and program events into your charts to control their
execution. You can broadcast events to every object in the scope of the object
sending the event, or you can send an event to a specific object. You can define
explicit events that you specify directly, or you can define implicit events to
take place when certain actions are performed, such as entering a state.

2-3

2 Stateflow® Chart Notation

Rules for Naming Stateflow Objects

In this section...

“Characters You Can Use” on page 2-4

“Restriction on Name Length” on page 2-4

“Keywords to Avoid When Naming Chart Objects” on page 2-4

Characters You Can Use
You can name Stateflow objects with any combination of alphanumeric and
underscore characters. Names cannot begin with a numeric character or
contain embedded spaces.

Restriction on Name Length
Name length should comply with the maximum identifier length enforced
by Simulink Coder™ software. You can set this parameter in the Code
Generation > Symbols pane of the Configuration Parameters dialog box.
The default is 31 characters and the maximum length you can specify is
256 characters.

Keywords to Avoid When Naming Chart Objects
You cannot use reserved keywords to name chart objects. These keywords are
part of the action language syntax.

Usage in Action Language
Syntax

Keywords Syntax References

Boolean symbols • true

• false

“Boolean Symbols, true and
false” on page 10-28

Change detection • hasChanged

• hasChangedFrom

• hasChangedTo

“Detect Changes in Data
Values” on page 10-81

2-4

Rules for Naming Stateflow® Objects

Usage in Action Language
Syntax

Keywords Syntax References

Complex data • complex

• imag

• real

“Define Complex Data Using
Operators” on page 20-9

Data types • boolean

• double

• int8

• int16

• int32

• single

• uint8

• uint16

• uint32

“Set Data Properties” on page
8-5

Data type operations • cast

• fixdt

• type

“Type Cast Operations” on
page 10-25

Explicit events • send “Broadcast Events to
Synchronize States” on
page 10-57

Implicit events • change

• chg

• tick

• wakeup

“Control Chart Execution
Using Implicit Events” on
page 9-39

Literal symbols • inf

• t

“Supported Symbols in
Actions” on page 10-28

MATLAB functions and data • matlab

• ml

“ml Namespace Operator” on
page 10-41

2-5

2 Stateflow® Chart Notation

Usage in Action Language
Syntax

Keywords Syntax References

State actions • bind

• du

• during

• en

• entry

• ex

• exit

• on

“Supported Action Types for
States and Transitions” on
page 10-2

State activity • in “Check State Activity” on page
10-94

Temporal logic • after

• at

• before

• every

• sec

• msec

• usec

• temporalCount

“Control Chart Execution
Using Temporal Logic” on
page 10-61

2-6

States

States

In this section...

“What Is a State?” on page 2-7

“State Hierarchy” on page 2-7

“State Decomposition” on page 2-9

“State Labels” on page 2-11

What Is a State?
A state describes an operating mode of a reactive system. In a Stateflow chart,
states are used for sequential design to create state transition diagrams.

States can be active or inactive. The activity or inactivity of a state can
change depending on events and conditions. The occurrence of an event drives
the execution of the state transition diagram by making states become active
or inactive. At any point during execution, active and inactive states exist.

State Hierarchy
To manage multilevel state complexity, use hierarchy in your Stateflow
chart. With hierarchy, you can represent multiple levels of subcomponents
in a system.

State Hierarchy Example
In the following example, three levels of hierarchy appear in the chart.
Drawing one state within the boundaries of another state indicates that the
inner state is a substate (or child) of the outer state (or superstate). The outer
state is the parent of the inner state.

2-7

2 Stateflow® Chart Notation

In this example, the chart is the parent of the state Car_done. The state
Car_done is the parent state of the Car_made and Car_shipped states. The
state Car_made is also the parent of the Parts_assembled and Painted states.
You can also say that the states Parts_assembled and Painted are children
of the Car_made state.

To represent the Stateflow hierarchy textually, use a slash character (/)
to represent the chart and use a period (.) to separate each level in the
hierarchy of states. The following list is a textual representation of the
hierarchy of objects in the preceding example:

• /Car_done

• /Car_done.Car_made

• /Car_done.Car_shipped

• /Car_done.Car_made.Parts_assembled

• /Car_done.Car_made.Painted

Objects That a State Can Contain
States can contain all other Stateflow objects except targets. Stateflow
chart notation supports the representation of graphical object hierarchy in
Stateflow charts with containment. A state is a superstate if it contains other

2-8

States

states. A state is a substate if it is contained by another state. A state that is
neither a superstate nor a substate of another state is a state whose parent
is the Stateflow chart itself.

States can also contain nongraphical data and event objects. The hierarchy of
this containment appears in the Model Explorer. You define data and event
containment by specifying the parent object of the data or event.

State Decomposition
Every state (or chart) has a decomposition that dictates what type of substates
the state (or chart) can contain. All substates of a superstate must be of
the same type as the superstate decomposition. State decomposition can
be exclusive (OR) or parallel (AND).

Exclusive (OR) State Decomposition
Substates with solid borders indicate exclusive (OR) state decomposition. Use
this decomposition to describe operating modes that are mutually exclusive.
When a state has exclusive (OR) decomposition, only one substate can be
active at a time.

In the following example, either state A or state B can be active. If state A is
active, either state A1 or state A2 can be active at a given time.

2-9

2 Stateflow® Chart Notation

Parallel (AND) State Decomposition
Substates with dashed borders indicate parallel (AND) decomposition. Use
this decomposition to describe concurrent operating modes. When a state has
parallel (AND) decomposition, all substates are active at the same time.

In the following example, when state A is active, A1 and A2 are both active
at the same time.

The activity within parallel states is essentially independent, as demonstrated
in the following example.

In the following example, when state A becomes active, both states B and C
become active at the same time. When state C becomes active, either state
C1 or state C2 can be active.

2-10

States

State Labels
The label for a state appears on the top left corner of the state rectangle with
the following general format:

name/
entry:entry actions
during:during actions
exit:exit actions
on event_name:on event_name actions
bind:events

The following example demonstrates the components of a state label.

Each action in the state label appears in the subtopics that follow. For more
information on state actions, see:

• “Process for Entering, Executing, and Exiting States” on page 3-68 —
Describes how and when entry, during, exit, and on event_name actions
occur.

2-11

2 Stateflow® Chart Notation

• “State Action Types” on page 10-2 — Gives more detailed descriptions of
each type of state action.

State Name
A state label starts with the name of the state followed by an optional
/ character. In the preceding example, the state names are On and Off.
Valid state names consist of alphanumeric characters and can include the
underscore (_) character. For more information, see “Rules for Naming
Stateflow Objects” on page 2-4.

Hierarchy provides some flexibility in naming states. The name that you
enter on the state label must be unique when preceded by ancestor states.
The name in the Stateflow hierarchy is the text you enter as the label on the
state, preceded by the names of parent states separated by periods. Each
state can have the same name appear in the label, as long as their full names
within the hierarchy are unique. Otherwise, the parser indicates an error.

The following example shows how unique naming of states works.

2-12

States

Each of these states has a unique name because of its location in the chart.
The full names for the states in FAN1 and FAN2 are:

• PowerOn.FAN1.On

• PowerOn.FAN1.Off

• PowerOn.FAN2.On

• PowerOn.FAN2.Off

State Actions
After the name, you enter optional action statements for the state with a
keyword label that identifies the type of action. You can specify none, some,
or all of them. The colon after each keyword is required. The slash following
the state name is optional as long as it is followed by a carriage return.

2-13

2 Stateflow® Chart Notation

For each type of action, you can enter more than one action by separating
each action with a carriage return, semicolon, or a comma. You can specify
actions for more than one event by adding additional on event_name lines for
different events.

If you enter the name and slash followed directly by actions, the actions are
interpreted as entry action(s). This shorthand is useful if you are specifying
only entry actions.

Entry Action. Preceded by the prefix entry or en for short. In the preceding
example, state On has entry action on_count=0. This means that the value of
on_count is reset to 0 whenever state On becomes active (entered).

During Action. Preceded by the prefix during or du for short. In the
preceding label example, state On has two during actions, light_on() and
on_count++. These actions are executed whenever state On is already
active and any event occurs.

Exit Action. Preceded by the prefix exit or ex for short. In the preceding
label example, state Off has the exit action light_off(). If the state Off is
active, but becomes inactive (exited), this action is executed.

On Event_Name Action. Preceded by the prefix on event_name, where
event_name is a unique event. In the preceding label example, state On has
an on power_outage action. If state On is active and the event power_outage
occurs, the action handle_outage() is executed.

Bind Action. Preceded by the prefix bind. Events bound to a state can only
be broadcast by that state or its children.

2-14

Transitions

Transitions

In this section...

“What Is a Transition?” on page 2-15

“Transition Hierarchy” on page 2-16

“Transition Label Notation” on page 2-17

“Valid Transitions” on page 2-19

What Is a Transition?
A transition is a line with an arrowhead that links one graphical object to
another. In most cases, a transition represents the passage of the system from
one mode (state) object to another. A transition typically connects a source
and a destination object. The source object is where the transition begins and
the destination object is where the transition ends. The following chart shows
a transition from a source state, B, to a destination state, A.

Junctions divide a transition into transition segments. In this case, a full
transition consists of the segments taken from the origin to the destination
state. Each segment is evaluated in the process of determining the validity of
a full transition.

The following example has two segmented transitions: one from state On to
state Off, and the other from state On to itself:

2-15

2 Stateflow® Chart Notation

A default transition is a special type of transition that has no source object.
See “Default Transitions” on page 2-30 for details.

Transition Hierarchy
Transitions cannot contain other objects the way that states can. However,
transitions are contained by states. A transition’s hierarchy is described
in terms of the transition’s parent, source, and destination. The parent is
the lowest level that contains the source and destination of the transition.
Consider the parents for the transitions in the following example:

2-16

Transitions

The following table resolves the parentage of each transition in the preceding
example. The / character represents the chart. Each level in the hierarchy
of states is separated by the period (.) character.

Transition Label Transition Parent Transition Source
Transition
Destination

switch_off / /Power_on.Low.Heat /Power_off

switch_high /Power_on /Power_on.Low.Heat /Power_on.High

switch_cold /Power_on.Low /Power_on.Low.Heat /Power_on.Low.Cold

Transition Label Notation
A transition is characterized by its label. The label can consist of an event, a
condition, a condition action, and/or a transition action. The ? character is the
default transition label. Transition labels have the following general format:

event[condition]{condition_action}/transition_action

You replace the names for event, condition, condition_action, and
transition_action with appropriate contents as shown in the example
“Transition Label Example” on page 2-18. Each part of the label is optional.

2-17

2 Stateflow® Chart Notation

Transition Label Example
Use the following example to understand the parts of a transition label.

Event Trigger. Specifies an event that causes the transition to be taken,
provided the condition, if specified, is true. Specifying an event is optional.
The absence of an event indicates that the transition is taken upon the
occurrence of any event. Specify multiple events using the OR logical operator
(|).

In the preceding example, the broadcast of event E triggers the transition
from On to Off as long as the condition [off_count==0] is true.

Condition. Specifies a Boolean expression that, when true, validates a
transition to be taken for the specified event trigger. Enclose the condition
in square brackets ([]). See “Conditions” on page 10-10 for information on
the condition notation.

In the preceding example, the condition [off_count==0] must evaluate as
true for the condition action to be executed and for the transition from the
source to the destination to be valid.

2-18

Transitions

Condition Action. Follows the condition for a transition and is enclosed
in curly braces ({}). It is executed as soon as the condition is evaluated as
true and before the transition destination has been determined to be valid.
If no condition is specified, an implied condition evaluates to true and the
condition action is executed.

In the preceding example, if the condition [off_count==0] is true, the
condition action off_count++ is immediately executed.

Transition Action. Executes after the transition destination has been
determined to be valid provided the condition, if specified, is true. If the
transition consists of multiple segments, the transition action is only executed
when the entire transition path to the final destination is determined to be
valid. Precede the transition action with a /.

In the preceding example, if the condition [off_count==0] is true, and the
destination state Off is valid, the transition action Light_off is executed.

Valid Transitions
In most cases, a transition is valid when the source state of the transition
is active and the transition label is valid. Default transitions are different
because there is no source state. Validity of a default transition to a substate
is evaluated when there is a transition to its superstate, assuming the
superstate is active. This labeling criterion applies to both default transitions
and general case transitions. The following table lists possible combinations
of valid transition labels.

Transition Label Is Valid If...

Event only That event occurs

Event and condition That event occurs and the condition is true

Condition only Any event occurs and the condition is true

Action only Any event occurs

Not specified Any event occurs

2-19

2 Stateflow® Chart Notation

Transition Connections

In this section...

“Transitions to and from Exclusive (OR) States” on page 2-20

“Transitions to and from Junctions” on page 2-21

“Transitions to and from Exclusive (OR) Superstates” on page 2-21

“Transitions to and from Substates” on page 2-22

“Self-Loop Transitions” on page 2-23

“Inner Transitions” on page 2-25

Transitions to and from Exclusive (OR) States
This example shows simple transitions to and from exclusive (OR) states.

The following transition... Is valid when...

B to A State B is active and the event E1
occurs.

A1 to A2 State A1 is active and event E2
occurs.

See “Transition to and from Exclusive (OR) States” on page B-4 for more
information on the semantics of this notation.

2-20

Transition Connections

Transitions to and from Junctions
The following chart shows transitions to and from connective junctions.

The chart uses temporal logic to determine when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

For more information about temporal logic, see “Control Chart Execution
Using Temporal Logic” on page 10-61. For more information on the semantics
of this notation, see “Transition from a Common Source to Multiple
Destinations” on page B-38.

Transitions to and from Exclusive (OR) Superstates
This example shows transitions to and from an exclusive (OR) superstate
and the use of a default transition.

2-21

2 Stateflow® Chart Notation

The chart has two states at the highest level in the hierarchy, Power_off
and Power_on. By default, Power_off is active. The event Switch toggles
the system between the Power_off and Power_on states. Power_on has
three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second, Second to Third, Third to First, for each
occurrence of the event Switch, and then the pattern repeats.

For more information on the semantics of this notation, see “Control Chart
Execution Using Default Transitions” on page B-17.

Transitions to and from Substates
The following example shows transitions to and from exclusive (OR) substates.

2-22

Transition Connections

For details on how this chart works, see “Key Behaviors of Debouncer
Chart” on page 23-4. For information on the semantics of this notation, see
“Transition from a Substate to a Substate with Events” on page B-8.

Self-Loop Transitions
A transition that originates from and terminates on the same state is a
self-loop transition. The following chart contains four self-loop transitions:

2-23

2 Stateflow® Chart Notation

See these sections for more information about the semantics of this notation:

• “Self-Loop Transition” on page B-34

• “For-Loop Construct” on page B-35

2-24

Transition Connections

Inner Transitions
An inner transition is a transition that does not exit the source state. Inner
transitions are powerful when defined for superstates with exclusive (OR)
decomposition. Use of inner transitions can greatly simplify a Stateflow chart,
as shown by the following examples:

• “Before Using an Inner Transition” on page 2-25

• “After Using an Inner Transition to a Connective Junction” on page 2-27

• “Using an Inner Transition to a History Junction” on page 2-28

Before Using an Inner Transition
This chart is an example of how you can simplify logic using an inner
transition.

2-25

2 Stateflow® Chart Notation

Any event occurs and awakens the Stateflow chart. The default transition
to the connective junction is valid. The destination of the transition is
determined by [c1 > 0] and [c2 > 0]. If [c1 > 0] is true, the transition to
A1 is true. If [c2 > 0] is true, the transition to A2 is valid. If neither [c1 >
0] nor [c2 > 0] is true, the transition to A3 is valid. The transitions among
A1, A2, and A3 are determined by E, [c1 > 0], and [c2 > 0].

2-26

Transition Connections

After Using an Inner Transition to a Connective Junction
This example simplifies the preceding example using an inner transition to
a connective junction.

An event occurs and awakens the chart. The default transition to the
connective junction is valid. The destination of the transitions is determined
by [c1 > 0] and [c2 > 0].

You can simplify the chart by using an inner transition in place of the
transitions among all the states in the original example. If state A is already
active, the inner transition is used to reevaluate which of the substates of
state A is to be active. When event E occurs, the inner transition is potentially
valid. If [c1 > 0] is true, the transition to A1 is valid. If [c2 > 0] is true,
the transition to A2 is valid. If neither [c1 > 0] nor [c2 > 0] is true, the
transition to A3 is valid. This chart design is simpler than the previous one.

2-27

2 Stateflow® Chart Notation

Note When you use an inner transition to a connective junction, an active
substate can exit and reenter when the transition condition for that substate
is valid. For example, if substate A1 is active and [c1 > 0] is true, the
transition to A1 is valid. In this case:

1 Exit actions for A1 execute and complete.

2 A1 becomes inactive.

3 A1 becomes active.

4 Entry actions for A1 execute and complete.

See “Process the First Event with an Inner Transition to a Connective
Junction” on page B-26 for more information on the semantics of this notation.

Using an Inner Transition to a History Junction
This example shows an inner transition to a history junction.

2-28

Transition Connections

State Power_on.High is initially active. When event Reset occurs, the inner
transition to the history junction is valid. Because the inner transition
is valid, the currently active state, Power_on.High, is exited. When the
inner transition to the history junction is processed, the last active state,
Power_on.High, becomes active (is reentered). If Power_on.Low was active
under the same circumstances, Power_on.Low would be exited and reentered
as a result. The inner transition in this example is equivalent to drawing an
outer self-loop transition on both Power_on.Low and Power_on.High.

See “Use of History Junctions Example” on page 2-42 for another example
using a history junction.

See “Inner Transition to a History Junction” on page B-29 for more
information on the semantics of this notation.

2-29

2 Stateflow® Chart Notation

Default Transitions

In this section...

“What Is a Default Transition?” on page 2-30

“Drawing Default Transitions” on page 2-30

“Label Default Transitions” on page 2-30

“Default Transition Examples” on page 2-31

What Is a Default Transition?
A default transition specifies which exclusive (OR) state to enter when
there is ambiguity among two or more neighboring exclusive (OR) states. A
default transition has a destination but no source object. For example, a
default transition specifies which substate of a superstate with exclusive
(OR) decomposition the system enters by default, in the absence of any other
information, such as a history junction. A default transition can also specify
that a junction should be entered by default.

Drawing Default Transitions
Click the Default transition button in the toolbar, and click a location in the
drawing area close to the state or junction you want to be the destination for
the default transition. Drag the mouse to the destination object to attach the
default transition. In some cases, it is useful to label default transitions.

A common programming mistake is to create multiple exclusive (OR) states
without a default transition. In the absence of the default transition, there is
no indication of which state becomes active by default. Note that this error
is flagged when you simulate the model using the Debugger with the State
Inconsistencies option enabled.

Label Default Transitions
In some circumstances, you might want to label default transitions. You
can label default transitions as you would other transitions. For example,
you might want to specify that one state or another should become active
depending upon the event that has occurred. In another situation, you

2-30

Default Transitions

might want to have specific actions take place that are dependent upon the
destination of the transition.

Tip When labeling default transitions, ensure that there is at least one valid
default transition. Otherwise, a chart can transition into an inconsistent
state.

Default Transition Examples
The following examples show the use of default transitions in Stateflow charts:

• “Default Transition to a State Example” on page 2-31

• “Default Transition to a Junction Example” on page 2-32

• “Default Transition with a Label Example” on page 2-33

Default Transition to a State Example
This example shows a default transition to a state.

2-31

2 Stateflow® Chart Notation

Without the default transition to state PowerOff, when the Stateflow chart
wakes up, none of the states becomes active. You can detect this situation
at run-time by checking for state inconsistencies. See “Animate Stateflow
Charts in Normal Mode” on page 28-6 for more information.

See “Control Chart Execution Using Default Transitions” on page B-17 for
information on the semantics of this notation.

Default Transition to a Junction Example
This example shows a default transition to a connective junction.

2-32

Default Transitions

The default transition to the connective junction defines that upon entering
the chart, the destination depends on the condition of each transition segment.

See “Default Transition to a Junction” on page B-18 for information on the
semantics of this notation.

Default Transition with a Label Example
This example shows a default transition with a label.

2-33

2 Stateflow® Chart Notation

When the chart wakes up, the data p and v initialize to 10 and 15, respectively.

See “Labeled Default Transitions” on page B-20 for more information on the
semantics of this notation.

2-34

Connective Junctions

Connective Junctions

In this section...

“What Is a Connective Junction?” on page 2-35

“Flow Chart Notation with Connective Junctions” on page 2-35

What Is a Connective Junction?
The connective junction enables representation of different possible transition
paths for a single transition. Connective junctions are used to help represent
the following:

• Variations of an if-then-else decision construct, by specifying conditions
on some or all of the outgoing transitions from the connective junction

• A self-loop transition back to the source state if none of the outgoing
transitions is valid

• Variations of a for loop construct, by having a self-loop transition from
the connective junction back to itself

• Transitions from a common source to multiple destinations

• Transitions from multiple sources to a common destination

• Transitions from a source to a destination based on common events

Note An event cannot trigger a transition from a connective junction to
a destination state.

See “Use Connective Junctions to Represent Multiple Paths” on page B-31 for
a summary of the semantics of connective junctions.

Flow Chart Notation with Connective Junctions
Flow chart notation uses connective junctions to represent common code
structures like for loops and if-then-else constructs without the use of
states. And by reducing the number of states in your Stateflow charts,

2-35

2 Stateflow® Chart Notation

flow chart notation produces efficiently generated code that helps optimize
memory use.

Flow chart notation uses combinations of the following:

• Transitions to and from connective junctions

• Self-loops to connective junctions

• Inner transitions to connective junctions

Flow chart notation, states, and state-to-state transitions coexist in the same
Stateflow chart. The key to representing flow chart notation is in the labeling
of transitions, as shown in the following examples.

2-36

Connective Junctions

Connective Junction with All Conditions Specified Example

A transition from the Front_desk state to a connective junction is labeled
by the check_in event. Transitions from the connective junction to the
destination states are labeled with conditions. If Front_desk is active when
check_in occurs, the transition from Front_desk to the connective junction
occurs first. The transition from the connective junction to a destination

2-37

2 Stateflow® Chart Notation

state depends on which of the room_type conditions is true. If none of the
conditions is true, no transition occurs and Front_desk remains active.

For more information about this chart, see “Phases of Chart Execution”
on page 3-13. For more information on the semantics of this notation, see
“If-Then-Else Decision Construct” on page B-32.

Connective Junction with One Unconditional Transition
Example

The chart uses temporal logic to determine when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

For more information about temporal logic, see “Control Chart Execution
Using Temporal Logic” on page 10-61. For more information on the semantics
of this notation, see “If-Then-Else Decision Construct” on page B-32.

Connective Junction and For Loops Example
This example shows a combination of flow chart notation and state transition
notation. Self-loop transitions to connective junctions can represent for loop
constructs. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-59).

2-38

Connective Junctions

See “For-Loop Construct” on page B-35 for information on the semantics of
this notation.

Flow Chart Notation Example
This example shows the use of flow chart notation. The chart uses implicit
ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-59).

2-39

2 Stateflow® Chart Notation

See “Flow Chart Notation” on page B-36 for information on the semantics
of this notation.

Connective Junction from a Common Source to Multiple
Destinations Example
This example shows transition segments from a common source to multiple
conditional destinations using a connective junction. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-59).

2-40

Connective Junctions

See “Transition from a Common Source to Multiple Destinations” on page
B-38 for information on the semantics of this notation.

Connective Junction Common Events Example
This example shows transition segments from multiple sources to a single
destination based on the same event using a connective junction.

See “Transition from a Source to a Destination Based on a Common Event” on
page B-40 for information on the semantics of this notation.

2-41

2 Stateflow® Chart Notation

History Junctions

In this section...

“What Is a History Junction?” on page 2-42

“History Junctions and Inner Transitions” on page 2-43

What Is a History Junction?
A history junction represents historical decision points in the Stateflow chart.
The decision points are based on historical data relative to state activity.
Placing a history junction in a superstate indicates that historical state
activity information is used to determine the next state to become active. The
history junction applies only to the level of the hierarchy in which it appears.

Use of History Junctions Example
The following example uses a history junction:

Superstate Power_on has a history junction and contains two substates.
If state Power_off is active and event switch_on occurs, the system can
enter Power_on.Low or Power_on.High. The first time superstate Power_on
is entered, substate Power_on.Low is entered because it has a default

2-42

History Junctions

transition. At some point afterward, if state Power_on.High is active and
event switch_off occurs, superstate Power_on is exited and state Power_off
becomes active. Then event switch_on occurs. Because Power_on.High
was the last active substate, it becomes active again. After the first time
Power_on becomes active, the history junction determines whether to enter
Power_on.Low or Power_on.High.

See “Default Transition and a History Junction” on page B-19 for more
information on the semantics of this notation.

History Junctions and Inner Transitions
By specifying an inner transition to a history junction, you can specify that,
based on a specified event or condition, the active state is to be exited and
then immediately reentered.

See “Using an Inner Transition to a History Junction” on page 2-28 for an
example of this notation.

See “Inner Transition to a History Junction” on page B-29 for more
information on the semantics of this notation.

2-43

2 Stateflow® Chart Notation

Boxes

In this section...

“What Is a Box?” on page 2-44

“Example of Using a Box” on page 2-44

What Is a Box?
A box is a graphical object that organizes other objects in your chart, such as
functions and states.

Example of Using a Box
In this example, the box Heater groups together related states Off and On.

For rules of using boxes and other examples, see “Group Chart Objects Using
Boxes” on page 7-44.

2-44

When to Use Reusable Functions in Charts

When to Use Reusable Functions in Charts
State actions and transition conditions can be complicated enough that
defining them inline on the state or transition is not feasible. In this case,
express the conditions or actions using one of the following types of Stateflow
functions:

• Flow chart — Encapsulate flow charts containing if-then-else, switch-case,
for, while, or do-while patterns.

• MATLAB — Write matrix-oriented algorithms; call MATLAB functions
for data analysis and visualization.

• Simulink — Call Simulink function-call subsystems directly to streamline
design and improve readability.

• Truth table — Represent combinational logic for decision-making
applications such as fault detection and mode switching.

Use the function format that is most natural for the type of calculation
required in the state action or transition condition.

If the four standard types of Stateflow functions do not work, you can write
your own C or C++ code for integration with your chart. For more information
about custom code integration, see “Share Data Using Custom C Code” on
page 27-44.

2-45

2 Stateflow® Chart Notation

2-46

3

Stateflow Chart Semantics

• “What Do Semantics Mean for Stateflow Charts?” on page 3-2

• “How Chart Constructs Interact During Execution” on page 3-8

• “Modeling Guidelines for Stateflow Charts” on page 3-33

• “How Events Drive Chart Execution” on page 3-36

• “Types of Chart Execution” on page 3-39

• “Process for Grouping and Executing Transitions” on page 3-51

• “Evaluation Order for Outgoing Transitions” on page 3-54

• “Process for Entering, Executing, and Exiting States” on page 3-68

• “Execution Order for Parallel States” on page 3-73

• “Early Return Logic for Event Broadcasts” on page 3-81

3 Stateflow® Chart Semantics

What Do Semantics Mean for Stateflow Charts?

In this section...

“What Are Chart Semantics?” on page 3-2

“Common Graphical and Nongraphical Constructs” on page 3-3

“References for Chart Semantics” on page 3-7

What Are Chart Semantics?
Chart semantics describe execution behavior according to the interaction of
graphical and nongraphical constructs.

Graphical Constructs
Graphical constructs consist of objects that appear graphically in a chart. You
use the object palette in the Stateflow Editor to build graphical constructs
(see “Stateflow Editor Operations” on page 4-30).

Graphical Constructs Types References

Flow charts • Decision logic patterns

• Loop logic patterns

“What Is a Flow Chart?” on page
5-2

Functions • Graphical functions

• MATLAB functions

• Truth table functions

• Simulink functions

• “What Is a Graphical
Function?” on page 7-35

• “MATLAB Functions in a
Stateflow Chart” on page 25-5

• “What Is a Truth Table?” on
page 24-2

• “What Is a Simulink Function?”
on page 26-2

Junctions • Connective junctions

• History junctions

• “Connective Junctions” on page
2-35

• “History Junctions” on page
2-42

3-2

What Do Semantics Mean for Stateflow® Charts?

Graphical Constructs Types References

States • States with exclusive (OR)
decomposition

• States with parallel (AND)
decomposition

• Substates and superstates

• “Exclusive (OR) State
Decomposition” on page
2-9

• “Parallel (AND) State
Decomposition” on page
2-10

• “Create Substates and
Superstates” on page 4-7

Transitions • Default transitions

• Object-to-object transitions

• Inner transitions

• Self-loop transitions

• “Default Transitions” on page
2-30

• “Transition Connections” on
page 2-20

Nongraphical Constructs
Nongraphical constructs appear textually in a chart and often refer to data
and events (see “Add Data” on page 8-2 and “Define Events” on page 9-5 for
details). Examples of nongraphical constructs include:

• Conditions and condition actions

• Function calls

• State actions

• Temporal logic statements

Common Graphical and Nongraphical Constructs
The following chart shows commonly used graphical and nongraphical
constructs.

3-3

3 Stateflow® Chart Semantics

3-4

What Do Semantics Mean for Stateflow® Charts?

Chart Construct Graphical or
Nongraphical?

Description Reference

Condition Nongraphical Boolean expression
that specifies that
a transition path is
valid if the expression
is true; part of a
transition label

“Transition Label
Notation” on page
2-17 and “Conditions”
on page 10-10

Condition action Nongraphical Action that executes
as soon as the
condition evaluates
to true; part of a
transition label

“Transition Label
Notation” on page
2-17 and “Condition
Actions” on page 10-11

Connective junction Graphical Object that enables
representation of
different possible
transition paths in a
flow chart

“Connective
Junctions” on page
2-35

Default transition Graphical Object that specifies
which state to enter
when two or more
exclusive (OR) states
exist at the same level
of hierarchy

“Default Transitions”
on page 2-30

Flow chart Graphical Construct that models
logic patterns by using
connective junctions
and transitions

“What Is a Flow
Chart?” on page 5-2

History junction Graphical Object that
remembers the
previously active
state at the level of
hierarchy in which it
appears

“History Junctions” on
page 2-42

3-5

3 Stateflow® Chart Semantics

Chart Construct Graphical or
Nongraphical?

Description Reference

MATLAB function Graphical Method of performing
computations using a
subset of theMATLAB
language

“MATLAB Functions
in a Chart” on page
25-2

State actions Nongraphical Expressions that
specify actions to take
when a state is active,
such as initializing or
updating data; part of
a state label

“State Labels” on page
2-11 and “State Action
Types” on page 10-2

State with exclusive
(OR) decomposition

Graphical State where no more
than one substate can
be active at a time

“Exclusive (OR) State
Decomposition” on
page 2-9

State with parallel
(AND) decomposition

Graphical State where all
substates can be
active at the same
time

“Parallel (AND) State
Decomposition” on
page 2-10

Substate Graphical State that resides
inside another state

“Create Substates and
Superstates” on page
4-7

Superstate Graphical State that contains
one or more states

“Create Substates and
Superstates” on page
4-7

Transition guarded by
input event

Graphical Decision path that
occurs if the chart
receives a specific
event broadcast from
another block in the
model

“Transition Action
Types” on page 10-7

For details on how these graphical and nongraphical constructs interact
during chart execution, see “How Chart Constructs Interact During
Execution” on page 3-8.

3-6

What Do Semantics Mean for Stateflow® Charts?

References for Chart Semantics
For detailed information on types of chart semantics, see these references.

Topic Reference

How do events affect chart execution? “How Events Drive Chart Execution” on page
3-36

How does a chart switch between being active
and inactive?

“Types of Chart Execution” on page 3-39

In what order do flow charts execute? “Process for Grouping and Executing
Transitions” on page 3-51

In what order do outgoing transitions from a
single source execute?

“Evaluation Order for Outgoing Transitions”
on page 3-54

What happens when you enter, execute, or exit
a state?

“Process for Entering, Executing, and Exiting
States” on page 3-68

How do parallel (AND) states work? “Execution Order for Parallel States” on page
3-73

How does early return logic affect chart
execution?

“Early Return Logic for Event Broadcasts” on
page 3-81

For detailed examples of chart semantics, see Appendix B, “Semantic
Examples”.

3-7

3 Stateflow® Chart Semantics

How Chart Constructs Interact During Execution

In this section...

“Overview of the Example Model” on page 3-8

“Model of the Check-In Process for a Hotel” on page 3-8

“How the Chart Interacts with Simulink Blocks” on page 3-12

“Phases of Chart Execution” on page 3-13

Overview of the Example Model
The example model shows how common graphical and nongraphical constructs
in a chart interact during execution. These constructs include:

• Conditions and condition actions

• Exclusive (OR) states

• Flow charts

• Function calls

• History junctions

• Parallel (AND) states

• State actions

• Transitions guarded by input events

For details of the chart semantics, see “Phases of Chart Execution” on page
3-13.

Model of the Check-In Process for a Hotel
This example uses the hotel check-in process to explain Stateflow chart
semantics. To open the model, type sf_semantics_hotel_checkin at the
MATLAB command prompt.

3-8

How Chart Constructs Interact During Execution

The model consists of four Manual Switch blocks, one Mux block, one
Multiport Switch block, a Hotel chart, and a Display block.

3-9

3 Stateflow® Chart Semantics

The model uses
this block...

To... Because...

Manual Switch Enable toggling between two settings
during simulation without having to
pause or restart.

During simulation, you can
interactively trigger the chart by
sending one of these input events:

• Checking in to a hotel

• Calling room service

• Triggering a fire alarm

• Sending an all-clear signal after
a fire alarm

Mux Combine multiple input signals into
a vector.

A chart can support multiple input
events only if they connect to the
trigger port of a chart as a vector of
inputs.

Multiport Switch Enable selection among more than
two inputs.

This block provides a value for the
chart input data room_type, where
each room type corresponds to a
number (1, 2, or 3).

A Manual Switch block cannot
support more than two inputs, but a
Multiport Switch block can.

Display Show up-to-date numerical value for
input signal.

During simulation, any change to
the chart output data fee appears in
the display.

3-10

How Chart Constructs Interact During Execution

The Hotel chart contains graphical constructs, such as states and history
junctions, and nongraphical constructs, such as conditions and condition
actions.

For a mapping of constructs to their locations in the chart, see “Common
Graphical and Nongraphical Constructs” on page 3-3.

3-11

3 Stateflow® Chart Semantics

How the Chart Interacts with Simulink Blocks

Chart Initialization
When simulation starts, the chart wakes up and executes its default
transitions because the Execute (enter) Chart At Initialization option is
on (see “Execution of a Chart at Initialization” on page 3-49). Then the chart
goes to sleep.

Note If this option is off, the chart does not wake up until you toggle one of
the Manual Switch blocks. You can verify the setting for this option in the
Chart properties dialog box. Right-click inside the top level of the chart and
select Properties from the context menu.

Chart Interaction with Other Blocks
The chart wakes up again only when an edge-triggered input event occurs:
check_in, room_service, fire_alarm, or all_clear. When you toggle a
Manual Switch block for an input event during simulation, the chart detects a
rising or falling edge and wakes up. While the chart is awake:

• The Multiport Switch block provides a value for the chart input data
room_type.

• The Display block shows any change in value for the chart output data fee.

Chart Inactivity
After completing all possible phases of execution, the chart goes back to sleep.

3-12

How Chart Constructs Interact During Execution

Phases of Chart Execution
The following sections explain chart execution for each shaded region of the
Hotel chart.

3-13

3 Stateflow® Chart Semantics

Phase: Chart Initialization
This section describes what happens in the Front_desk state just after the
chart wakes up.

3-14

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 Your first stop is at the front desk of the
hotel.

At the chart level, the default transition
to Check_in occurs, making that state
active. Then, the default transition to
Front_desk occurs, making that state
active.

For reference, see “Steps for Entering a
State” on page 3-68.

2 You leave the front desk after checking
in to the hotel.

The check_in event guards the outgoing
transition from Front_desk. When the
chart receives an event broadcast for
check_in, the transition becomes valid.

For reference, see “How Charts Process
Events” on page 3-37.

3 Just before you leave the front desk, you
pick up your bags to move to your room.

Just before the transition occurs, the
exit action of Front_desk sets the
move_bags local data to 1. Then,
Front_desk becomes inactive.

For reference, see “Steps for Exiting an
Active State” on page 3-70.

Modeling Guidelines for Chart Initialization. The following guidelines
apply to chart initialization.

Modeling Guideline Why This Guideline Applies Reference

Use exclusive (OR)
decomposition when no
two states at a level of the
hierarchy can be active at the
same time.

This guideline ensures proper
chart execution. For example,
Check_in and Waiting_area
are exclusive (OR) states,
because you cannot be inside
and outside the hotel at the
same time.

• “State Decomposition” on
page 2-9

• “Specify Substate
Decomposition” on page
4-9

Use a default transition to
mark the first state to become

This guideline prevents state
inconsistency errors during

• “Default Transitions” on
page 2-30

3-15

3 Stateflow® Chart Semantics

Modeling Guideline Why This Guideline Applies Reference

active among exclusive (OR)
states.

chart execution. • “State Inconsistencies in a
Chart” on page 28-44

Use events, instead
of conditions, to guard
transitions that depend on
occurrences without inherent
numerical value.

Since you cannot easily
quantify the numerical value
of checking into a hotel, model
such an occurrence as an
event.

• “Activate a Stateflow Chart
Using Input Events” on
page 9-12

Use an exit action to execute
a statement once, just before a
state becomes inactive.

Other types of state actions
execute differently and do not
apply:

• Entry actions execute once,
just after a state becomes
active.

• During actions execute at
every time step (except
the first time step after
a state becomes active).
Execution continues as long
as the chart remains in that
state and no valid outgoing
transitions exist.

• On event_name actions
execute only after receiving
an event broadcast.

• “State Action Types” on
page 10-2

3-16

How Chart Constructs Interact During Execution

Phase: Evaluation of Outgoing Transitions from a Single
Junction
This section describes what happens after exiting the Front_desk state: the
evaluation of a group of outgoing transitions from a single junction.

3-17

3 Stateflow® Chart Semantics

Stage Hotel Scenario Chart Behavior

1 You can move to one of three types of
rooms.

After the check_in event triggers a
transition out of Front_desk, three
transition paths are available based
on the type of room you select with
the Multiport Switch block. Transition
testing occurs based on the priority you
assign to each path.

For reference, see “Order of Execution
for a Set of Flow Charts” on page 3-52.

2 If you choose an executive suite, the base
fee is 1500.

If the room_type input data equals 1, the
top transition is valid. If this condition
is true, the condition action executes by
setting the fee output data to 1500.

Note If the top transition is not valid,
control flow backtracks to the central
junction so that testing of the next
transition can occur. This type of
backtracking is intentional.

To learn about unintentional
backtracking and how to avoid it,
see “Backtrack in Flow Charts” on page
B-41 and “Best Practices for Creating
Flow Charts” on page 5-33.

3 If you choose a family suite, the base fee
is 1000.

If room_type equals 2, the middle
transition is valid. If this condition is
true, the condition action executes by
setting fee to 1000.

4 If you choose a single room, the base fee
is 500.

If room_type equals 3, the bottom
transition is valid. If this condition is
true, the condition action executes by
setting fee to 500.

3-18

How Chart Constructs Interact During Execution

What happens if room_type has a value other than 1, 2, or 3?

Because the Multiport Switch block outputs only 1, 2, or 3, room_type cannot
have any other values. However, if room_type has a value other than 1, 2, or
3, the chart stays in the Front_desk state. This behavior applies because no
transition path out of that state is valid.

Modeling Guidelines for Evaluation of Outgoing Transitions. The
following guidelines apply to transition syntax.

Modeling Guideline Why This Guideline Applies Reference

Use conditions, instead of
events, to guard transitions
that depend on occurrences
with numerical value.

Because you can quantify a
type of hotel room numerically,
express the choice of room type
as a condition.

“What Is a Flow Chart?” on
page 5-2

Use condition actions instead
of transition actions whenever
possible.

Condition actions execute as
soon as the condition evaluates
to true. Transition actions
do not execute until after the
transition path is complete,
to a terminating junction or a
state.

Unless an execution delay
is necessary, use condition
actions instead of transition
actions.

“Supported Action Types for
States and Transitions” on
page 10-2

Use explicit ordering to control
the testing order of a group of
outgoing transitions.

You can specify explicit
or implicit ordering of
transitions. By default, a
chart uses explicit ordering. If
you switch to implicit ordering,
the transition testing order
can change when graphical
objects move.

“Evaluation Order for
Outgoing Transitions” on
page 3-54

3-19

3 Stateflow® Chart Semantics

Phase: Execution of State Actions for a Superstate
This section describes what happens after you enter the Checked_in state,
regardless of which substate becomes active.

3-20

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 After reaching your desired room, you
finish moving your bags.

The entry action executes by setting the
move_bags local data to 0.

2 If you order room service, your hotel bill
increases by a constant amount.

If the chart receives an event broadcast
for room_service, these actions occur:

1 The counter for the service local data
increments by 1.

2 A function call to expenses occurs,
which returns the value of the hotel
bill stored by the fee output data.

For reference, see “How Charts Process
Events” on page 3-37.

Modeling Guidelines for Execution of State Actions. The following
guidelines apply to state actions.

Modeling Guideline Why This Guideline Applies Reference

Use an entry action to execute
a statement once, right after a
state becomes active.

Use an On event_name action
to execute a statement only
after receiving an event
broadcast.

Other types of state actions
execute differently and do not
apply:

• During actions execute at
every time step until there
is a valid transition out of
the state.

• Exit actions execute once,
just before a state becomes
inactive.

“State Action Types” on page
10-2

Use a superstate to enclose
multiple substates that share
the same state actions.

This guideline enables reuse
of state actions that apply
to multiple substates. You
write the state actions only
once, instead of writing them
separately in each substate.

“Create Substates and
Superstates” on page 4-7

3-21

3 Stateflow® Chart Semantics

Phase: Function Call from a State Action
This part of the chart describes how you can perform function calls while
a state is active.

3-22

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 Based on your room type and the total
number of room service requests, you
can track your hotel bill.

expenses is a MATLAB function that
takes the total number of room service
requests as an input and returns the
current hotel bill as an output.

If you double-click the function box, you
see this script in the function editor:

function y = expenses(x)

if (room_type == 1)
y = 1500 + (x*50);

else
if (room_type == 2)

y = 1000 + (x*25);
else

y = 500 + (x*5);
end

end

Modeling Guidelines for Function Calls. The following guidelines apply
to function calls.

Modeling Guideline Why This Guideline Applies Reference

Use MATLAB functions
for performing numerical
computations in a chart.

MATLAB functions are
better at handling numerical
computations than graphical
functions, truth tables, or
Simulink functions.

Use descriptive names in
function signatures.

Descriptive function names
enhance readability of chart
objects.

“MATLAB Functions in a
Chart” on page 25-2

3-23

3 Stateflow® Chart Semantics

Phase: Execution of State with Exclusive Substates
This part of the chart shows how a state with exclusive (OR) decomposition
executes.

3-24

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 When you reach the executive suite, you
enter the bedroom first.

Note The executive suite has separate
bedroom and dining areas. Therefore,
you can be in only one area of the suite
at any time.

When the condition room_type == 1 is
true, the condition action fee = 1500
executes. Completion of that transition
path triggers these state initialization
actions:

1 Checked_in becomes active and
executes its entry action.

2 Executive_suite becomes active.

3 The default transition to Bedroom
occurs, making that state active.

For reference, see “Steps for Entering a
State” on page 3-68.

2 When you order room service, you enter
the dining area to eat.

When the room_service event occurs,
the transition from Bedroom to
Dining_area occurs.

3 When you want the food removed from
the dining area, you order room service
again and then return to the bedroom.

When the room_service event occurs,
the transition from Dining_area to
Bedroom occurs.

4 If you leave the executive suite because
of a fire alarm, you return to your
previous room after the all-clear signal.

If a transition out of Executive_suite
occurs, the history junction records
the last active substate, Bedroom or
Dining_area. For details on how this
transition can occur, see “Phase: Events
Guard Transitions Between States” on
page 3-30.

Modeling Guidelines for Execution of Exclusive (OR) States. The
following guidelines apply to exclusive (OR) states.

3-25

3 Stateflow® Chart Semantics

Modeling Guideline Why This Guideline Applies Reference

Use exclusive (OR)
decomposition when no
two states at that level of the
hierarchy can be active at the
same time.

This guideline ensures proper
chart execution. For example,
Bedroom and Dining_area are
exclusive (OR) states, because
you cannot be in both places at
the same time.

• “State Decomposition” on
page 2-9

• “Specify Substate
Decomposition” on page
4-9

If reentry to a state with
exclusive (OR) decomposition
depends on the previously
active substate, use a history
junction. This type of junction
records the active substate
when the chart exits the state.

If you do not record the
previously active substate, the
default transition occurs and
the wrong substate can become
active upon state reentry.

For example, if you were
eating when a fire alarm
sounded, you would return
to the bedroom instead of the
dining room.

• “History Junctions” on page
2-42

3-26

How Chart Constructs Interact During Execution

Phase: Execution of State with Parallel Substates
This part of the chart shows how a state with parallel (AND) decomposition
executes.

3-27

3 Stateflow® Chart Semantics

Stage Hotel Scenario Chart Behavior

1 When your family reaches the suite,
family members can be in both bedrooms
(for example, parents in the master
bedroom and children in the second
bedroom). A default room choice does not
apply.

When the condition room_type == 2 is
true, the condition action fee = 1000
executes. Completion of that transition
path triggers these state initialization
actions:

1 Checked_in becomes active and
executes its entry action.

2 Family_suite becomes active.

3 The parallel states wake up in
the order given by the number
in the upper right corner of each
state: Master_bedroom, then
Second_bedroom.

How do I specify the order?

To specify the order:

a Verify that the chart uses explicit
ordering.

In the Chart properties dialog
box, select the User specified
state/transition execution order
check box.

b Right-click in a parallel state
and select a number from the
Execution Order menu.

For reference, see “Steps for Entering a
State” on page 3-68.

2 You can occupy both rooms at the same
time.

Master_bedroom and Second_bedroom
remain active at the same time.

3-28

How Chart Constructs Interact During Execution

Modeling Guidelines for Execution of Parallel (AND) States. The
following guidelines apply to parallel (AND) states.

Modeling Guideline Why This Guideline Applies Reference

Use parallel (AND)
decomposition when all
states at that level of the
hierarchy can be active at the
same time.

This guideline ensures
proper chart execution. For
example, Master_bedroom and
Second_bedroom are parallel
states, because you can occupy
both rooms at the same time.

• “State Decomposition” on
page 2-9

• “Specify Substate
Decomposition” on page
4-9

Use no history junctions in
states with parallel (AND)
decomposition.

This guideline prevents
parsing errors. Since all
parallel states at a level of
hierarchy are active at the
same time, history junctions
have no meaning.

• “History Junctions” on page
2-42

Use explicit ordering to control
the execution order of parallel
(AND) states.

You can specify explicit or
implicit ordering of parallel
states. By default, a chart
uses explicit ordering. If you
switch to implicit ordering, the
execution order can change
when parallel states move.

• “Execution Order for
Parallel States” on page
3-73

3-29

3 Stateflow® Chart Semantics

Phase: Events Guard Transitions Between States
This part of the chart describes how events can guard transitions between
exclusive (OR) states.

3-30

How Chart Constructs Interact During Execution

Stage Hotel Scenario Chart Behavior

1 If a fire alarm sounds,
you leave the hotel and
move to a waiting area
outside.

When the chart receives an event broadcast for fire_alarm,
a transition occurs from a substate of Check_in to
Waiting_area.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area are active when the chart receives fire_alarm.

1 States become inactive in ascending order of hierarchy:

a Dining_area

b Executive_suite

c Checked_in

d Check_in

2 Waiting_area becomes active.

2 If an all-clear signal
occurs, you can leave
the waiting area and
return to your previous
location inside the
hotel.

When the chart receives an event broadcast for all_clear,
a transition from Waiting_area to the previously active
substate of Check_in occurs.

The history junction at each level of hierarchy in Check_in
enables the chart to remember which substate was previously
active before the transition to Waiting_area occurred.

How does this transition occur?

Suppose that Check_in, Checked_in, Executive_suite, and
Dining_area were active when the chart received fire_alarm.

1 Waiting_area becomes inactive.

2 States become active in descending order of hierarchy:

a Check_in

b Checked_in (The default transition does not apply.)

c Executive_suite

d Dining_area (The default transition does not apply.)

3-31

3 Stateflow® Chart Semantics

Modeling Guidelines for Guarding Transitions. The following guideline
discusses the use of events versus conditions.

Modeling Guideline Why This Guideline Applies Reference

Use events, instead
of conditions, to guard
transitions that depend on
occurrences without numerical
value.

Because you cannot easily
quantify the numerical
value of a fire alarm or an
all-clear signal, model such an
occurrence as an event.

“Activate a Stateflow Chart
Using Input Events” on page
9-12

3-32

Modeling Guidelines for Stateflow® Charts

Modeling Guidelines for Stateflow Charts
These guidelines promote efficient modeling of charts with events, states,
and transitions.

Use signals of the same data type for input events

When you use multiple input events to trigger a chart, verify that all input
signals use the same data type. Otherwise, simulation stops and an error
message appears. For more information, see “Data Types Allowed for Input
Events” on page 9-15.

Use a default transition to mark the first state to become active
among exclusive (OR) states

This guideline prevents state inconsistency errors during chart execution.

Use condition actions instead of transition actions whenever possible

Condition actions execute as soon as the condition evaluates to true.
Transition actions do not execute until after the transition path is complete,
to a terminating junction or a state.

Unless an execution delay is necessary, use condition actions instead of
transition actions.

Use explicit ordering to control the testing order of a group of
outgoing transitions

You can specify explicit or implicit ordering of transitions. By default, a chart
uses explicit ordering. If you switch to implicit ordering, the transition testing
order can change when graphical objects move.

Verify intended backtracking behavior in flow charts

If your chart contains unintended backtracking behavior, a warning
message appears with instructions on how to avoid that problem. For more
information, see “Best Practices for Creating Flow Charts” on page 5-33.

3-33

3 Stateflow® Chart Semantics

Use a superstate to enclose substates that share the same state
actions

When you have multiple exclusive (OR) states that perform the same state
actions, group these states in a superstate and define state actions at that
level.

This guideline enables reuse of state actions that apply to multiple substates.
You write the state actions only once, instead of writing them separately
in each substate.

Note You cannot use boxes for this purpose because boxes do not support
state actions.

Use MATLAB functions for performing numerical computations in
a chart

MATLAB functions are better at handling numerical computations than
graphical functions, truth tables, or Simulink functions.

Use descriptive names in function signatures

Descriptive function names enhance readability of chart objects.

Use history junctions to record state history

If reentry to a state with exclusive (OR) decomposition depends on the
previously active substate, use a history junction. This type of junction
records the active substate when the chart exits the state. If you do not record
the previously active substate, the default transition occurs and the wrong
substate can become active upon state reentry.

Do not use history junctions in states with parallel (AND)
decomposition

This guideline prevents parsing errors. Since all parallel states at a level of
hierarchy are active at the same time, history junctions have no meaning.

3-34

Modeling Guidelines for Stateflow® Charts

Use explicit ordering to control the execution order of parallel (AND)
states

You can specify explicit or implicit ordering of parallel states. By default, a
chart uses explicit ordering. If you switch to implicit ordering, the execution
order can change when parallel states move.

3-35

3 Stateflow® Chart Semantics

How Events Drive Chart Execution

In this section...

“How Stateflow Charts Respond to Events” on page 3-36

“Sources for Stateflow Events” on page 3-37

“How Charts Process Events” on page 3-37

How Stateflow Charts Respond to Events
Stateflow charts execute only in response to an event in a cyclical manner.

Because a chart runs on a single thread, actions that take place based on an
event are atomic to that event. All activity caused by the event in the chart
finishes before execution returns to the activity that was taking place before
receiving the event. Once an event initiates an action, the action completes
unless interrupted by an early return.

3-36

How Events Drive Chart Execution

Sources for Stateflow Events
Simulink events awaken Stateflow charts. You can use events to control the
processing of your charts by broadcasting events, as described in “Broadcast
Events to Synchronize States” on page 10-57. For examples using event
broadcasting and directed event broadcasting, see:

• Directed Event Broadcasting

• “Broadcast Events to Parallel (AND) States Using Condition Actions” on
page B-14

• “Avoid Cyclic Behavior” on page B-15

• “Broadcast Events in Parallel States” on page B-45

• “Broadcast Events in a Transition Action with a Nested Event Broadcast”
on page B-48

• “Broadcast Condition Action Event in Parallel State” on page B-51

Events have hierarchy (a parent) and scope. The parent and scope together
define a range of access to events. The parent of an event usually determines
who can trigger on the event (has receive rights). See the Name and Parent
fields for an event in “Set Properties for an Event” on page 9-7 for more
information.

How Charts Process Events
Stateflow charts process events from the top down through the chart
hierarchy:

1 Executes during and on event_name actions for the active state

2 Checks for valid transitions in substates

All events, except for the output edge trigger to a Simulink block (see the
following note), have the following execution in a chart:

1 If the receiver of the event is active, then it executes (see “Execution of an
Active Chart” on page 3-40 and “Steps for Executing an Active State” on
page 3-69). (The event receiver is the parent of the event unless a directed
event broadcast occurs using the send() function.)

3-37

3 Stateflow® Chart Semantics

2 If the receiver of the event is not active, nothing happens.

3 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

To learn about early return logic, see “Early Return Logic for Event
Broadcasts” on page 3-81.

Note Output edge-trigger event execution in a Simulink model is
equivalent to toggling the value of an output data value between 1 and 0.
It is not treated as a Stateflow event. See “Define Edge-Triggered Output
Events” on page 21-22.

3-38

Types of Chart Execution

Types of Chart Execution

In this section...

“Lifecycle of a Stateflow Chart” on page 3-39

“Execution of an Inactive Chart” on page 3-39

“Execution of an Active Chart” on page 3-40

“Execution of a Chart with Super Step Semantics” on page 3-40

“Execution of a Chart at Initialization” on page 3-49

Lifecycle of a Stateflow Chart
Stateflow charts go through several stages of execution:

Stage Description

Inactive Chart has no active states

Active Chart has active states

Sleeping Chart has active states, but no
events to process

When a Simulink model first triggers a Stateflow chart, the chart is inactive
and has no active states. After the chart executes and completely processes
its initial trigger event from the Simulink model, it transfers control back to
the model and goes to sleep. At the next Simulink trigger event, the chart
changes from the sleeping to active stage.

See “How Events Drive Chart Execution” on page 3-36.

Execution of an Inactive Chart
When a chart is inactive and first triggered by an event from a Simulink
model, it first executes its set of default flow charts (see “Order of Execution
for a Set of Flow Charts” on page 3-52). If this action does not cause an entry
into a state and the chart has parallel decomposition, then each parallel state
becomes active (see “Steps for Entering a State” on page 3-68).

3-39

3 Stateflow® Chart Semantics

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Execution of an Active Chart
After a chart has been triggered the first time by the Simulink model, it is
an active chart. When the chart receives another event from the model, it
executes again as an active chart. If the chart has no states, each execution
is equivalent to initializing a chart. Otherwise, the active children execute.
Parallel states execute in the same order that they become active.

Execution of a Chart with Super Step Semantics

What Is Super Step Semantics?
By default, Stateflow charts execute once for each active input event. If
no input events exist, the charts execute once every time step. If you
are modeling a system that must react quickly to inputs, you can enable
super step semantics, a Stateflow chart property (see “Enable Super Step
Semantics” on page 3-41).

When you enable super step semantics, a Stateflow chart executes multiple
times for every active input event or for every time step when the chart
has no input events. The chart takes valid transitions until either of these
conditions occurs:

• No more valid transitions exist, that is, the chart is in a stable active
state configuration.

• The number of transitions taken exceeds a user-specified maximum
number of iterations.

In a super step, your chart responds faster to inputs but performs more
computations in each time step. Therefore, when generating code for an
embedded target, make sure that the chart can finish the computation in a
single time step. To achieve this behavior, fine-tune super step parameters by
setting an upper limit on the number of transitions that the chart takes per
time step (see “What Is Maximum Number of Iterations?” on page 3-41).

3-40

Types of Chart Execution

For simulation targets, specify whether the chart goes to the next time step
or generates an error if it reaches the maximum number of transitions
prematurely. However, in generated code for embedded targets, the chart
always goes to the next time step after taking the maximum number of
transitions.

What Is Maximum Number of Iterations?
In a super step, your chart always takes at least one transition. Therefore,
when you set a maximum number of iterations in each super step, the chart
takes that number of transitions plus 1. For example, if you specify 10 as the
maximum number of iterations, your chart takes 11 transitions in each super
step. To set maximum number of iterations in each super step, see “Enable
Super Step Semantics” on page 3-41.

Enable Super Step Semantics
To enable super step semantics:

1 Right-click inside the top level of a chart and select Properties from the
context menu.

2 In the Chart properties dialog box, select the Enable Super Step
Semantics check box.

3-41

3 Stateflow® Chart Semantics

Two additional fields appear below that check box.

3-42

Types of Chart Execution

3 Enter a value in the fieldMaximum Iterations in each Super Step.

The chart always takes one transition during a super step, so the value N
that you specify represents the maximum number of additional transitions
(for a total of N+1). Try to choose a number that allows the chart to reach
a stable state within the time step, based on the mode logic of your chart.
For more information, see “What Is Maximum Number of Iterations?” on
page 3-41

4 Select an action from the drop-down menu in the field Behavior after
too many iterations.

Your selection determines how the chart behaves during simulation if
it exceeds the maximum number of iterations in the super step before
reaching a stable state.

Behavior Description

Proceed The chart goes back to sleep with the last active
state configuration, that is, after updating local
data at the last valid transition in the super step.

Throw Error Simulation stops and the chart generates an error,
indicating that too many iterations occurred while
trying to reach a stable state.

Note Selecting Throw Error can help detect
infinite loops in transition cycles (see “Detection of
Infinite Loops in Transition Cycles” on page 3-48.

Note This option is relevant only for simulation targets. For embedded
targets, code generation goes to the next time step rather than generating
an error.

3-43

3 Stateflow® Chart Semantics

Super Step Example
The following model shows how super step semantics differs from default
semantics:

In this model, a Constant block outputs a constant value of 20 to input u
in a Stateflow chart. Because the value of u is always 20, each transition
in the chart is valid:

By default, the chart takes only one transition in each simulation step,
incrementing y each time.

3-44

Types of Chart Execution

When you enable super step semantics, the chart takes all valid transitions
in each time step, stopping at state C with y = 3.

3-45

3 Stateflow® Chart Semantics

How Super Step Semantics Works with Multiple Input Events
When you enable super step semantics for a chart with multiple active input
events, the chart takes all valid transitions for the first active event before it
begins processing the next active event. For example, consider the following
model:

3-46

Types of Chart Execution

In this model, the Sum block produces a 2-by-1 vector signal that goes from
[0,0] to [1,1] at time t = 1. As a result, when the model wakes up the chart,
events E1 and E2 are both active:

If you enable super step semantics, the chart takes all valid transitions for
event E1. The chart takes transitions from state A to B and then from state
B to C in a single super step. The scope shows that y = 3 at the end of the
super step:

3-47

3 Stateflow® Chart Semantics

In a super step, this chart never transitions to state D because there is no
path from state C to state D.

Detection of Infinite Loops in Transition Cycles
If your chart contains transition cycles, taking multiple transitions in a single
time step can cause infinite loops. Consider the following example:

3-48

Types of Chart Execution

In this example, the transitions between states A and B cycle and produce
an infinite loop because the value of x remains constant at 1. One way to
detect infinite loops is to configure your chart to generate an error if it reaches
a maximum number of iterations in a super step. See “Enable Super Step
Semantics” on page 3-41.

Execution of a Chart at Initialization

By default, the first time a chart wakes up, it executes the default transition
paths. At this time, the chart can access inputs, write to outputs, and
broadcast events. If you want your chart to begin executing from a known
configuration, you can enable the option to execute at initialization. When
you turn on this option, the state configuration of a chart initializes at time
0 instead of the first occurrence of an input event. The default transition
paths of the chart execute during the model initialization phase at time 0,
corresponding to the mdlInitializeConditions() phase for S-functions.

You select the Execute (enter) Chart At Initialization check box in the
Chart properties dialog box, as described in “Specify Chart Properties” on
page 21-5.

3-49

3 Stateflow® Chart Semantics

Note If an output of this chart connects to a SimEvents® block, do not select
this check box. To learn more about using Stateflow charts and SimEvents
blocks together in a model, see the SimEvents documentation.

Due to the transient nature of the initialization phase, do not perform certain
actions in the default transition paths of the chart — and associated state
entry actions — which execute at initialization. Follow these guidelines:

• Do not access chart input data, because blocks connected to chart input
ports might not have initialized their outputs yet.

• Do not call exported graphical functions from other charts, because those
charts might not have initialized yet.

• Do not broadcast function-call output events, because the triggered
subsystems might not have initialized yet.

You can control the level of diagnostic action for invalid access to chart input
data in the Diagnostics > Stateflow pane of the Configuration Parameters
dialog box. For more information, see the documentation for the “Invalid
input data access in chart initialization” diagnostic.

Execute at initialization is ignored in Stateflow charts that do not contain
states.

3-50

Process for Grouping and Executing Transitions

Process for Grouping and Executing Transitions

In this section...

“Transition Flow Chart Types” on page 3-51

“Order of Execution for a Set of Flow Charts” on page 3-52

Transition Flow Chart Types
Before executing transitions for an active state or chart, Stateflow software
groups transitions by the following types:

• Default flow charts are all default transition segments that start with the
same parent.

• Inner flow charts are all transition segments that originate on a state and
reside entirely within that state.

• Outer flow charts are all transition segments that originate on the
respective state but reside at least partially outside that state.

Each set of flow charts includes other transition segments connected to a
qualifying transition segment through junctions and transitions. Consider
the following example:

3-51

3 Stateflow® Chart Semantics

In this example, state A has both an inner and a default transition that
connect to a junction with outgoing transitions to states A.A1 and A.A2. If
state A is active, its set of inner flow charts includes:

• The inner transition

• The outgoing transitions from the junction to state A.A1 and A.A2

In addition, the set of default flow charts for state A includes:

• The default transition to the junction

• The two outgoing transitions from the junction to state A.A1 and A.A2

In this case, the two outgoing transition segments from the junction are
members of more than one flow chart type.

Order of Execution for a Set of Flow Charts
Each flow chart group executes in the order of group priority until a valid
transition appears. The default transition group executes first, followed by
the outer transitions group and then the inner transitions group. Each flow
chart group executes as follows:

1 Order the group’s transition segments for the active state.

An active state can have several possible outgoing transitions. The chart
orders these transitions before checking them for validity. See “Evaluation
Order for Outgoing Transitions” on page 3-54.

2 Select the next transition segment in the set of ordered transitions.

3 Test the transition segment for validity.

4 If the segment is invalid, go to step 2.

5 If the destination of the transition segment is a state, do the following:

a Testing of transition segments stops and a transition path forms by
backing up and including the transition segment from each preceding
junction back to the starting transition.

3-52

Process for Grouping and Executing Transitions

b The states that are the immediate children of the parent of the transition
path exit (see “Steps for Exiting an Active State” on page 3-70).

c The transition action from the final transition segment of the full
transition path executes.

d The destination state becomes active (see “Steps for Entering a State” on
page 3-68).

6 If the destination is a junction with no outgoing transition segments, do
the following:

a Testing stops without any state exits or entries.

7 If the destination is a junction with outgoing transition segments, repeat
step 1 for the set of outgoing segments.

8 After testing all outgoing transition segments at a junction, take the
following actions:

a Backtrack the incoming transition segment that brought you to the
junction.

b Continue at step 2, starting with the next transition segment after the
backup segment.

The set of flow charts completes execution when all starting transitions
have been tested.

3-53

3 Stateflow® Chart Semantics

Evaluation Order for Outgoing Transitions

In this section...

“What Does Ordering Mean for Outgoing Transitions?” on page 3-54

“Detection of Transition Shadowing” on page 3-55

“Explicit Ordering of Outgoing Transitions” on page 3-55

“Implicit Ordering of Outgoing Transitions” on page 3-59

“What Happens When You Switch Between Explicit and Implicit Ordering”
on page 3-63

“Transition Testing Order in Multilevel State Hierarchy” on page 3-64

What Does Ordering Mean for Outgoing Transitions?
When multiple transitions originate from a single source (such as a state or
junction), a Stateflow chart must determine in which order to evaluate those
transitions. Order of evaluation depends on:

• Explicit ordering

Specify explicitly the evaluation order of outgoing transitions on an
individual basis (see “Explicit Ordering of Outgoing Transitions” on page
3-55).

• Implicit ordering

Override explicit ordering in C charts by letting Stateflow use internal
rules to order transitions (see “Implicit Ordering of Outgoing Transitions”
on page 3-59).

Note You can order transitions only within their type (inner, outer, or
default). For more information, see “Transition Flow Chart Types” on page
3-51.

Outgoing transitions are assigned priority numbers based on order of
evaluation. The lower the number, the higher the priority. The priority
number appears on each outgoing transition.

3-54

Evaluation Order for Outgoing Transitions

Because evaluation order is a chart property, all outgoing transitions in
the chart inherit the property setting. You cannot mix explicit and implicit
ordering in the same Stateflow chart. However, you can mix charts with
different ordering in the same Simulink model.

Detection of Transition Shadowing
Transition shadowing occurs when a chart contains multiple unconditional
transitions that originate from the same state or the same junction. To avoid
transition shadowing, ensure that no more than one unconditional transition
exists for each group of outgoing transitions from a state or junction.

You can control the behavior of the Stateflow diagnostic that detects transition
shadowing. On the Diagnostics > Stateflow pane of the Configuration
Parameters dialog box, set Transition shadowing to none, warning, or
error. For information about other diagnostics, see “Diagnostics Pane:
Stateflow”.

Explicit Ordering of Outgoing Transitions
By default, a Stateflow chart orders outgoing transitions explicitly based on
evaluation priorities you set.

How Explicit Ordering Works
When you open a new Stateflow chart, all outgoing transitions from a source
are automatically numbered in the order you create them, starting with the
next available number for the source.

You can change the order of outgoing transitions by explicitly renumbering
them. When you change a transition number, the Stateflow chart
automatically renumbers the other outgoing transitions for the source
by preserving their relative order. This behavior is consistent with the
renumbering rules for Simulink ports.

For example, if you have a source with five outgoing transitions, changing
transition 4 to 2 results in the automatic renumbering shown.

3-55

3 Stateflow® Chart Semantics

Automatic Renumbering of Transitions During Explicit Reordering

Order Transitions Explicitly
To use explicit ordering for transitions, perform these tasks:

1 “Enable Explicit Ordering at the Chart Level” on page 3-56

2 “Set Evaluation Order for Transitions Individually” on page 3-57

Enable Explicit Ordering at the Chart Level. To enable explicit ordering
for transitions:

1 Right-click inside the top level of a chart and select Properties from the
context menu.

The Chart properties dialog box appears.

2 Select the User specified state/transition execution order check box.

3-56

Evaluation Order for Outgoing Transitions

3 Click OK.

Set Evaluation Order for Transitions Individually.

1 Right-click a transition and select Execution Order.

3-57

3 Stateflow® Chart Semantics

Note If you select Execution Order while the chart is in implicit
ordering mode, the only option available is Enable user-specified
execution order for this chart. This option opens the Chart properties
dialog box where you can switch to explicit ordering mode, as described in
“Order Transitions Explicitly” on page 3-56.

A context menu of available transition numbers appears, with a check
mark next to the current number for this transition.

2 Select the new transition number.

The chart automatically renumbers the other transitions for the source by
preserving the relative transition order.

3 Repeat this procedure to renumber other transitions as needed.

Another way to access the transition order number is through the properties
dialog box.

1 Right-click a transition and select Properties.

The properties dialog box for the transition appears.

2 Click in the Execution order box.

A drop-down list of valid transition numbers appears.

3 Select the new transition number and click Apply.

Note If explicit ordering mode is enabled, the chart assigns the new
number to the current transition and automatically renumbers the other
transitions. If the chart is in implicit ordering mode, an error dialog box
appears and the old number is retained.

3-58

Evaluation Order for Outgoing Transitions

Implicit Ordering of Outgoing Transitions

How Implicit Ordering Works
For C charts in implicit ordering mode, a Stateflow chart evaluates a group of
outgoing transitions from a single source based on these factors (in descending
order of priority):

1 Hierarchy (see “Order by Hierarchy” on page 3-59)

2 Label (see “Order by Label” on page 3-60)

3 Angular surface position of transition source (see “Order by Angular
Position of Source” on page 3-61)

Note Implicit ordering creates a dependency between design layout and
evaluation priority. When you rearrange transitions in your chart, you can
accidentally change order of evaluation and affect simulation results. For
more control over your designs, use the default explicit ordering mode to set
evaluation priorities.

Order by Hierarchy
A chart evaluates a group of outgoing transitions in an order based on the
hierarchical level of the parent of each transition. The parent of a transition
is the lowest level or innermost object in the Stateflow hierarchy that contains
all parts of the transition, including any source state or junction and the
endpoint object. For a group of outgoing transitions from a single source, the
transition whose parent is at a higher hierarchical level than the parents of
all other outgoing transitions is first in testing order, and so on.

3-59

3 Stateflow® Chart Semantics

Example of Ordering by Hierarchy.

• The parent of the transition from state A1 to state B is the chart.

• The parent of the transition from state A1 to state A2 is the state A.

• An event occurs while state A1 is active.

Because the chart is at a higher level in the hierarchy than state A, the
transition from state A1 to state B takes precedence over the transition from
state A1 to state A2.

Order by Label
A chart evaluates a group of outgoing transitions with equal hierarchical
priority based on the labels, in the following order of precedence:

1 Labels with events and conditions

2 Labels with events

3 Labels with conditions

3-60

Evaluation Order for Outgoing Transitions

4 No label

Order by Angular Position of Source
A chart evaluates a group of outgoing transitions with equal hierarchical and
label priority based on angular position on the surface of the source object.
The transition with the smallest clock position has the highest priority. For
example, a transition with a 2 o’clock source position has a higher priority
than a transition with a 4 o’clock source position. A transition with a 12
o’clock source position has the lowest priority.

Note These evaluations proceed in a clockwise direction around the source
object.

Example of Angular Ordering for a Source State.

• For each outgoing transition from state A, the parent is the chart and the
label contains a condition. Therefore, the outgoing transitions have equal
hierarchical and label priority.

• The conditions [C_one == 1] and [C_two == 2] are false, and the condition
[C_three == 3] is true.

3-61

3 Stateflow® Chart Semantics

The chart evaluates the outgoing transitions from state A in this order.

Phase Chart evaluates
transition to...

Condition is... Transition occurs?

1 State B False No

2 State C False No

3 State D True Yes

Example of Angular Ordering for a Source Junction.

• For each outgoing transition from the junction, the parent is the chart and
the label contains a condition. Therefore, the outgoing transitions have
equal hierarchical and label priority.

• The conditions [C_one == 1] and [C_two == 2] are false, and the conditions
[C_three == 3] and [C_four == 4] are true.

• The junction source point for the transition to state E is exactly 12 o’clock.

3-62

Evaluation Order for Outgoing Transitions

The chart evaluates the outgoing transitions from the junction in this order.

Phase Chart evaluates
transition to...

Condition is... Transition occurs?

1 State B False No

2 State C False No

3 State D True Yes

Since the transition to state D occurs, the chart does not evaluate the
transition to state E.

Using Implicit Ordering for Transitions
To use implicit ordering for transitions in a C chart, follow these steps:

1 Right-click inside the top level of the chart and select Properties from
the context menu.

2 In the Chart properties dialog box, clear the User specified
state/transition execution order check box.

3 Click OK.

What Happens When You Switch Between Explicit
and Implicit Ordering
If you switch to implicit ordering mode in a C chart after explicitly ordering
transitions, the transition order resets to follow the implicit rules. Similarly,
if you switch back to explicit ordering mode, without changing the chart, you
can restore the previous explicit transition order. All existing transitions in a
chart retain their current order numbers until you explicitly change them.

Note If you change back to explicit ordering after modifying the chart, you
might not be able to restore the previous explicit transition order.

3-63

3 Stateflow® Chart Semantics

Transition Testing Order in Multilevel State Hierarchy

How Multilevel Transition Testing Order Works
By default, charts use explicit ordering for transitions. In this mode, you have
explicit control over the testing priority, as described in “Explicit Ordering of
Outgoing Transitions” on page 3-55.

If you use implicit ordering for transitions, the following testing order applies.
For each group of transitions that originate from the same state, tiebreaking
criteria apply in this order: hierarchy, label, and angular position.

Testing
Order

Chart Action Order by Hierarchy Order by Label Order by
Angular Position

1 Tests
transitions
that originate
from the
highest-level
active state
(superstate).

1 Outer transitions

2 Inner transitions

2 Tests
transitions
that originate
from the next
lower-level
active state.

1 Outer transitions that
cross the border of the
highest-level active
state (superstate)

2 Outer transitions that
stay within the parent
of the state

3 Inner transitions

1 Events and
conditions

2 Events

3 Conditions

4 No label

The transition with
the smallest clock
position has the
highest priority.

A transition with
a 12 o’clock source
position has the
lowest priority.

3 Repeats step 2 until transition testing is complete.

The following chart shows the behavior of multilevel transition testing.
Assume that the Super1.Sub1.Subsub1 state is active.

3-64

Evaluation Order for Outgoing Transitions

Because the chart uses implicit ordering, the following transition testing
order applies:

This
priority...

Applies to the
label...

For this transition...

1 [a < 0] Super1 to Super2.B

2 [i > 0] Super1 to Super1.Sub1

3 [b > 0] Super1.Sub1 to Super2.A

4 [i < 0] Super1.Sub1 to Super1

5 [c > 0] Super1.Sub1.Subsub1 to Super2.A

3-65

3 Stateflow® Chart Semantics

This
priority...

Applies to the
label...

For this transition...

6 [d > 5] Super1.Sub1.Subsub1 to Super1.Sub2

7 [c < 0] Super1.Sub1.Subsub1 to Super1.Sub1.Subsub2

Example Model with Multilevel Transition Testing
Suppose that you open the sf_debouncer model and reach the point in the
simulation where the Debounce.On state is active.

Because the chart uses implicit ordering, the following transition testing
order applies:

This priority... Applies to the label... For this transition...

1 after(0.3, sec) Debounce to Off.Fault

2 after(0.1, sec) Debounce.On to On

3 [sw < 0] Debounce.On to Debounce.Off

3-66

Evaluation Order for Outgoing Transitions

Now suppose that the transition from Debounce.On to Debounce.Off occurs.

Because the chart uses implicit ordering, the following transition testing
order applies:

This priority... Applies to the label... For this transition...

1 after(0.3, sec) Debounce to Off.Fault

2 after(0.1, sec) Debounce.Off to Off

3 [sw > 0] Debounce.Off to Debounce.On

For more information on how this model works, see “Key Behaviors of
Debouncer Chart” on page 23-4.

3-67

3 Stateflow® Chart Semantics

Process for Entering, Executing, and Exiting States

In this section...

“Steps for Entering a State” on page 3-68

“Steps for Executing an Active State” on page 3-69

“Steps for Exiting an Active State” on page 3-70

“State Execution Example” on page 3-70

Steps for Entering a State
A state becomes active in one of these ways:

• An incoming transition crosses state boundaries.

• An incoming transition ends at the state boundary.

• It is the parallel state child of an active state.

A state performs its entry action (if specified) when it becomes active. The
state becomes active before its entry action executes and completes.

The execution steps for entering a state are as follows:

1 If the parent of the state is not active, perform steps 1 through 4 for the
parent first.

2 If the state is a parallel state, check if a sibling parallel state previous in
entry order is active. If so, start at step 1 for this parallel state.

Parallel (AND) states are ordered for entry based on whether you use
explicit ordering (default) or implicit ordering. For details, see “Explicit
Ordering of Parallel States” on page 3-74 and “Implicit Ordering of Parallel
States” on page 3-75.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

3-68

Process for Entering, Executing, and Exiting States

a If the state contains a history junction and there is an active child of this
state at some point after the most recent chart initialization, perform
the entry actions for that child. Otherwise, execute the default flow
paths for the state.

b If this state has children that are parallel states (parallel decomposition),
perform entry steps 1 through 5 for each state according to its entry
order.

c If this state has only one child substate, the substate becomes active
when the parent becomes active, regardless of whether a default
transition is present. Entering the parent state automatically makes the
substate active. The presence of any inner transition has no effect on
determining the active substate.

6 If the state is a parallel state, perform all entry steps for the sibling state
next in entry order.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

8 The chart goes to sleep.

Steps for Executing an Active State
When states become active, they perform the following execution steps:

1 Execute the set of outer flow charts (see “Order of Execution for a Set of
Flow Charts” on page 3-52).

If this action causes a state transition, execution stops.

Note This step never occurs for parallel states.

2 Perform during actions and valid on event name actions.

Note Stateflow charts process these actions based on their order of
appearance in state labels.

3-69

3 Stateflow® Chart Semantics

3 Execute the set of inner flow charts.

If this action does not cause a state transition, the active children execute,
starting at step 1. Parallel states execute in the same order that they
become active.

Steps for Exiting an Active State
A state becomes inactive in one of these ways:

• An outgoing transition originates at the state boundary.

• An outgoing transition crosses the state boundary.

• It is a parallel state child of an activated state.

A state performs its exit actions before becoming inactive.

The execution steps for exiting a state are as follows:

1 Sibling parallel states exit starting with the last-entered and progress
in reverse order to the first-entered. See step 2 of “Steps for Entering a
State” on page 3-68.

2 If a state has active children, performs the exit actions of the child states in
the reverse order from when they became active.

3 Perform any exit actions.

4 Mark the state as inactive.

State Execution Example
The following example shows how active and inactive states respond to events.

3-70

Process for Entering, Executing, and Exiting States

Inactive Chart Event Reaction
Inactive charts respond to events as follows:

1 An event occurs and the chart wakes up.

2 The chart checks to see if there is a valid transition as a result of the event.

A valid default transition to state A exists.

3 State A becomes active.

4 State A entry actions (entA()) execute and complete.

5 The chart goes back to sleep.

Sleeping Chart Event Reaction
Sleeping charts respond to events as follows:

1 Event E_one occurs and the chart wakes up.

3-71

3 Stateflow® Chart Semantics

State A is active from the preceding steps 1 through 5.

2 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state A to state B exists.

3 State A exit actions (exitA()) execute and complete.

4 State A becomes inactive.

5 State B becomes active.

6 State B entry actions (entB()) execute and complete.

The chart goes back to sleep.

3-72

Execution Order for Parallel States

Execution Order for Parallel States

In this section...

“Ordering for Parallel States” on page 3-73

“Explicit Ordering of Parallel States” on page 3-74

“Implicit Ordering of Parallel States” on page 3-75

“Order Maintenance for Parallel States” on page 3-76

“Execution Priorities in Restored States” on page 3-79

“Switching Between Explicit and Implicit Ordering” on page 3-80

“Execution Order of Parallel States in Boxes and Subcharts” on page 3-80

Ordering for Parallel States
Although multiple parallel (AND) states in the same chart execute
concurrently, the Stateflow chart must determine when to activate each
one during simulation. This ordering determines when each parallel state
performs the actions that take it through all stages of execution, as described
in “Process for Entering, Executing, and Exiting States” on page 3-68.

Unlike exclusive (OR) states, parallel states do not typically use transitions.
Instead, order of execution depends on:

• Explicit ordering

Specify explicitly the execution order of parallel states on a state-by-state
basis (see “Explicit Ordering of Parallel States” on page 3-74).

• Implicit ordering

Override explicit ordering by letting a Stateflow chart use internal rules
to order parallel states (see “Implicit Ordering of Parallel States” on page
3-75).

Parallel states are assigned priority numbers based on order of execution. The
lower the number, the higher the priority. The priority number of each state
appears in the upper right corner.

3-73

3 Stateflow® Chart Semantics

Because execution order is a chart property, all parallel states in the chart
inherit the property setting. You cannot mix explicit and implicit ordering
in the same Stateflow chart. However, you can mix charts with different
ordering modes in the same Simulink model.

Explicit Ordering of Parallel States
By default, a Stateflow chart orders parallel states explicitly based on
execution priorities you set.

How Explicit Ordering Works
When you open a new Stateflow chart — or one that does not yet contain any
parallel states — the chart automatically assigns priority numbers to parallel
states in the order you create them. Numbering starts with the next available
number within the parent container.

When you enable explicit ordering in a chart that contains implicitly ordered
parallel states, the implicit priorities are preserved for the existing parallel
states. When you add new parallel states, execution order is assigned in the
same way as for new Stateflow charts — in order of creation.

You can reset execution order assignments at any time on a state-by-state
basis, as described in “Set Execution Order for Parallel States Individually”
on page 3-75. When you change execution order for a parallel state, the
Stateflow chart automatically renumbers the other parallel states to preserve
their relative execution order. For details, see “Order Maintenance for
Parallel States” on page 3-76.

Order Parallel States Explicitly
To use explicit ordering for parallel states, perform these tasks:

1 “Enable Explicit Ordering at the Chart Level” on page 3-74

2 “Set Execution Order for Parallel States Individually” on page 3-75

Enable Explicit Ordering at the Chart Level. To enable explicit ordering
for parallel states, follow these steps:

3-74

Execution Order for Parallel States

1 Right-click inside the top level of the chart and select Properties from the
context menu.

The Chart properties dialog box appears.

2 Select the User specified state/transition execution order check box.

3 Click OK.

If your chart already contains parallel states that have been ordered
implicitly, the existing priorities are preserved until you explicitly change
them. When you add new parallel states in explicit mode, your chart
automatically assigns priorities based on order of creation (see “How Explicit
Ordering Works” on page 3-74). However you can now explicitly change
execution order on a state-by-state basis, as described in “Set Execution Order
for Parallel States Individually” on page 3-75.

Set Execution Order for Parallel States Individually. In explicit ordering
mode, you can change the execution order of individual parallel states.
Right-click the parallel state of interest and select a new priority from the
Execution Order menu.

Implicit Ordering of Parallel States

Rules of Implicit Ordering for Parallel States
In implicit ordering mode, a Stateflow chart orders parallel states implicitly
based on location. Priority goes from top to bottom and then left to right,
based on these rules:

• The higher the vertical position of a parallel state in the chart, the higher
the execution priority for that state.

• Among parallel states with the same vertical position, the leftmost state
receives highest priority.

The following example shows how these rules apply to top-level parallel states
and parallel substates.

3-75

3 Stateflow® Chart Semantics

Note Implicit ordering creates a dependency between design layout and
execution priority. When you rearrange parallel states in your chart, you can
accidentally change order of execution and affect simulation results. For
more control over your designs, use the default explicit ordering mode to
set execution priorities.

Order Parallel States Implicitly
To use implicit ordering for parallel states, follow these steps:

1 Right-click inside the top level of the chart and select Properties from the
context menu.

2 In the Chart properties dialog box, clear the User specified state/transition
execution order check box.

3 Click OK.

Order Maintenance for Parallel States
Whether you use explicit or implicit ordering, a chart tries to reconcile
execution priorities when you remove, renumber, or add parallel states. In
these cases, a chart reprioritizes the parallel states to:

3-76

Execution Order for Parallel States

• Fill in gaps in the sequence so that ordering is contiguous

• Ensure that no two states have the same priority

• Preserve the intended relative priority of execution

How a Chart Preserves Relative Priorities in Explicit Mode
For explicit ordering, a chart preserves the user-specified priorities. Consider
this example of explicit ordering:

Because of explicit ordering, the priority of each state and substate matches
the order of creation in the chart. The chart reprioritizes the parallel states
and substates when you perform these actions:

1 Change the priority of top-level state b to 3.

2 Add a top-level state g.

3 Remove substate e.

3-77

3 Stateflow® Chart Semantics

The chart preserves the priority set explicitly for top-level state b, but
renumbers all other parallel states to preserve their prior relative order.

How a Chart Preserves Relative Priorities in Implicit Mode
For implicit ordering, a chart preserves the intended relative priority based
on geometry. Consider this example of implicit ordering:

If you remove top-level state b and substate e, the chart automatically
reprioritizes the remaining parallel states and substates to preserve implicit
geometric order:

3-78

Execution Order for Parallel States

Execution Priorities in Restored States
There are situations in which you need to restore a parallel state after you
remove it from a Stateflow chart. In implicit ordering mode, a chart reassigns
the execution priority based on where you restore the state. If you return the
state to its original location in the chart, you restore its original priority.

However, in explicit ordering mode, a chart cannot always reinstate the
original execution priority to a restored state. It depends on how you restore
the state.

If you remove a state
by...

And restore the state
by...

What is the priority?

Deleting, cutting,
dragging outside
the boundaries of
the parent state,
or dragging so its
boundaries overlap the
parent state

Using the undo
command

The original priority is
restored.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap
the parent state and
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.

Dragging outside the
boundaries of the
parent state or so its
boundaries overlap the
parent state without
releasing the mouse
button

Dragging it back into
the parent state

The original priority is
restored.

3-79

3 Stateflow® Chart Semantics

If you remove a state
by...

And restore the state
by...

What is the priority?

Dragging so its
boundaries overlap
one or more sibling
states

Dragging it to a location
with no overlapping
boundaries inside the
same parent state

The original priority is
restored.

Cutting Pasting The original priority is
lost. The Stateflow
chart treats the
restored state as the
last created and assigns
it the lowest execution
priority.

Switching Between Explicit and Implicit Ordering
If you switch to implicit mode after explicitly ordering parallel states, the
Stateflow chart resets execution order to follow implicit rules of geometry.
However, if you switch from implicit to explicit mode, the chart does not
restore the original explicit execution order.

Execution Order of Parallel States in Boxes and
Subcharts
When you group parallel states inside a box, the states retain their relative
execution order. In addition, the Stateflow chart assigns the box its own
priority based on the explicit or implicit ordering rules that apply. This
priority determines when the chart activates the parallel states inside the box.

When you convert a state with parallel decomposition into a subchart, its
substates retain their relative execution order based on the prevailing explicit
or implicit rules.

3-80

Early Return Logic for Event Broadcasts

Early Return Logic for Event Broadcasts

In this section...

“Guidelines for Proper Chart Behavior” on page 3-81

“How Early Return Logic Works” on page 3-81

“Example of Early Return Logic” on page 3-82

Guidelines for Proper Chart Behavior
These guidelines ensure proper chart behavior in event-driven systems:

• When a state is active, its parent should also be active.

• A state (or chart) with exclusive (OR) decomposition must never have more
than one active child.

• If a parallel state is active, siblings with higher priority must also be active.

How Early Return Logic Works
Stateflow charts run on a single thread. Therefore, charts must interrupt
current activity to process events. Activity based on an event broadcast from a
state or transition action can conflict with the current activity. Charts resolve
these conflicts by using early return logic for event broadcasts as follows:

Action
Type Early Return Logic

Entry If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
entering a state.

Exit If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining exit actions
or transitions from state to state.

During If the state is no longer active at the end of the event
broadcast, the chart does not perform remaining steps for
executing an active state.

3-81

3 Stateflow® Chart Semantics

Action
Type Early Return Logic

Condition If the origin state of the inner or outer flow chart — or
parent state of the default flow chart — are no longer active
at the end of the event broadcast, the chart does not perform
remaining steps for executing the flow chart.

Transition If the parent of the transition path is not active — or if that
parent has an active child — the chart does not perform
remaining transition actions and state entry actions.

Example of Early Return Logic

In this example, assume that state A is initially active. Event E occurs,
causing the following behavior:

1 The chart root checks to see if there is a valid transition out of the active
state A as a result of event E.

2 A valid transition to state B exists.

3 The condition action of the valid transition executes and broadcasts event F.

Event F interrupts the transition from A to B.

3-82

Early Return Logic for Event Broadcasts

4 The chart root checks to see if there is a valid transition out of the active
state A as a result of event F.

5 A valid transition to state C exists.

6 State A executes its exit action.

7 State A becomes inactive.

8 State C becomes active.

9 State C executes and completes its entry action.

State C is now the only active child of its chart. The Stateflow chart cannot
return to the transition from state A to state B and continue after the condition
action that broadcast event F (step 3). First, its source, state A, is no longer
active. Second, if the chart allowed the transition, state B would become the
second active child of the chart. This behavior violates the guideline that
a state (or chart) with exclusive (OR) decomposition can never have more
than one active child. Therefore, the chart uses early return logic and halts
the transition from state A to state B.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

3-83

3 Stateflow® Chart Semantics

3-84

4

Create Stateflow Charts

• “Basic Approach for Modeling Event-Driven Systems” on page 4-2

• “Represent Operating Modes Using States” on page 4-6

• “Transition Between Operating Modes” on page 4-22

• “Stateflow Editor Operations” on page 4-30

4 Create Stateflow® Charts

Basic Approach for Modeling Event-Driven Systems

In this section...

“Identify System Attributes” on page 4-2

“Select a State Machine Type” on page 4-2

“Specify State Actions and Transition Conditions” on page 4-3

“Define Persistent Data to Store State Variables” on page 4-4

“Simplify State Actions and Transition Conditions with Function Calls”
on page 4-4

“Check That Your System Representation Is Complete” on page 4-5

Identify System Attributes
Before you build the Stateflow chart, identify your system attributes by
answering these questions:

1 What are your interfaces?

a What are the event triggers to which your system reacts?

b What are the inputs to your system?

c What are the outputs from your system?

2 Does your system have any operating modes?

a If the answer is yes, what are the operating modes?

b Between which modes can you transition? Are there any operating
modes that run in parallel?

If your system has no operating modes, the system is stateless. If your
system has operating modes, the system is modal.

Select a State Machine Type
After identifying your system attributes, the first step is to create a new
chart. For more information, see sfnew. Select one of the following state
machine types:

4-2

Basic Approach for Modeling Event-Driven Systems

• Classic — The default machine type. Provides the full set of semantics
for MATLAB charts and C charts.

• Mealy — Machine type in which output is a function of inputs and state.

• Moore — Machine type in which output is a function of state.

For more information , see “How Chart Constructs Interact During Execution”
on page 3-8, “Differences Between MATLAB and C as Action Language
Syntax” on page 11-8, and “Overview of Mealy and Moore Machines” on page
6-2.

Specify State Actions and Transition Conditions
After you create an empty chart, answer the following questions:

1 For each state, what are the actions you want to perform?

2 What are the rules for transitioning between your states? If your chart
has no states, what are the rules for transitioning between branches of
your flow logic?

Using your answers to those questions, specify state actions and transition
conditions:

1 Draw states to represent your operating modes, if any. See “Represent
Operating Modes Using States” on page 4-6.

2 Implement the state actions by adding state labels that use the appropriate
syntax. See “State Action Types” on page 10-2.

3 Draw transitions to represent the direction of flow logic, between states or
between branches of your flow chart. See “Transition Between Operating
Modes” on page 4-22.

4 Implement the transition conditions by adding transition labels that use
the appropriate syntax. See “Transition Action Types” on page 10-7.

4-3

4 Create Stateflow® Charts

Define Persistent Data to Store State Variables
After adding state actions and transition conditions to your chart, determine
if the chart requires any local or persistent data to store state variables. If
so, follow these steps:

1 Add local data to the appropriate level of the chart hierarchy. See “Add
Data” on page 8-2.

You can also use the Symbol Wizard to add data to your chart. See .

2 Specify the type, size, complexity, and other data properties. See “Set Data
Properties” on page 8-5.

Simplify State Actions and Transition Conditions with
Function Calls
State actions and transition conditions can be complex enough that defining
them inline on the state or transition is not feasible. In this case, express the
actions or conditions using one of the following types of Stateflow functions:

• Flow chart — Encapsulate flow charts containing if-then-else, switch-case,
for, while, or do-while patterns.

• MATLAB — Write matrix-oriented algorithms; call MATLAB functions
for data analysis and visualization.

• Simulink — Call Simulink function-call subsystems directly to streamline
design and improve readability.

• Truth table — Represent combinational logic for decision-making
applications such as fault detection and mode switching.

Use the function format that is most natural for the type of calculation in the
state action or transition condition. For more information on the four types
of functions, see:

• “Reuse Logic Patterns Using Graphical Functions” on page 7-35

• “MATLAB Functions in a Chart” on page 25-2

• “What Is a Simulink Function?” on page 26-2

• “What Is a Truth Table?” on page 24-2

4-4

Basic Approach for Modeling Event-Driven Systems

If the four types of Stateflow functions do not work, you can write your own
C or C++ code for integration with your chart. For more information about
custom code integration, see “Share Data Using Custom C Code” on page
27-44.

Check That Your System Representation Is Complete
Does your Stateflow chart fully express the logical or event-driven components
of your system?

• If the answer is yes, you are done.

• If the answer is no, you can create a separate chart or add hierarchy to
your current chart.

- To create a new chart, repeat all the steps in this basic workflow.

- To add hierarchy, repeat the previous three steps on lower levels of the
current chart.

4-5

4 Create Stateflow® Charts

Represent Operating Modes Using States

In this section...

“Create a State” on page 4-6

“Move and Resize States” on page 4-7

“Create Substates and Superstates” on page 4-7

“Group States” on page 4-8

“Specify Substate Decomposition” on page 4-9

“Specify Activation Order for Parallel States” on page 4-10

“Change State Properties” on page 4-10

“Label States” on page 4-18

Create a State
You create states by drawing them in the editor for a particular chart (block).
Follow these steps:

1 Select the State tool:

2 Move your pointer into the drawing area.

In the drawing area, the pointer becomes state-shaped (rectangular with
oval corners).

3 Click in a particular location to create a state.

The created state appears with a question mark (?) label in its upper
left-hand corner.

4 Click the question mark.

A text cursor appears in place of the question mark.

5 Enter a name for the state and click outside of the state when finished.

4-6

Represent Operating Modes Using States

The label for a state specifies its required name and optional actions. See
“Label States” on page 4-18 for more detail.

Move and Resize States
To move a state, do the following:

1 Click and drag the state.

2 Release it in a new position.

To resize a state, do the following:

1 Place your pointer over a corner of the state.

When your pointer is over a corner, it appears as a double-ended arrow (PC
only; pointer appearance varies with other platforms).

2 Click and drag the state’s corner to resize the state and release the left
mouse button.

Create Substates and Superstates
A substate is a state that can be active only when another state, called its
parent, is active. States that have substates are known as superstates. To
create a substate, click the State tool and drag a new state into the state
you want to be the superstate. A Stateflow chart creates the substate in the
specified parent state. You can nest states in this way to any depth. To
change a substate’s parentage, drag it from its current parent in the chart
and drop it in its new parent.

Note A parent state must be graphically large enough to accommodate all
its substates. You might need to resize a parent state before dragging a new
substate into it. You can bypass the need for a state of large graphical size by
declaring a superstate to be a subchart. See “Encapsulate Modal Logic Using
Subcharts” on page 7-6 for details.

4-7

4 Create Stateflow® Charts

Group States

When to Group a State
Group a state to move all graphical objects inside a state together. When you
group a state, the chart treats the state and its contents as a single graphical
unit. This behavior simplifies editing of a chart. For example, moving a
grouped state moves all substates and functions inside that state.

How to Group a State
You can group a state by right-clicking it and then selecting Group &
Subchart > Group in the context menu. The state appears shaded in gray to
indicate that it is now grouped.

When to Ungroup a State
You must ungroup a state before performing these actions:

• Selecting objects inside the state

• Moving other graphical objects into the state

4-8

Represent Operating Modes Using States

If you try to move objects such as states and graphical functions into a
grouped state, you see an invalid intersection error message. Also, the
objects with an invalid intersection have a red border.

How to Ungroup a State
You can ungroup a state by right-clicking it and then clearing Group &
Subchart > Group in the context menu. The background of the state no
longer appears gray.

Specify Substate Decomposition
You specify whether a superstate contains parallel (AND) states or exclusive
(OR) states by setting its decomposition. A state whose substates are all
active when it is active has parallel (AND) decomposition. A state in which
only one substate is active when it is active has exclusive (OR) decomposition.
An empty state’s decomposition is exclusive.

To alter a state’s decomposition, select the state, right-click to display the
state’s Decomposition context menu, and select OR (Exclusive) or AND
(Parallel) from the menu.

4-9

4 Create Stateflow® Charts

You can also specify the state decomposition of a chart. In this case, the
Stateflow chart treats its top-level states as substates. The chart creates
states with exclusive decomposition. To specify a chart’s decomposition,
deselect any selected objects, right-click to display the chart’sDecomposition
context menu, and select OR (Exclusive) or AND (Parallel) from the menu.

The appearance of a superstate’s substates indicates the superstate’s
decomposition. Exclusive substates have solid borders, parallel substates,
dashed borders. A parallel substate also contains a number in its upper right
corner. The number indicates the activation order of the substate relative to
its sibling substates.

Specify Activation Order for Parallel States
You can specify activation order by using one of two methods: explicit or
implicit ordering.

• By default, when you create a new Stateflow chart, explicit ordering applies.
In this case, you specify the activation order on a state-by-state basis.

• You can also override explicit ordering by letting the chart order parallel
states based on location. This mode is known as implicit ordering.

For more information, see “Explicit Ordering of Parallel States” on page 3-74
and “Implicit Ordering of Parallel States” on page 3-75.

Note The activation order of a parallel state appears in its upper right corner.

Change State Properties
Use the State dialog box to view and change the properties for a state. To
access the State dialog box:

1 Right-click the state and select Properties.

The State properties dialog box appears. For descriptions of properties, see
“Properties You Can Set in the General Pane” on page 4-11 and “Properties
You Can Set in the Logging Pane” on page 4-14.

4-10

Represent Operating Modes Using States

2 Modify property settings and then click one of these buttons:

• Apply to save the changes and keep the State dialog box open

• Cancel to return to the previous settings

• OK to save the changes and close the dialog box

• Help to display the documentation in an HTML browser window

Properties You Can Set in the General Pane
The General pane of the State properties dialog box appears as shown.

4-11

4 Create Stateflow® Charts

You can set these properties in the General pane.

4-12

Represent Operating Modes Using States

Property Description

Name Stateflow chart name; read-only; click this hypertext
link to bring the state to the foreground.

Breakpoints Select the check boxes to set debugging breakpoints
on the execution of state entry, during, or exit
actions during simulation. For more information, see
“Set Breakpoints to Debug Charts” on page 28-10.

Execution order Set the execution order of a parallel (AND) state.
This property does not appear for exclusive (OR)
states. See “Execution Order for Parallel States” on
page 3-73.

Create Output
port for
monitoring

Select this option to output state activity data
through an output port to Simulink. See “About
Active State Output” on page 21-38.

Function Inline
Option

Select one of these options to control the inlining of
state functions in generated code:

• Auto

Inlines state functions based on an internal
heuristic.

• Inline

Always inlines state functions in the parent
function, as long as the function is not part of a
recursion. See “What Happens When You Force
Inlining” on page 27-80.

• Function

Creates separate static functions for each state.
See “What Happens When You Prevent Inlining”
on page 27-80.

4-13

4 Create Stateflow® Charts

Property Description

See “Inline State Functions in Generated Code” on
page 27-80.

Label The label for the state, which includes the name
of the state and its associated actions. See “Label
States” on page 4-18.

Properties You Can Set in the Logging Pane
The Logging pane of the State properties dialog box appears as shown.

4-14

Represent Operating Modes Using States

You can set these properties in the Logging pane.

4-15

4 Create Stateflow® Charts

Property Description

Log self activity Saves the self activity value to the MATLAB
workspace during simulation.

Test point Designates the state as a test point that can be
monitored with a floating scope during model
simulation. You can also log test point values into
MATLAB workspace objects. See “Monitor Test
Points in Stateflow Charts” on page 28-68.

Logging name Specifies the name associated with the logged self
activity. Simulink software uses the signal name
as its logging name by default. To specify a custom
logging name, select Custom from the list box and
enter the new name in the adjacent edit field.

Limit data points
to last

Limits the self activity logged to the most recent
samples.

Decimation Limits self activity logged by skipping samples. For
example, a decimation factor of 2 saves every other
sample.

Properties You Can Set in the Documentation Pane
The Documentation pane of the State properties dialog box appears as
shown.

4-16

Represent Operating Modes Using States

You can set these properties in the Documentation pane.

Property Description

Description Textual description or comment.

Document link Enter a URL address or a general MATLAB
command. Examples are www.mathworks.com,
mailto:email_address, and edit
/spec/data/speed.txt.

4-17

4 Create Stateflow® Charts

Label States
The label for a state specifies its required name for the state and the optional
actions executed when the state is entered, exited, or receives an event while
it is active.

State labels have the following general format.

name/
entry:entry actions
during:during actions
exit:exit actions
bind:data and events
on event_name:on event_name actions

The italicized entries in this format have the following meanings:

Keyword Entry Description

Not
applicable

name A unique reference to the state with optional
slash

entry or en entry actions Actions executed when a particular state is
entered as the result of a transition taken
to that state

during or
du

during actions Actions that are executed when a state
receives an event while it is active with no
valid transition away from the state

exit or ex exit actions Actions executed when a state is exited as
the result of a transition taken away from
the state

4-18

Represent Operating Modes Using States

Keyword Entry Description

bind data or events Binds the specified data or events to this
state. Bound data can be changed only by
this state or its children, but can be read by
other states. Bound events can be broadcast
only by this state or its children.

on event_name

and

on event_name
actions

A specified event

and

Actions executed when a state is active and
the specified event event_name occurs

See “How Events Work in Stateflow Charts”
on page 9-2 for information on defining and
using events.

Enter the Name
Initially, a state’s label is empty. The Stateflow chart indicates this by
displaying a ? in the state’s label position (upper left corner). Begin labeling
the state by entering a name for the state with the following steps:

1 Click the state.

The state turns to its highlight color and a question mark character
appears in the upper left-hand corner of the state.

2 Click the ? to edit the label.

An editing cursor appears. You are now free to type a label.

Enter the state’s name in the first line of the state’s label. Names are
case sensitive. To avoid naming conflicts, do not assign the same name to
sibling states. However, you can assign the same name to states that do
not share the same parent.

After labeling the state, click outside it. Otherwise, continue entering
actions. To reedit the label, click the label text near the character position
you want to edit.

4-19

4 Create Stateflow® Charts

Enter Actions
After entering the name of the state in the label, you can enter actions for any
of the following action types:

• Entry Actions — begin on a new line with the keyword entry or en,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

You can begin entry actions on the same line as the state’s name. In this
case, begin the entry action with a forward slash (/) instead of the entry
keyword.

• Exit Actions— begin on a new line with the keyword exit or ex, followed
by a colon, followed by one or more action statements on one or more lines.
To separate multiple actions on the same line, use a comma or a semicolon.

• During Actions — begin on a new line with the keyword during or du,
followed by a colon, followed by one or more action statements on one or
more lines. To separate multiple actions on the same line, use a comma
or a semicolon.

• Bind Actions — begin on a new line with the keyword bind followed by
a colon, followed by one or more data or events on one or more lines. To
separate multiple actions on the same line, use a comma or a semicolon.

• On <event_name> Actions— begin with the keyword on, followed by a
space and the name of an event, followed by a colon, followed by one or
more action statements on one or more lines, for example

on ev1: exit();

To separate multiple actions on the same line, use a comma or a semicolon.
If you want different events to trigger different actions, enter multiple on
event_name blocks in the state label. Each block specifies the action for a
specific event or set of events, for example:

on ev1: action1(); on ev2: action2();

The execution of the actions you enter for a state is dependent only on their
action type, and not the order in which you enter actions in the label. If you
do not specify the action type explicitly for a statement, the chart treats that
statement as an entry action.

4-20

Represent Operating Modes Using States

Tip You can also edit the label in the properties dialog box for the state. See
“Change State Properties” on page 4-10.

4-21

4 Create Stateflow® Charts

Transition Between Operating Modes

In this section...

“Create a Transition” on page 4-22

“Label Transitions” on page 4-23

“Move Transitions” on page 4-24

“Change Transition Arrowhead Size” on page 4-26

“Create Self-Loop Transitions” on page 4-26

“Create Default Transitions” on page 4-27

“Change Transition Properties” on page 4-27

Create a Transition
Follow these steps to create transitions between states and junctions:

1 Place your pointer on or close to the border of a source state or junction.

The pointer changes to crosshairs.

2 Click and drag a transition to a destination state or junction.

3 Release on the border of the destination state or junction.

Attached transitions obey the following rules:

• Transitions do not attach to the corners of states. Corners are used
exclusively for resizing.

• Transitions exit a source and enter a destination at angles perpendicular to
the source or destination surface.

• All transitions have smart behavior.

To delete a transition, click it and select Edit > Cut, or press the Delete key.

See the following sections for help with creating self-loop and default
transitions:

4-22

Transition Between Operating Modes

• “Create Self-Loop Transitions” on page 4-26

• “Create Default Transitions” on page 4-27

Label Transitions
Transition labels contain syntax that accompanies the execution of a
transition. The following topics discuss creating and editing transition labels:

• “Edit Transition Labels” on page 4-23

• “Transition Label Format” on page 4-23

For more information on transition concepts, see “Transition Label Notation”
on page 2-17.

For more information on transition label contents, see “Transition Action
Types” on page 10-7.

Edit Transition Labels
Label unlabeled transitions as follows:

1 Select (left-click) the transition.

The transition changes to its highlight color and a question mark (?)
appears on the transition. The ? character is the default empty label for
transitions.

2 Left-click the ? to edit the label.

You can now type a label.

To apply and exit the edit, deselect the object. To reedit the label, simply
left-click the label text near the character position you want to edit.

Transition Label Format
Transition labels have the following general format:

event [condition]{condition_action}/transition_action

4-23

4 Create Stateflow® Charts

Specify, as appropriate, relevant names for event, condition,
condition_action, and transition_action.

Label Field Description

event Event that causes the transition to be evaluated.

condition Defines what, if anything, has to be true for the
condition action and transition to take place.

condition_action If the condition is true, the action specified executes
and completes.

transition_action This action executes after the source state for the
transition is exited but before the destination state
is entered.

Transitions do not need labels. You can specify some, all, or none of the parts
of the label. Rules for writing valid transition labels include:

• Can have any alphanumeric and special character combination, with the
exception of embedded spaces

• Cannot begin with a numeric character

• Can have any length

• Can have carriage returns in most cases

• Must have an ellipsis (...) to continue on the next line

Move Transitions
You can move transition lines with a combination of several individual
movements. These movements are described in the following topics:

• “Bow the Transition Line” on page 4-25

• “Move Transition Attach Points” on page 4-25

• “Move Transition Labels” on page 4-25

In addition, transitions move along with the movements of states and
junctions.

4-24

Transition Between Operating Modes

Bow the Transition Line
You can move or "bow" transition lines with the following procedure:

1 Place your pointer on the transition at any point along the transition except
the arrow or attach points.

2 Click and drag your pointer to move the transition point to another location.

Only the transition line moves. The arrow and attachment points do not
move.

3 Release the mouse button to specify the transition point location.

The result is a bowed transition line. Repeat the preceding steps to move the
transition back into its original shape or into another shape.

Move Transition Attach Points
You can move the source or end points of a transition to place them in exact
locations as follows:

1 Place your pointer over an attach point until it changes to a small circle.

2 Click and drag your pointer to move the attach point to another location.

3 Release the mouse button to specify the new attach point.

The appearance of the transition changes from a solid to a dashed line when
you detach and release a destination attach point. Once you attach the
transition to a destination, the dashed line changes to a solid line.

The appearance of the transition changes to a default transition when you
detach and release a source attach point. Once you attach the transition to a
source, the appearance returns to normal.

Move Transition Labels
You can move transition labels to make the Stateflow chart more readable. To
move a transition label, do the following:

1 Click and drag the label to a new location.

4-25

4 Create Stateflow® Charts

2 Release the left mouse button.

If you mistakenly click and then immediately release the left mouse button on
the label, you will be in edit mode for the label. Press the Esc key to deselect
the label and try again. You can also click the mouse on an empty location in
the chart to deselect the label.

Change Transition Arrowhead Size
The arrowhead size is a property of the destination object. Changing one of
the incoming arrowheads of an object causes all incoming arrowheads to that
object to be adjusted to the same size. The arrowhead size of any selected
transitions, and any other transitions ending at the same object, is adjusted.

To adjust arrowhead size:

1 Select the transitions whose arrowhead size you want to change.

2 Place your pointer over a selected transition and right-click to select
Arrowhead Size.

3 Select an arrowhead size from the menu.

Create Self-Loop Transitions
A self-loop transition is a transition whose source and destination are the
same state or junction. To create a self-loop transition:

1 Create the transition by clicking and dragging from the source state or
junction.

2 Press the S key or right-click your mouse to enable a curved transition.

3 Continue dragging the transition tip back to a location on the source state
or junction.

For the semantics of self-loops, see “Self-Loop Transitions” on page 2-23.

4-26

Transition Between Operating Modes

Create Default Transitions
A default transition is a transition with a destination (a state or a junction),
but no apparent source object.

Click the Default Transition button in the toolbar and click a
location in the drawing area close to the state or junction you want to be the
destination for the default transition. Drag your pointer to the destination
object to attach the default transition.

The size of the endpoint of the default transition is proportional to the
arrowhead size. See “Change Transition Arrowhead Size” on page 4-26.

Default transitions can be labeled just like other transitions. See “Label
Default Transitions” on page 2-30 for an example.

Change Transition Properties
Use the Transition properties dialog box to view and change the properties for
a transition. To access the dialog box for a particular transition:

1 Right-click the transition and select Properties.

4-27

4 Create Stateflow® Charts

The Transition properties dialog box appears.

4-28

Transition Between Operating Modes

The following transition properties appear in the dialog box:

Field Description

Source Source of the transition; read-only; click the
hypertext link to bring the transition source
to the foreground.

Destination Destination of the transition; read-only; click
the hypertext link to bring the transition
destination to the foreground.

Parent Parent of this state; read-only; click the
hypertext link to bring the parent to the
foreground.

Debugger
breakpoints

Select the check boxes to set debugging
breakpoints either when the transition is
tested for validity or when it is valid.

Execution order The order in which the chart executes the
transition.

Label The transition’s label. See “Transition Label
Notation” on page 2-17 for more information
on valid label formats.

Description Textual description or comment.

Document link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

2 After making changes, click one of these buttons:

• Apply to save the changes and keep the Transition dialog box open.

• Cancel to return to the previous settings for the dialog box.

• OK to save the changes and close the dialog box.

• Help to display Stateflow online help in an HTML browser window.

4-29

4 Create Stateflow® Charts

Stateflow Editor Operations

In this section...

“Stateflow Editor” on page 4-30

“Undo and Redo Editor Operations” on page 4-34

“Specify Colors and Fonts in a Chart” on page 4-35

“Content Preview for Stateflow Objects” on page 4-38

“Intelligent Tab Completion for Stateflow Charts” on page 4-40

“Differentiate Elements of Action Language Syntax” on page 4-40

“Select and Deselect Graphical Objects” on page 4-42

“Cut and Paste Graphical Objects” on page 4-43

“Copy Graphical Objects” on page 4-43

“Format Chart Objects” on page 4-43

“Generate a Model Report” on page 4-58

Stateflow Editor
Use the Stateflow Editor to draw, zoom, modify, print, and save a chart
shown in the window.

Opening a Stateflow chart displays the chart in the Stateflow Editor.

To open a new Stateflow chart in the Stateflow Editor:

1 At the MATLAB command prompt, enter:

Command Result

sfnew
Creates an chart with the default
action language. For more
information, see sfnew.

sfnew -matlab
Creates an empty chart with
MATLAB as the action language.

4-30

Stateflow® Editor Operations

Command Result

sfnew -C
Creates an empty C chart.

stateflow
Creates an empty chart with
the default action language and
displays the Stateflow block library.

The Simulink Editor opens, with an empty chart.

2 Double-click the chart object.

The Stateflow Editor opens.

The Stateflow Editor window includes the following sections:

• Title bar

4-31

4 Create Stateflow® Charts

The full chart name appears here in model name/chart name* format. The
* character appears on the end of the chart name for a newly created chart
or for an existing chart that has been edited but not saved yet.

• Menu bar and toolbar

Most editor commands are available from the menu bar. The toolbar
contains buttons for cut, copy, paste, and other commonly used editor
commands. You can identify each tool of the toolbar by placing your
pointer over it until an identifying tool tip appears. The toolbar also
contains buttons for navigating a chart’s subchart hierarchy (see “Navigate
Subcharts” on page 7-10).

• Object palette

4-32

Stateflow® Editor Operations

Displays a set of tools for drawing states, transitions, and other chart
objects. To add an object, you can use the palette to:

- Click the icon for the object and move the cursor to the spot in the
drawing area where you want to place the object.

- Drag the icon for the object into the drawing area.

- Double-click the icon and then click multiple times in the drawing area
to make copies of the object.

• Explorer bar

4-33

4 Create Stateflow® Charts

The breadcrumb shows the systems that you have open in the editor. Click
a system in the breadcrumb to display that system.

• Model Browser

Click the double arrows in the bottom left corner to open or close a
tree-structured view of the model in the editor.

• Drawing area— This area displays an editable copy of a chart.

• Context menus (shortcut menus) — These menus pop up from the
drawing area when you right-click an object. They display commands that
apply only to that object. If you right-click an empty area of the chart, the
shortcut menu applies to the chart object.

• Status information— Near the top of the editor, you can see (and reset)
the simulation time and the simulation mode. The bottom status bar
displays the status of the Stateflow processing, tool tips, the zoom factor,
and the solver.

Undo and Redo Editor Operations
You can undo and redo operations that you perform in a chart. When you
undo an operation, you reverse the last edit operation that you performed.
After you undo operations in the chart, you can also redo them one at a time.

4-34

Stateflow® Editor Operations

• To undo an operation in the chart, select Edit > Undo.

• To redo an operation in the chart, select Edit > Redo.

Exceptions for Undo
You can undo or redo all editor operations, with the following exceptions:

• You cannot undo the operation of turning subcharting off for a state
previously subcharted.

To understand subcharting, see “Encapsulate Modal Logic Using
Subcharts” on page 7-6.

• You cannot undo the drawing of a supertransition or the splitting of an
existing transition.

Splitting of an existing transition refers to the redirection of the source
or destination of a transition segment that is part of a supertransition.
For a description of supertransitions, see “Draw a Supertransition Into a
Subchart” on page 7-15and “Draw a Supertransition Out of a Subchart”
on page 7-19.

• You cannot undo any changes made to the chart using the Stateflow API.

For a description of the Stateflow API, see “Programmatic Interface”.

Note When you perform one of the preceding operations, the undo and
redo buttons are disabled from undoing and redoing any prior operations.

Specify Colors and Fonts in a Chart
You can specify the color and font for items in a chart, for a single item or
all items in the chart.

Change Fonts for a Single Item
You can change the font for a single item as follows:

1 Right-click the item.

4-35

4 Create Stateflow® Charts

2 In the context menu, select the font type, style, and size from
Format > Font Style.

Colors & Fonts Dialog Box
The Colors & Fonts dialog box helps you specify a color scheme for the chart
as a whole, or colors and label fonts for different types of objects in a chart.

To display the Colors & Fonts dialog box, in the Stateflow Editor, select
File > Stateflow Preferences > Style.

The drawing area of the dialog box displays examples of the types of objects
whose colors and font labels you can specify. The examples use the colors and
label fonts specified by the current color scheme for the chart. To choose
another color scheme, select the scheme from the dialog box’s Schemes
menu. The dialog box displays the selected color scheme. Click Apply to

4-36

Stateflow® Editor Operations

apply the selected scheme to the chart or OK to apply the scheme and dismiss
the dialog box.

To make the selected scheme the default scheme for all charts, select Make
this the "Default" scheme from the dialog box’s Options menu.

To modify the current scheme, position your pointer over the example of the
type of object whose color or label font you want to change. Then left-click
to change the object’s color or right-click to change the object’s font. If you
left-click, a color chooser dialog box appears.

Use the dialog box to select a new color for the selected object type.

If the selected object is a label and you right-click, a font selection dialog
box appears.

4-37

4 Create Stateflow® Charts

Use the font selector to choose a new font for the selected label.

To save changes to the default color scheme, select Save defaults to disk
from the Colors & Fonts dialog box’s Options menu.

Note Choosing Save defaults to disk has no effect if the modified scheme
is not the default scheme.

Content Preview for Stateflow Objects
When a chart is closed, you can preview the content of Stateflow charts in
Simulink. You can see an outline of the contents of a chart. During simulation
you can see chart animation. When a chart is open, you can preview the
content of subcharts and Simulink functions.

4-38

Stateflow® Editor Operations

For example, the Temporal Logic chart uses content preview. The chart
Without Temporal Logic does not.

To turn on content preview for Stateflow charts and subcharts, right-click
the chart and select Format > Content Preview. For Simulink functions,
right-click the function and select Content Preview. For details on content
preview in Simulink, see “Preview Content of Hierarchical Items”.

Note In order to see the content preview, you may need to enlarge the
Stateflow chart or object.

4-39

4 Create Stateflow® Charts

Intelligent Tab Completion for Stateflow Charts
Stateflow tab completion provides context-sensitive editing assistance. Tab
completion helps you avoid typographical errors. It also helps you quickly
select syntax-appropriate options for keywords, data, event, and function
names, without having to navigate the Model Explorer. In a Stateflow chart,
to complete entries:

1 Type the first few characters of the word that you want.

2 Press Tab to see the list of possible matches.

3 Use the arrow keys to select a word.

4 Press Tab to make the selection.

Additionally, you can:

• Close the list without selecting anything by pressing the Esc key.

• Type additional characters onto your original term to narrow the list of
possible matches.

If you press Tab and no words are listed, then the current word is the only
possible match.

Differentiate Elements of Action Language Syntax
You can use color highlighting to differentiate the following syntax elements:

• Keyword

• Comment

• Event

• Function

• String

• Number

Syntax highlighting is a user preference, not a model preference.

4-40

Stateflow® Editor Operations

Default Syntax Highlighting
The following chart illustrates the default highlighting for language elements.

If the parser cannot resolve a syntax element, the chart displays the element
in the default text color.

To modify color assignments, see “Edit Syntax Highlighting” on page 4-41. To
disable syntax highlighting, see “Enable and Disable Syntax Highlighting”
on page 4-42.

Edit Syntax Highlighting

1 In the Stateflow Editor, select File > Stateflow Preferences > Syntax
Highlighting.

The Syntax Highlight Preferences dialog box appears.

4-41

4 Create Stateflow® Charts

2 Click the color that you want to change, choose an alternative from the
color palette, and click Apply.

3 Click OK to close the Syntax Highlight Preferences dialog box.

Enable and Disable Syntax Highlighting

1 In the Stateflow Editor, select File > Stateflow Preferences > Syntax
Highlighting.

The Syntax Highlight Preferences dialog box appears.

2 Select or clear Enable syntax highlighting and click OK.

Select and Deselect Graphical Objects
Once an object is in the drawing area, to make any changes or additions to
that object, select it.

• To select an object, click anywhere inside of the object.

• To select multiple adjacent objects, click and drag a selection box so that
the box encompasses or touches the objects that you want to select, and
then release the mouse button.

All objects or portions of objects within the box become selected.

• To select multiple separate objects, simultaneously press the Shift key and
click an object or box a group of objects.

This step adds objects to the list of already selected objects unless an object
was already selected, in which case, the object is deselected. This type
of multiple object selection is useful for selecting objects within a state
without selecting the state itself.

• To deselect all selected objects, click in the drawing area, but not on an
object.

When an object is selected, it appears highlighted in the color set as the
selection color (blue by default; see “Specify Colors and Fonts in a Chart”
on page 4-35 for more information).

4-42

Stateflow® Editor Operations

Cut and Paste Graphical Objects
You can cut objects from the drawing area or cut and then paste them as many
times as you like. You can cut and paste objects from one chart to another.
The chart retains a selection list of the most recently cut objects. The objects
are pasted in the drawing area location closest to the current pointer location.

• To cut an object, right-click the object and select Cut from the context
menu.

• To paste the most recently cut selection of objects, right-click in the chart
and select Paste from the context menu.

Copy Graphical Objects
To copy and paste an object in the drawing area, select the objects and
right-click and drag them to the desired location in the drawing area. This
operation also updates the chart’s clipboard.

Note If you copy and paste a state in the chart, these rules apply:

• If the original state uses the default ? label, then the new state retains
that label.

• If the original state does not use the default ? label, then a unique name is
generated for the new state.

Alternatively, to copy from one chart to another, select Copy and then Paste
from the right-click context menu.

Format Chart Objects
To enhance readability of objects in a chart, in the Stateflow Editor you can
use commands in the Chart > Arrange menu. These commands include
options for:

• Alignment

• Distribution

4-43

4 Create Stateflow® Charts

• Resizing

You can align, distribute, or resize these chart objects:

• States

• Functions

• Boxes

• Junctions

Align, Distribute, and Resize Chart Objects
The basic steps to align, distribute, or resize chart objects are similar.

1 If the chart includes parallel states or outgoing transitions from a single
source, make sure that the chart uses explicit ordering.

To set explicit ordering, in the Chart properties dialog box, select User
specified state/transition execution order.

Note If a chart uses implicit ordering to determine execution order of
parallel states or evaluation order of outgoing transitions, the order can
change after you align, distribute, or resize chart objects. Using explicit
ordering prevents this change from occurring. For more information, see
“Execution Order for Parallel States” on page 3-73 and “Evaluation Order
for Outgoing Transitions” on page 3-54.

2 Select the chart objects that you want to align, distribute, or resize.

You can select objects in any order, one-by-one or by drawing a box around
them.

3 Decide which object to use as the anchor for aligning, distributing, or
resizing other chart objects. This object is the reference object.

To set an object as the reference, right-click the object. Brackets appear
around the reference object. In the following example, the Door and Motion
states are selected, and the Door state is the reference.

4-44

Stateflow® Editor Operations

Note If you select objects one-by-one, the last object that you select acts
as the reference.

4 Select an option from the Chart > Arrange menu to align, distribute, or
resize your chosen objects.

For more information about chart object distribution options, see “Options
for Distributing Chart Objects” on page 4-46

4-45

4 Create Stateflow® Charts

Options for Distributing Chart Objects

This option... Distributes selected objects so that...

Distribute Horizontally The center-to-center horizontal distance
between any two objects is the same.

Note The horizontal space for
distribution is the distance between the
left edge of the leftmost object and the
right edge of the rightmost object. If
the total width of the objects you select
exceeds the horizontal space available,
objects can overlap after distribution.

Distribute Vertically The center-to-center vertical distance
between any two objects is the same.

Note The vertical space for distribution
is the distance between the top edge of
the highest object and the bottom edge of
the lowest object. If the total height of
the objects you select exceeds the vertical
space available, objects can overlap after
distribution.

4-46

Stateflow® Editor Operations

This option... Distributes selected objects so that...

Even Horizontal Gaps The horizontal white space between any
two objects is the same.

Note The space restriction for
Distribute Horizontally applies.

Even Vertical Gaps The vertical white space between any
two objects is the same.

Note The space restriction for
Distribute Vertically applies.

4-47

4 Create Stateflow® Charts

Example of Aligning Chart Objects
Suppose that you open the sf_pool model and see a chart with multiple
MATLAB functions.

To align the three MATLAB functions on the right:

1 Type sf_pool at the MATLAB command prompt to open the model.
Double-click the Pool block to open the chart.

4-48

Stateflow® Editor Operations

Tip Expand the Stateflow Editor to see the entire chart.

2 Click the function isAnyBallGoingToStop.

3 Shift-click the function isAnyBallNewlyPocketed.

4 Shift-click the function getBallInteraction.

This object is the reference (or anchor) for aligning the three functions.
Brackets appear around the function.

5 Select Chart > Arrange > Align Right.

4-49

4 Create Stateflow® Charts

This step aligns the right edges of the three functions based on the right
edge of getBallInteraction.

4-50

Stateflow® Editor Operations

Example of Distributing Chart Objects
Suppose that you open the sf_frame_sync_controller model and see a
chart with three states.

To distribute the three states vertically:

1 Type sf_frame_sync_controller at the MATLAB command prompt to
open the model.

4-51

4 Create Stateflow® Charts

Tip Double-click the Frame Sync Controller block to open the chart.

2 Select the three states in any order.

Shift-click to select more than one state.

4-52

Stateflow® Editor Operations

4-53

4 Create Stateflow® Charts

Note When you select the three states in any order, your reference object
might differ from the one shown. This difference does not affect distribution
of vertical white space.

3 Select Chart > Arrange > Even Vertical Gaps.

This step ensures that the vertical white space between any two states
is the same.

Example of Resizing Chart Objects
Suppose that you open the sf_clutch model and see a chart with graphical
functions of different sizes.

To resize the graphical functions so that they all match the size of detectSlip:

1 Type sf_clutch at the MATLAB command prompt to open the model.

4-54

Stateflow® Editor Operations

2 In the Friction Mode chart, select the three graphical functions by drawing
a box around them.

3 Set detectSlip as the reference object to use for resizing.

Right-click the function to mark it with brackets.

4 Select Chart > Arrange > Match Size.

4-55

4 Create Stateflow® Charts

This step ensures that the three functions are the same size.

5 Adjust the function boxes to correct the format:

a To align the functions, select Chart > Arrange > Align Left.

4-56

Stateflow® Editor Operations

b To distribute the functions evenly in terms of vertical spacing, select
Chart > Arrange > Even Vertical Gaps.

4-57

4 Create Stateflow® Charts

Generate a Model Report
The Print Details report is an extension of the Print Details report in the
Simulink model window. It provides a report of Stateflow and Simulink
objects relative to the chart currently in view from which you select the report.

To generate a model report on chart objects:

1 Open the chart or subchart for which you want a report.

2 In the editor, select File > Print > Print Details.

The Print Details dialog box appears.

4-58

Stateflow® Editor Operations

3 Enter the destination directory of the report file and select options to
specify what objects appear in the report.

For details on setting the fields in the File locations/naming options
section, see “Generate a Model Report” in the Simulink software
documentation. For details on the report you receive, see “System Report
Options” on page 4-60 and “Report Format” on page 4-60.

4 Click Print.

The Print Details dialog box appears and tracks the report generation. See
“Generate a Model Report” in the Simulink software documentation for more
details on this window.

The HTML report appears in your default browser.

4-59

4 Create Stateflow® Charts

Tip If you have theSimulink Report Generator™ installed, you can generate
a detailed report about a system. To do so, in the Simulink Editor, select
File > Reports > System Design Description. For more information, see
“System Design Description”.

System Report Options
Reports for the current Stateflow chart vary with your choice of one of the
System reporting options fields:

• Current— Reports on the chart or subchart in the current editor window
and its immediate parent Simulink system.

• Current and above — This option is grayed out and unavailable for
printing chart details.

• Current and below — Reports on the chart or subchart in the current
editor window and all contents at lower levels of the hierarchy, along with
the immediate Simulink system.

• Entire model — Reports on the entire model including all charts and
all Simulink systems.

If you select this option, you can modify the report as follows:

- Look under mask dialog – Includes the contents of masked
subsystems in the report.

- Expand unique library links – Includes the contents of library blocks
that are subsystems in the report.

The report includes a library subsystem only once even if it occurs in
more than one place in the model.

Report Format
The general top-down format of the Print Details report is as follows:

• The report shows the title of the system in the Simulink model containing
the chart or subchart in current view.

4-60

Stateflow® Editor Operations

• A representation of Simulink hierarchy for the containing system and its
subsystems follows. Each subsystem in the hierarchy links to the report of
its Stateflow charts.

• The report section for the Stateflow charts of each system or subsystem
begins with a small report on the system or subsystem, followed by a report
of each contained chart.

• Each chart report includes a reproduction of its chart with links for
subcharted states that have reports of their own.

• An appendix tabulates the covered Stateflow and Simulink objects in the
report.

4-61

4 Create Stateflow® Charts

4-62

5

Model Logic Patterns and
Iterative Loops Using Flow
Charts

• “What Is a Flow Chart?” on page 5-2

• “Difference Between Flow Charts and State Transition Diagrams” on
page 5-3

• “When to Use Flow Charts” on page 5-4

• “Create Flow Charts with the Pattern Wizard” on page 5-5

• “Draw and Customize Flow Charts By Hand” on page 5-30

• “Best Practices for Creating Flow Charts” on page 5-33

• “Enhance Readability of Code for Flow Charts” on page 5-35

5 Model Logic Patterns and Iterative Loops Using Flow Charts

What Is a Flow Chart?
A flow chart is a graphical construct that models logic patterns by using
connective junctions and transitions. The junctions provide decision branches
between alternate transition paths. You can use flow charts to represent
decision and iterative loop logic.

Here is an example of a flow chart that models simple if-else logic:

This flow chart models the following code:

if (u > 0)
{

y = 1;
}
else
{

y = 0;
}

5-2

Difference Between Flow Charts and State Transition Diagrams

Difference Between Flow Charts and State Transition
Diagrams

A flow chart is used for combinatorial design. It is a stateless flow chart
because it cannot maintain its active state between updates. As a result, a
flow chart always begins executing from a default transition and ends at a
terminating junction (a junction that has no valid outgoing transitions).

By contrast, a state transition diagram is used for sequential design. It
stores its current state in memory to preserve local data and activity between
updates. As a result, state diagrams can begin executing where they left off
in the previous time step, making them suitable for modeling reactive or
supervisory systems that depend on history. In these kinds of systems, the
current result depends on a previous result.

5-3

5 Model Logic Patterns and Iterative Loops Using Flow Charts

When to Use Flow Charts
Use flow charts to represent combinatorial logic in graphical functions or
between states in a chart. A best practice is to encapsulate flow charts in
graphical functions to create modular, reusable decision and loop logic that
you can call anywhere in a chart. For more information about graphical
functions, see “Reuse Logic Patterns Using Graphical Functions” on page 7-35.

5-4

Create Flow Charts with the Pattern Wizard

Create Flow Charts with the Pattern Wizard

In this section...

“Why Use the Pattern Wizard?” on page 5-5

“How to Create Reusable Flow Charts” on page 5-5

“Insert a Logic Pattern Using the Pattern Wizard” on page 5-7

“Save and Reuse Flow Chart Patterns” on page 5-10

“MAAB-Compliant Patterns from the Pattern Wizard” on page 5-13

“Create and Reuse a Custom Pattern with the Pattern Wizard” on page 5-22

Why Use the Pattern Wizard?
The Pattern Wizard is a utility that generates common flow chart patterns
for use in graphical functions and charts. Although you can also create flow
charts by hand, the Pattern Wizard offers several advantages:

• Generates common logic and iterative loop patterns automatically

• Generates patterns that comply with guidelines from the MathWorks
Automotive Advisory Board (MAAB)

• Promotes consistency in geometry and layout across patterns

• Facilitates storing and reusing patterns from a central location

• Provides ability to insert patterns in existing flow graph

Note The Pattern Wizard is only used for flow charts, and cannot be used
to save states and subcharts. Atomic subcharts can be used to reuse states
and subcharts.

How to Create Reusable Flow Charts
When you create flow charts with the Pattern Wizard, you can save them to a
central location where you can retrieve them for reuse. To create reusable
flow charts that comply with MAAB guidelines:

5-5

5 Model Logic Patterns and Iterative Loops Using Flow Charts

1 Open a chart.

How do I create and open a new Stateflow chart?

a Type sfnew or stateflow at the MATLAB command prompt.

A model opens, containing an empty chart.

b Double-click the chart to open it.

2 Select a flow chart pattern:

To Create: Select: Reference

if decision patterns Chart > Add Pattern
in Chart > Decision

“Decision Logic
Patterns in Flow
Charts” on page 5-13

for-, while-, and
do-while-loop patterns

Chart > Add Pattern
in Chart > Loop

“Iterative Loop
Patterns in Flow
Charts” on page 5-17

switch patterns Chart > Add Pattern
in Chart > Switch

“Switch Patterns in
Flow Charts” on page
5-18

The Stateflow Patterns dialog box appears.

3 Enter a description of your pattern (optional).

4 Specify conditions and actions (optional).

You can also add or change conditions and actions directly in the chart.

5 Click OK.

The pattern appears in your chart. The geometry and layout comply with
MAAB guidelines.

6 Customize the pattern as desired.

For example, you may want to add or change flow charts, conditions, or
actions. See “Create and Reuse a Custom Pattern with the Pattern Wizard”
on page 5-22.

5-6

Create Flow Charts with the Pattern Wizard

7 Save the pattern to a central location as described in “Save and Reuse
Flow Chart Patterns” on page 5-10.

You can now retrieve your pattern directly from the editor to reuse in
graphical functions and charts. See “How to Add Flow Chart Patterns in
Graphical Functions” on page 5-12 and “How to Add Flow Chart Patterns in
Charts” on page 5-13.

Insert a Logic Pattern Using the Pattern Wizard
Using the Pattern Wizard, you can add loop or decision logic extensions
to a previously created pattern in a flow chart. Select an eligible vertical
transition, and then select Chart > Insert Pattern on Selection. After you
select one of the decision or loop patterns, the Pattern Wizard places the new
pattern below the action along the transition path.

When you create logic extensions, the following rules apply:

• Select only one exactly vertical transition to extend at a time.

• Select a vertical transition that has a destination junction.

• Extend only a flow chart that was created by the Pattern Wizard.

• Extend only a flow chart that has junctions and transitions in the chart,
not other objects.

• Do not extend a pattern that has been custom-created or modified.

• You cannot choose a custom pattern as the extension.

If your selection is not eligible, when you select Chart > Insert Pattern on
Selection, you see a message instead of pattern options.

Message Issue

Select a vertical transition You have not selected a vertical
transition.

Selected transition must be exactly
vertical

You selected a transition, but it is
not vertical.

5-7

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Message Issue

Select only one vertical transition You have selected more than one
transition.

Editor must contain only junctions
and transitions

There are other objects, such as
states, functions or truth tables in
the editor.

Insert a Pattern
In this example, you add an if-else pattern into a while-loop body.

1 Open a chart.

2 Select Chart > Add Pattern in Chart > Loop > While.

3 Enter a description of your pattern (optional).

4 Specify conditions and actions (optional).

You can also add or change conditions and actions directly in the chart.

5 Click OK.

The while pattern appears in your chart.

5-8

Create Flow Charts with the Pattern Wizard

6 Select the vertical transition labeled {action1}.

7 Select Chart > Insert Pattern on Selection > Decision > If-Else.

8 Click OK.

5-9

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The if-else pattern is added to the while-loop below {action1}.

Save and Reuse Flow Chart Patterns
Using the Pattern Wizard, you can save flow chart patterns in a central
location, then easily retrieve and reuse them in Stateflow graphical functions
and charts. The Pattern Wizard lets you access all saved patterns from the
editor.

5-10

Create Flow Charts with the Pattern Wizard

Guidelines for Creating a Pattern Folder
The Pattern Wizard uses a single, flat folder for saving and retrieving flow
chart patterns. Follow these guidelines when creating your pattern folder:

• Store all flow charts at the top level of the pattern folder; do not create
subfolders.

• Make sure all flow chart files have a .mdl or .slx extension.

How to Save Flow Chart Patterns for Easy Retrieval

1 Create a folder for storing your patterns according to “Guidelines for
Creating a Pattern Folder” on page 5-11.

2 In your chart, select flow charts with the patterns you want to save.

3 Select Chart > Save Pattern.

The Pattern Wizard displays a message that prompts you to choose a folder
for storing custom patterns.

The Pattern Wizard stores your flow charts in the pattern folder as a model
file. The patterns that you save in this folder appear in a drop-down list
when you select Chart > Add Pattern in Chart > Custom, as described
in “How to Add Flow Chart Patterns in Graphical Functions” on page 5-12
and “How to Add Flow Chart Patterns in Charts” on page 5-13.

4 Click OK to dismiss the message.

The Browse For Folder dialog box appears.

5 Select the designated folder (or create a new folder) and click OK.

The Save Pattern As dialog box appears.

6 Enter a name for your pattern and click Save.

The Pattern Wizard saves your pattern as a model file in the designated
folder.

5-11

5 Model Logic Patterns and Iterative Loops Using Flow Charts

How to Change Your Pattern Folder

1 Rename your existing pattern folder.

2 Add a pattern as described in “How to Add Flow Chart Patterns in
Graphical Functions” on page 5-12 or “How to Add Flow Chart Patterns in
Charts” on page 5-13.

The Pattern Wizard prompts you to choose a folder.

3 Follow the instructions in “How to Save Flow Chart Patterns for Easy
Retrieval” on page 5-11.

How to Add Flow Chart Patterns in Graphical Functions

1 Add a graphical function to your chart.

See “Create a Graphical Function” on page 7-25.

2 Make the graphical function into a subchart by right-clicking in the
function box and selecting Group & Subchart > Subchart.

The function box turns gray.

3 Double-click the subcharted graphical function to open it.

4 In the menu bar, select Chart > Add Pattern in Function > Custom.

The Select a Custom Pattern dialog box appears, displaying all of your
saved patterns.

Why does my dialog box not display any patterns?

You have not saved any patterns for the Pattern Wizard to retrieve. See
“Save and Reuse Flow Chart Patterns” on page 5-10.

5 Select a pattern from the list in the dialog box and click OK.

The pattern appears in the graphical function, which expands to fit the
flow chart.

5-12

Create Flow Charts with the Pattern Wizard

6 Define all necessary inputs, outputs, and local data in the graphical
function and the chart that calls it.

How to Add Flow Chart Patterns in Charts

1 In the menu bar, select Chart > Add Pattern in Chart > Custom.

The Select a Custom Pattern dialog box appears, displaying all of your
saved patterns.

2 Select a pattern from the list in the dialog box and click OK.

The pattern appears in the chart.

3 Adjust the chart by hand to:

• Connect the flow charts to the appropriate transitions.

• Ensure that there is only one default transition for exclusive (OR) states
at each level of hierarchy.

• Define all necessary inputs, outputs, and local data.

MAAB-Compliant Patterns from the Pattern Wizard
The Pattern Wizard generates MAAB-compliant flow charts.

Decision Logic Patterns in Flow Charts
The Pattern Wizard generates the following MAAB-compliant decision logic
patterns:

if

5-13

5 Model Logic Patterns and Iterative Loops Using Flow Charts

if-else

if-elseif

5-14

Create Flow Charts with the Pattern Wizard

if-elseif-else

5-15

5 Model Logic Patterns and Iterative Loops Using Flow Charts

if-elseif-elseif-else

5-16

Create Flow Charts with the Pattern Wizard

Nested if

Iterative Loop Patterns in Flow Charts
The Pattern Wizard generates the following MAAB-compliant iterative loop
patterns:

for

5-17

5 Model Logic Patterns and Iterative Loops Using Flow Charts

while

do-while

Switch Patterns in Flow Charts
The Pattern Wizard generates the following MAAB-compliant switch patterns:

5-18

Create Flow Charts with the Pattern Wizard

switch with two cases and default

5-19

5 Model Logic Patterns and Iterative Loops Using Flow Charts

5-20

Create Flow Charts with the Pattern Wizard

5-21

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Create and Reuse a Custom Pattern with the Pattern
Wizard
This example shows how to create, modify, and save a custom flow chart
pattern for iterating over the upper triangle of a two-dimensional matrix. In
the upper triangle, the row index i is always less than or equal to column
index j. This flow chart pattern uses nested for-loops to ensure that i never
exceeds j.

Create the Upper Triangle Iterator Pattern

1 Open a new (empty) chart.

2 Select Chart > Add Pattern in Chart > Loop > For.

3 In the Stateflow Patterns dialog box, enter the initializer, loop test, and
counting expressions for iterating through the first dimension of the
matrix, as follows:

Do not specify an action yet. You will add another loop for iterating the
second dimension of the matrix.

5-22

Create Flow Charts with the Pattern Wizard

4 Click OK.

The Pattern Wizard generates the first iterative loop in your chart.

This pattern:

• Conforms to all best practices for creating flow charts, as described in
“Best Practices for Creating Flow Charts” on page 5-33.

• Provides the correct syntax for conditions and condition actions.

5 Add the second loop:

a Expand the editor window so the chart can accommodate a second
pattern.

b Select the vertical transition labelled {action1}.

c Select Chart > Insert Pattern on Selection > Loop > For.

d Enter the initializer, loop test, and counting expressions for the second
iterator j, and a placeholder for an action to retrieve each element in the
upper triangle as follows:

5-23

5 Model Logic Patterns and Iterative Loops Using Flow Charts

e Click OK. The Pattern Wizard adds the second loop to the first loop.

5-24

Create Flow Charts with the Pattern Wizard

6 Save your chart.

Save your pattern to a central location for reuse (see “Save the Upper Triangle
Iterator Pattern for Reuse” on page 5-25).

Save the Upper Triangle Iterator Pattern for Reuse

1 Create a folder for storing flow chart patterns, as described in “Guidelines
for Creating a Pattern Folder” on page 5-11.

2 Open the chart that contains the custom pattern.

5-25

5 Model Logic Patterns and Iterative Loops Using Flow Charts

3 In the chart, select the flow chart with the pattern that you want to save.

4 In the editor, select Chart > Save Pattern and take one of these actions.

If you have... Then Pattern
Wizard...

Action

Not yet designated the
pattern folder

Prompts you to create
or select a pattern
folder

Select the folder you
just created. See “How
to Save Flow Chart
Patterns for Easy
Retrieval” on page
5-11.

Already designated
the pattern folder

Prompts you to save
your pattern to the
designated folder

Name your pattern
and click Save.

The Pattern Wizard automatically saves your pattern as a model file under
the name that you specify.

Add the Upper Triangle Iterator Pattern to a Graphical Function

1 Open a new chart.

2 Drag a graphical function into the chart from the object palette.

3 Enter the following function signature:

function y = ut_iterator(u, numrow, numcol)

The function takes three inputs.

Input Description

u 2-D matrix

numrow Number of rows in the matrix

numcol Number of columns in the matrix

4 Right-click inside the function and select Group & Subchart > Subchart.

5-26

Create Flow Charts with the Pattern Wizard

The function looks like this graphic.

5 Double-click to open the subcharted function and select Chart > Add
Pattern in Function > Custom.

5-27

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The Select a Custom Pattern dialog box opens, listing all the patterns that
you have saved in your pattern folder.

6 Select your upper triangle iterator pattern and click OK.

5-28

Create Flow Charts with the Pattern Wizard

The Pattern Wizard adds your custom pattern to the graphical function.

Before calling this function from a chart, be sure to modify data names, types,
and sizes as necessary and substitute an appropriate action.

5-29

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Draw and Customize Flow Charts By Hand

In this section...

“How to Draw a Flow Chart” on page 5-30

“How to Change Connective Junction Size” on page 5-30

“How to Modify Junction Properties” on page 5-31

How to Draw a Flow Chart
You can draw and customize flow charts manually by using connective
junctions as branch points between alternate transition paths:

1 Open a chart.

2 From the editor toolbar, drag one or more connective junctions into the
chart using the Connective Junction tool:

3 Add transition paths between junctions.

4 Label the transitions.

5 Add a default transition to the junction where the flow chart should start.

How to Change Connective Junction Size
To change the size of connective junctions:

1 Select one or more connective junctions.

2 Right-click one of the selected junctions and select Junction Size from
the drop-down menu.

A menu of junction sizes appears.

3 Select a junction size.

5-30

Draw and Customize Flow Charts By Hand

How to Modify Junction Properties
To modify the properties of a connective junction:

1 Right-click a connective junction and select Properties from the drop-down
menu.

The Connective Junction dialog box appears.

2 Edit the fields in the dialog as desired.

5-31

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Field Description

Parent Parent of the connective junction (read-only).
Click the hypertext link to bring the parent to
the foreground.

Description Textual description or comment.

Document link Link to other information. Enter a URL address
or a general MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

3 Click Apply to save changes.

5-32

Best Practices for Creating Flow Charts

Best Practices for Creating Flow Charts
Follow these best practices to create efficient, accurate flow charts:

Use only one default transition

Flows charts should have a single entry point.

Provide only one terminating junction

Multiple terminating junctions reduce readability of a flow chart.

Converge all transition paths to the terminating junction

This guideline ensures that execution of a flow chart always reaches the
termination point.

Provide an unconditional transition from every junction except the
terminating junction

This guideline ensures that unintended backtracking behavior does not occur
in a flow chart. If unintended backtracking occurs during simulation, a
warning message appears.

You can control the level of diagnostic action for unintended backtracking in
the Diagnostics > Stateflow pane of the Model Configuration Parameters
dialog box. For more information, see the documentation for the “Unexpected
backtracking” diagnostic.

Unintended backtracking can occur at a junction under these conditions:

• The junction does not have an unconditional transition path to a state or
terminating junction.

• Multiple transition paths lead to that junction.

Use condition actions to process updates, not transition actions

Flow charts test transitions, but do not execute them (and, therefore, never
execute transition actions).

5-33

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The following example illustrates these best practices:

5-34

Enhance Readability of Code for Flow Charts

Enhance Readability of Code for Flow Charts

In this section...

“Appearance of Generated Code for Flow Charts” on page 5-35

“Convert If-Elseif-Else Code to Switch-Case Statements” on page 5-39

“Example of Converting Code to Switch-Case Statements” on page 5-41

Appearance of Generated Code for Flow Charts
When you use Embedded Coder® software to generate code for embedded
real-time (ert) targets, the code from a flow chart resembles the samples
that follow.

The following characteristics apply:

• By default, the generated code uses if-elseif-else statements to
represent switch patterns. To convert the code to use switch-case
statements, see “Convert If-Elseif-Else Code to Switch-Case Statements”
on page 5-39.

• By default, variables that appear in the flow chart do not retain their
names in the generated code. Modified identifiers guarantee that no
naming conflicts occur.

• Traceability comments for the transitions appear between each set of /*
and */ markers. To learn more about traceability, see “Traceability of
Stateflow Objects in Generated Code” on page 27-65.

5-35

5 Model Logic Patterns and Iterative Loops Using Flow Charts

if (modelname_U.In1 == 1.0) {
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
modelname_Y.Out1 = 10.0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */

} else {
/* Transition: '<S1>:10' */
if (modelname_U.In1 == 2.0) {

/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */

5-36

Enhance Readability of Code for Flow Charts

for (sf_i = 0; sf_i < 10; sf_i++) {
/* Transition: '<S1>:40' */
/* Transition: '<S1>:41' */
modelname_B.y = modelname_B.y +

modelname_U.In1;

/* Transition: '<S1>:39' */
}

Sample Code for an Iterative Loop Pattern

5-37

5 Model Logic Patterns and Iterative Loops Using Flow Charts

if (modelname_U.In1 == 1.0) {
/* Transition: '<S1>:149' */
/* Transition: '<S1>:150' */
modelname_Y.Out1 = 1.0;

/* Transition: '<S1>:151' */
/* Transition: '<S1>:152' */
/* Transition: '<S1>:158' */
/* Transition: '<S1>:159' */

} else {
/* Transition: '<S1>:156' */
if (modelname_U.In1 == 2.0) {

/* Transition: '<S1>:153' */
/* Transition: '<S1>:154' */
modelname_Y.Out1 = 2.0;

/* Transition: '<S1>:155' */
/* Transition: '<S1>:158' */
/* Transition: '<S1>:159' */

} else {
/* Transition: '<S1>:161' */

5-38

Enhance Readability of Code for Flow Charts

Convert If-Elseif-Else Code to Switch-Case Statements
When you generate code for embedded real-time targets, you can choose to
convert if-elseif-else code to switch-case statements. This conversion
can enhance readability of the code. For example, when a flow chart contains
a long list of conditions, the switch-case structure:

• Reduces the use of parentheses and braces

• Minimizes repetition in the generated code

How to Convert If-Elseif-Else Code to Switch-Case Statements
The following procedure describes how to convert generated code for the flow
chart from if-elseif-else to switch-case statements.

Step Task Reference

1 Verify that your flow chart
follows the rules for conversion.

“Verify the Contents of the Flow
Chart” on page 5-44

2 Enable the conversion. “Enable the Conversion” on page
5-45

3 Generate code for your model. “Generate Code for Your Model”
on page 5-46

4 Troubleshoot the generated code.

• If you see switch-case
statements for your flow chart,
you can stop.

• If you see if-elseif-else
statements for your flow chart,
update the chart and repeat
the previous step.

“Troubleshoot the Generated
Code” on page 5-46

Rules of Conversion
For the conversion to occur, the following rules must hold. LHS and RHS
refer to the left-hand side and right-hand side of a condition, respectively.

5-39

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Construct Rules to Follow

Flow chart Must have two or more unique conditions, in addition to a
default.

For more information, see “How the Conversion Handles
Duplicate Conditions” on page 5-40.

Must test equality only.Each
condition Must use the same variable or expression for the LHS.

Note You can reverse the LHS and RHS.

Must be a single variable or expression.

Cannot be a constant.

Must have an integer or enumerated data type.

Each LHS

Cannot have any side effects on simulation.

For example, the LHS can read from but not write to global
variables.

Must be a constant.Each RHS

Must have an integer or enumerated data type.

How the Conversion Handles Duplicate Conditions
If a flow chart has duplicate conditions, the conversion preserves only the first
condition. The code discards all other instances of duplicate conditions.

After removal of duplicates, two or more unique conditions must exist. If not,
no conversion occurs and the code contains all duplicate conditions.

5-40

Enhance Readability of Code for Flow Charts

Example of Generated Code Code After Conversion

if (x == 1) {
block1

} else if (x == 2) {
block2

} else if (x == 1) { // duplicate
block3

} else if (x == 3) {
block4

} else if (x == 1) { // duplicate
block5

} else {
block6

}

switch (x) {
case 1:
block1; break;

case 2:
block2; break;

case 3:
block4; break;

default:
block6; break;

}

if (x == 1) {
block1

} else if (x == 1) { // duplicate
block2

} else {
block3

}

No change, because only one
unique condition exists

Example of Converting Code to Switch-Case
Statements
Suppose that you have the following model with a single chart.

5-41

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The chart contains a flow chart and four MATLAB functions:

5-42

Enhance Readability of Code for Flow Charts

The MATLAB functions in the chart contain the code in the following table. In
each case, the Function Inline Option is Auto. For more information about
function inlining, see “Specify Graphical Function Properties” on page 7-32.

MATLAB Function Code

stop
function stop
%#codegen
coder.extrinsic('disp');
disp('Not moving.')

traffic_speed = 0;

slowdown
function slowdown
%#codegen
coder.extrinsic('disp')
disp('Slowing down.')

traffic_speed = 1;

accelerate
function accelerate
%#codegen
coder.extrinsic('disp');
disp('Moving along.')

traffic_speed = 2;

light
function color = light(x)
%#codegen
if (x < 20)

color = TrafficLights.GREEN;
elseif (x >= 20 && x < 25)

color = TrafficLights.YELLOW;
else

color = TrafficLights.RED;
end

5-43

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The output color of the function light uses the enumerated type
TrafficLights. The enumerated type definition in TrafficLights.m is:

classdef(Enumeration) TrafficLights < Simulink.IntEnumType
enumeration

RED(0)
YELLOW(5)
GREEN(10)

end
end

For more information, see “Define Enumerated Data in a Chart” on page 17-8.

Verify the Contents of the Flow Chart
Check that the flow chart in your chart follows all the rules in “Rules of
Conversion” on page 5-39.

Construct How the Construct Follows the Rules

Flow chart Two unique conditions exist, in addition to the default:

• [light(intersection) == RED]

• [light(intersection) == YELLOW]

Each condition Each condition:

• Tests equality

• Uses the same function call light(intersection) for
the LHS

5-44

Enhance Readability of Code for Flow Charts

Construct How the Construct Follows the Rules

Each LHS Each LHS:

• Contains a single expression

• Is the output of a function call and therefore not a
constant

• Is of enumerated type TrafficLights, which you define
in TrafficLights.m on the MATLAB path (see “Define
Enumerated Data in a Chart” on page 17-8)

• Uses a function call that has no side effects

Each RHS Each RHS:

• Is an enumerated value and therefore a constant

• Is of enumerated type TrafficLights

Enable the Conversion

1 Open the Model Configuration Parameters dialog box.

2 In the Code Generation pane, select ert.tlc for the System target file.

This step specifies an ERT-based target for your model.

3 In the Code Generation > Code Style pane, select the Convert
if-elseif-else patterns to switch-case statements check box.

Tip This conversion works on a per-model basis. If you select this check
box, the conversion applies to:

• Flow charts in all charts of a model

• MATLAB functions in all charts of a model

• All MATLAB Function blocks in that model

5-45

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Generate Code for Your Model
In the Code Generation pane of the Model Configuration Parameters dialog
box, click Build in the lower right corner.

Troubleshoot the Generated Code
The generated code for the flow chart appears something like this:

if (sf_color == RED) {
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
/* MATLAB Function 'stop': '<S1>:23' */
/* '<S1>:23:6' */
rtb_traffic_speed = 0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */

} else {
/* Transition: '<S1>:10' */
/* MATLAB Function 'light': '<S1>:19' */
if (ifelse_using_enums_U.In1 < 20.0) {

/* '<S1>:19:3' */
/* '<S1>:19:4' */
sf_color = GREEN;

} else if ((ifelse_using_enums_U.In1 >= 20.0) &&
(ifelse_using_enums_U.In1 < 25.0)) {

/* '<S1>:19:5' */
/* '<S1>:19:6' */
sf_color = YELLOW;

} else {
/* '<S1>:19:8' */
sf_color = RED;

}

if (sf_color == YELLOW) {
/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */
/* MATLAB Function 'slowdown': '<S1>:24' */
/* '<S1>:24:6' */
rtb_traffic_speed = 1;

5-46

Enhance Readability of Code for Flow Charts

/* Transition: '<S1>:16' */
} else {

/* Transition: '<S1>:17' */
/* MATLAB Function 'accelerate': '<S1>:25' */
/* '<S1>:25:6' */
rtb_traffic_speed = 2;

}
}

Because the MATLAB function light appears inlined, inequality comparisons
appear in these lines of code:

if (ifelse_using_enums_U.In1 < 20.0) {
....
} else if ((ifelse_using_enums_U.In1 >= 20.0) &&

(ifelse_using_enums_U.In1 < 25.0)) {
....

Because inequalities appear in the body of the if-elseif-else code for the
flow chart, the conversion to switch-case statements does not occur. To
prevent this behavior, do one of the following:

• Specify that the function light does not appear inlined. See “Change the
Inlining Property for the Function” on page 5-47.

• Modify the flow chart. See “Modify the Flow Chart to Ensure Switch-Case
Statements” on page 5-49.

Change the Inlining Property for the Function. If you do not want to
modify your flow chart, change the inlining property for the function light:

1 Right-click the function box for light and select Properties.

The properties dialog box appears.

2 For Function Inline Option, select Function.

3 Click OK to close the dialog box.

5-47

5 Model Logic Patterns and Iterative Loops Using Flow Charts

Note You do not have to change the inlining property for the other three
MATLAB functions in the chart. Because the flow chart does not call those
functions during evaluation of conditions, the inlining property for those
functions can remain Auto.

When you regenerate code for your model, the code for the flow chart now
appears something like this:

switch (ifelse_using_enums_light(ifelse_using_enums_U.In1)) {
case RED:
/* Transition: '<S1>:11' */
/* Transition: '<S1>:12' */
/* MATLAB Function 'stop': '<S1>:23' */
/* '<S1>:23:6' */
ifelse_using_enums_Y.Out1 = 0.0;

/* Transition: '<S1>:15' */
/* Transition: '<S1>:16' */
break;

case YELLOW:
/* Transition: '<S1>:10' */
/* Transition: '<S1>:13' */
/* Transition: '<S1>:14' */
/* MATLAB Function 'slowdown': '<S1>:24' */
/* '<S1>:24:6' */
ifelse_using_enums_Y.Out1 = 1.0;

/* Transition: '<S1>:16' */
break;

default:
/* Transition: '<S1>:17' */
/* MATLAB Function 'accelerate': '<S1>:25' */
/* '<S1>:25:6' */
ifelse_using_enums_Y.Out1 = 2.0;
break;

}

5-48

Enhance Readability of Code for Flow Charts

Because the MATLAB function light no longer appears inlined, the
conversion to switch-case statements occurs. The switch-case statements
provide the following benefits to enhance readability:

• The code reduces the use of parentheses and braces.

• The LHS expression
ifelse_using_enums_light(ifelse_using_enums_U.In1) appears only
once, minimizing repetition in the code.

Modify the Flow Chart to Ensure Switch-Case Statements. If you do
not want to change the inlining property for the function light, modify
your flow chart:

1 Add chart local data color_out with the enumerated type TrafficLights.

2 Replace each instance of light(intersection) with color_out.

3 Add the action {color_out = light(intersection)} to the default
transition of the flow chart.

5-49

5 Model Logic Patterns and Iterative Loops Using Flow Charts

The chart should now look something like this:

When you regenerate code for your model, the code for the flow chart uses
switch-case statements.

5-50

6

Build Mealy and Moore
Charts

• “Overview of Mealy and Moore Machines” on page 6-2

• “Create Mealy and Moore Charts” on page 6-5

• “Model a Vending Machine Using Mealy Semantics” on page 6-6

• “Design Considerations for Mealy Charts” on page 6-9

• “Design Considerations for Moore Charts” on page 6-13

• “Model a Traffic Light Using Moore Semantics” on page 6-21

• “Effects of Changing the Chart Type” on page 6-24

• “Debug Mealy and Moore Charts” on page 6-25

6 Build Mealy and Moore Charts

Overview of Mealy and Moore Machines

In this section...

“Semantics of Mealy and Moore Machines” on page 6-2

“Model with Mealy and Moore Machines” on page 6-3

“Default State Machine Type” on page 6-3

“Availability of Output” on page 6-3

“Advantages of Mealy and Moore Charts” on page 6-4

Semantics of Mealy and Moore Machines
Mealy and Moore are often considered the basic, industry-standard paradigms
for modeling finite-state machines. Generally in state machine models, the
next state is a function of the current state and its inputs, as follows:

X n f X n u() ((),)+ =1

In this equation:

X(n) Represents the state at time step n

X(n+1) Represents the state at the next time step n+1

u Represents inputs

State is a combination of local data and chart activity. Therefore, computing
state means updating local data and making transitions from a currently
active state to a new state. State persists from one time step to another.

In this context, Mealy and Moore machines each have well-defined semantics.

6-2

Overview of Mealy and Moore Machines

Type of
Machine

Semantics Applications

Mealy Output is a function of inputs
and state:

y g X u= (,)

Clocked synchronous
machines where state
transitions occur on clock
edges

Moore Output is a function only of
state:

y g X= ()

Clocked synchronous
machines where outputs
are modified at clock edges

You can create charts that implement pure Mealy or Moore semantics as a
subset of Stateflow chart semantics (see “Create Mealy and Moore Charts”
on page 6-5). Mealy and Moore charts can be used in simulation and code
generation of C and HDL.

Note To generate HDL code from Stateflow charts, you must use HDL
Coder™ software, which is available separately.

Model with Mealy and Moore Machines
Stateflow software ships with a model that shows how to use Mealy and
Moore machines for sequence recognition in signal processing. To open the
model, enter sf_seqrec at the MATLAB prompt.

Default State Machine Type
When you create a Stateflow chart, the default type is a hybrid state machine
model that combines the semantics of Mealy and Moore charts with the
extended Stateflow chart semantics. This default chart type is called Classic.

Availability of Output
Mealy machines compute output on transitions, while Moore machines
compute outputs in states. Therefore, Mealy charts can compute output
earlier than Moore charts — that is, at the time the chart’s default path

6-3

6 Build Mealy and Moore Charts

executes. If you enable the chart property Execute (enter) Chart At
Initialization for a Mealy chart, this computation occurs at t = 0 (first time
step); otherwise, it occurs at t = 1 (next time step). By contrast, Moore
machines can compute outputs only after the default path executes. Until
then, outputs take the default values.

Advantages of Mealy and Moore Charts
Mealy and Moore charts offer the following advantages over Classic Stateflow
charts:

• You can verify the Mealy and Moore charts you create to ensure that they
conform to their formal definitions and semantic rules. Error messages
appear at compile time (not at design time).

• Moore charts provide a more efficient implementation than Classic charts,
both for C and HDL targets.

6-4

Create Mealy and Moore Charts

Create Mealy and Moore Charts
To create a new Mealy or Moore chart, follow these steps:

1 Add a new Chart block to a Simulink model; then double-click the block to
open the Stateflow Editor.

2 Right-click in an empty area of the chart and select Properties.

The Chart Properties dialog box opens.

3 From the State Machine Type drop-down menu, select Mealy or Moore.

4 Click OK.

The chart icon updates to display the selected chart type:

Mealy Moore

5 Design your chart according to the guidelines for the chart type (see “Design
Considerations for Mealy Charts” on page 6-9 and “Design Considerations
for Moore Charts” on page 6-13.

6-5

6 Build Mealy and Moore Charts

Model a Vending Machine Using Mealy Semantics
The following chart uses Mealy semantics to model a vending machine.

Open the Model
To open the model of a Mealy vending machine, type
sf_mealy_vending_machine at the MATLAB command prompt.

6-6

Model a Vending Machine Using Mealy Semantics

Logic of the Mealy Vending Machine
In this example, the vending machine requires 15 cents to release a can of
soda. The purchaser can insert a nickel or a dime, one at a time, to purchase
the soda. The chart behaves like a Mealy machine because its output soda
depends on both the input coin and current state, as follows:

When initial state got_0 is active. No coin has been received or no coins
are left.

• If a nickel is received (coin == 1), output soda remains 0, but state
got_nickel becomes active.

• If a dime is received (coin == 2), output soda remains 0, but state got_dime
becomes active.

• If input coin is not a dime or a nickel, state got_0 stays active and no
soda is released (output soda = 0).

In active state got_nickel. A nickel was received.

• If another nickel is received (coin == 1), state got_dime becomes active,
but no can is released (soda remains at 0).

• If a dime is received (coin == 2), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If input coin is not a dime or a nickel, state got_nickel stays active and
no can is released (output soda = 0).

In active state got_dime. A dime was received.

• If a nickel is received (coin == 1), a can is released (soda = 1), the coins are
banked, and the active state becomes got_0 because no coins are left.

• If a dime is received (coin == 2), a can is released (soda = 1), 15 cents
is banked, and the active state becomes got_nickel because a nickel
(change) is left.

• If input coin is not a dime or a nickel, state got_dime stays active and no
can is released (output soda = 0).

6-7

6 Build Mealy and Moore Charts

Design Rules in Mealy Vending Machine
This example of a Mealy vending machine illustrates the following Mealy
design rules:

• The chart computes outputs in condition actions.

• There are no state actions or transition actions.

• The chart defines chart inputs (coin) and outputs (soda).

• The value of the input coin determines the output — whether or not soda
is released.

6-8

Design Considerations for Mealy Charts

Design Considerations for Mealy Charts

In this section...

“Mealy Semantics” on page 6-9

“Design Rules for Mealy Charts” on page 6-9

Mealy Semantics
To ensure that output is a function of input and state, Mealy state machines
enforce the following semantics:

• Outputs never depend on previous outputs.

• Outputs never depend on the next state.

• Chart wakes up periodically based on a system clock.

Note A chart provides one time base for input and clock (see “Calculate
Output and State Using One Time Base” on page 6-12).

• Chart must compute outputs whenever there is a change on the input port.

• Chart must compute outputs only in transitions, not in states.

Design Rules for Mealy Charts
To conform to the Mealy definition of a state machine, you must ensure that a
Mealy chart computes outputs every time there is a change on the input port.
As a result, you must follow a set of design rules for Mealy charts.

• “Compute Outputs in Condition Actions Only” on page 6-10

• “Do Not Use State Actions or Transition Actions” on page 6-10

• “Restrict Use of Data” on page 6-10

• “Restrict Use of Events” on page 6-11

• “Calculate Output and State Using One Time Base” on page 6-12

6-9

6 Build Mealy and Moore Charts

Compute Outputs in Condition Actions Only
You can compute outputs only in the condition actions of outer and inner
transitions. A common modeling style for Mealy machines is to test inputs in
conditions and compute outputs in the associated action.

Do Not Use State Actions or Transition Actions
You cannot use state actions or transition actions in Mealy charts. This
restriction enforces Mealy semantics by:

• Preventing you from computing output without considering changes on
the input port

• Ensuring that output depends on current state and not next state

Restrict Use of Data
You can define inputs, outputs, local data, parameters, and constants in
Mealy charts, but other data restrictions apply:

• “Restrict Machine-Parented Data to Constants and Parameters” on page
6-10

• “Do Not Define Data Store Memory” on page 6-11

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine,
which is the collection of all Stateflow blocks in a Simulink model. The
Stateflow machine is the highest level of the Stateflow hierarchy. When you
define data at this level, every chart in the machine can read and modify the
data. To ensure that Mealy charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.

6-10

Design Considerations for Mealy Charts

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Mealy charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Mealy charts should not access data that can change unpredictably.

Restrict Use of Events
Limit the use of events in Mealy charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Mealy charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 10-62).
Think of the change in value of a
temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Note In Mealy charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Keywords for
Implicit Events” on page 9-39).

Use local events to guard transitions

You cannot use local events in
Mealy charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Mealy
semantics that require charts to
compute outputs whenever input
changes.

6-11

6 Build Mealy and Moore Charts

Calculate Output and State Using One Time Base
You can use one time base for clock and input, as determined by the Simulink
solver (see “Solvers”). The Simulink solver sets the clock rate to be fast
enough to capture input changes. As a result, a Mealy chart commonly
computes outputs and changes states in the same time step.

6-12

Design Considerations for Moore Charts

Design Considerations for Moore Charts

In this section...

“Moore Semantics” on page 6-13

“Design Rules for Moore Charts” on page 6-13

Moore Semantics
In Moore charts, output is a function of current state only. At every time step,
a Moore chart wakes up, computes its outputs, and then evaluates its inputs
to reconfigure itself for the next time step. For example, after evaluating its
inputs, the Moore chart may take transitions to a new configuration of active
states, also called next state. However, the Moore chart must always compute
its outputs before changing state.

To ensure that output is a function only of state, Moore state machines enforce
the following semantics:

• Outputs depend only on the current state, not the next state.

• Outputs never depend on previous outputs.

• Chart must compute outputs only in states, not in transitions.

• Chart must compute outputs before updating state.

Design Rules for Moore Charts
To conform to the Moore definition of a state machine, you must ensure that
every time a Moore chart wakes up, it computes outputs from the current set
of active states without regard to input. As a result, you must follow a set of
design rules for Moore charts.

• “Compute Outputs in State Actions, Not on Transitions” on page 6-14

• “Restrict Data to Inputs, Outputs, and Constants” on page 6-16

• “Reference Input Only in Conditions” on page 6-17

• “Do Not Use Actions on Transitions” on page 6-18

• “Do Not Use Graphical Functions” on page 6-19

6-13

6 Build Mealy and Moore Charts

• “Do Not Use Truth Tables, MATLAB Functions, or Simulink Functions”
on page 6-19

• “Restrict Use of Events” on page 6-19

Compute Outputs in State Actions, Not on Transitions
To ensure that outputs depend solely on current state, you must compute
outputs in state actions, subject to the following restrictions:

• “Combine During and Exit Actions” on page 6-14

• “Allow Actions in Leaf States Only” on page 6-15

• “Do Not Label State Actions” on page 6-16

You cannot define actions on transitions because transitions almost always
depend on inputs. For example, if you compute outputs in a condition action
on a transition, the chart updates outputs whenever there is a change on the
input — a violation of Moore semantics.

Combine During and Exit Actions. For Classic charts, you can define
different types of actions in states (see “State Action Types” on page 10-2).
Each action can consist of multiple command statements. In Moore charts,
you can include only one action per state, but the chart executes the action as
both a during and an exit action. This duality ensures that the chart never
exits a state before computing its outputs because:

• The chart executes the action while the state is active and there are no
valid transitions to take (like a during action)

• The chart also executes the action just before exiting the state to take a
valid transition (like an exit action)

In other words, all active states in Moore charts compute their outputs in a
consistent way whether an outer transition is valid or not.

To implement the duality of execution, the during and exit actions must be
identical, as in this example.

6-14

Design Considerations for Moore Charts

Moore states do not differentiate between during and exit actions, as shown
here.

Note There are no labels on state actions in Moore charts (see “Do Not Label
State Actions” on page 6-16).

Allow Actions in Leaf States Only. In Moore charts, you can add actions
only to leaf states. A leaf state is a state that resides at the lowest level of
the Stateflow hierarchy and, therefore, does not parent any other states.
This restriction ensures that when you compute outputs in state actions,
the following is true:

• Outputs are not defined at multiple levels in the hierarchy with different
values.

• The same top-down semantics apply for executing Moore charts as for
Classic charts. In this way, charts compute outputs as if they evaluate
actions before inner and outer flow charts. This behavior guarantees that
the outputs will be identical for both chart types.

You can compute outputs in leaf states that have exclusive (OR) or parallel
(AND) decomposition. However, you should not compute the same outputs in

6-15

6 Build Mealy and Moore Charts

sibling parallel (AND) states because the values computed by the last state
executed will prevail, overwriting the previously computed values.

For descriptions of chart execution semantics, see “Types of Chart Execution”
on page 3-39 and Semantic Rules Summary.

Do Not Label State Actions. Do not label state actions in Moore charts
with any keywords — such as du, during, ex, or exit. State actions behave
in Moore charts as during and exit actions automatically, as explained
in “Combine During and Exit Actions” on page 6-14. Moore charts never
execute entry actions because these actions always execute as the result of a
transition and, therefore, depend on inputs.

Restrict Data to Inputs, Outputs, and Constants
You can define inputs, outputs, parameters, and constants in Moore charts,
but other data restrictions apply:

• “Do Not Define Local Data” on page 6-16

• “Restrict Machine-Parented Data to Constants and Parameters” on page
6-17

• “Do Not Define Data Store Memory” on page 6-17

Do Not Define Local Data. You cannot define local data in Moore charts.
In Classic charts, you can use local data to transfer inputs to outputs, as
in this example:

local_D = input_U;
output_Y = local_D;

However, in Moore charts, you compute outputs from current state only, but
never from local data. When a chart contains local data, it cannot easily verify
that outputs do not depend on inputs.

6-16

Design Considerations for Moore Charts

Restrict Machine-Parented Data to Constants and Parameters.
Machine-parented data is data that you define for a Stateflow machine, which
is the collection of Stateflow blocks in a Simulink model. The Stateflow
machine is the highest level of the Stateflow hierarchy. When you define
data at this level, every chart in the machine can read and modify the
data. To ensure that Moore charts do not access data that can be modified
unpredictably outside the chart, you can define only constants and parameters
at the machine level.

Note Chart parameters have constant value during simulation and code
generation.

Do Not Define Data Store Memory. You cannot define data store memory
(DSM) in Moore charts because DSM objects can be modified by objects
external to the chart. A Stateflow chart uses data store memory to share data
with a Simulink model. Data store memory acts as global data that can be
modified by other blocks and models in the Simulink hierarchy that contains
the chart. Moore charts should not access data that can change unpredictably.

Reference Input Only in Conditions
In Classic Stateflow charts, you can test inputs in conditions on transitions,
and then modify outputs in associated condition actions and transition
actions. However, in Moore charts, outputs can never depend on inputs.
Therefore, you can set up conditions on transitions that reference inputs, but
you cannot add actions to transitions that modify outputs based on those
conditions. For example, you can use these transitions in a Moore chart.

6-17

6 Build Mealy and Moore Charts

In this example, each transition tests input u in a condition, but modifies
output y in a state action.

By contrast, these transitions are illegal in a Moore chart.

Here, each transition tests input u in a condition, but modifies output y in
a condition action, based on the value of the input. This construct violates
Moore semantics and generates a compiler error. Similarly, you cannot use
transition actions in Moore charts.

Do Not Use Actions on Transitions
You cannot define condition actions or transition actions in Moore charts (see
“Reference Input Only in Conditions” on page 6-17).

6-18

Design Considerations for Moore Charts

Do Not Use Graphical Functions
You cannot use graphical functions in Moore charts. This restriction prevents
scenarios that violate Moore semantics, such as:

• Adding conditions that call functions which compute outputs as a side effect

• Adding state actions that call functions which reference inputs

Do Not Use Truth Tables, MATLAB Functions, or Simulink
Functions
You cannot use truth tables, MATLAB functions, or Simulink functions in
Moore charts. These restrictions prevent violations of Moore semantics during
chart execution.

Restrict Use of Events
Limit the use of events in Moore charts as follows:

Do: Do Not:

Use input events to trigger the chart Broadcast any type of event

Use event-based temporal logic to
guard transitions

You can use event-based temporal
logic in Moore charts because
it behaves synchronously (see
“Operators for Event-Based
Temporal Logic” on page 10-62).
Think of the change in value of a
temporal logic condition as an event
that the chart schedules internally.
Therefore, at each time step, the
chart retains its notion of state
because it knows how many ticks
remain before the temporal event
executes.

Use local events to guard transitions

You cannot use local events in
Moore charts because they are not
deterministic. These events can
occur while the chart computes
outputs and, therefore, violate Moore
semantics that require charts to
compute outputs whenever input
changes.

6-19

6 Build Mealy and Moore Charts

Do: Do Not:

Note In Moore charts, the base
event for temporal logic operators
must be a predefined event such as
tick or wakeup (see “Keywords for
Implicit Events” on page 9-39).

6-20

Model a Traffic Light Using Moore Semantics

Model a Traffic Light Using Moore Semantics
The following chart uses Moore semantics to model a traffic light:

Open the Model
To open the model of a Moore traffic light, type sf_moore_traffic_light
at the MATLAB command prompt.

Logic of the Moore Traffic Light
In this example, the traffic light model contains a Moore chart called
Light_Controller, which operates in five traffic states. Each state represents
the color of the traffic light in two opposite directions — North-South and
East-West — and the duration of the current color. The name of each state
represents the operation of the light viewed from the North-South direction.

This chart uses temporal logic to regulate state transitions. The after
operator implements a countdown timer, which initializes when the source
state is entered. By default, the timer provides a longer green light in the

6-21

6 Build Mealy and Moore Charts

East-West direction than in the North-South direction because the volume
of traffic is greater on the East-West road. The green light in the East-West
direction stays on for at least 20 clock ticks, but it can remain green as long as
no traffic arrives in the North-South direction. A sensor detects whether cars
are waiting at the red light in the North-South direction. If so, the light turns
green in the North-South direction to keep traffic moving.

The Light_Controller chart behaves like a Moore machine because it updates
its outputs based on current state before transitioning to a new state, as
follows:

When initial state Stop is active. Traffic light is red for North-South,
green for East-West.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• After 20 clock ticks, active state becomes StopForTraffic.

In active state StopForTraffic. Traffic light has been red for North-South,
green for East-West for at least 20 clock ticks.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = GREEN (East-West) based on current state.

• Checks sensor.

• If sensor indicates cars are waiting ([sens] is true) in the North-South
direction, active state becomes StopToGo.

In active state StopToGo. Traffic light must reverse traffic flow in response
to sensor.

• Sets output y1 = RED (North-South) based on current state.

• Sets output y2 = YELLOW (East-West) based on current state.

• After 3 clock ticks, active state becomes Go.

In active state Go. Traffic light has been red for North-South, yellow for
East-West for 3 clock ticks.

6-22

Model a Traffic Light Using Moore Semantics

• Sets output y1 = GREEN (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 10 clock ticks, active state becomes GoToStop.

In active state GoToStop. Traffic light has been green for North-South,
red for East-West for 10 clock ticks.

• Sets output y1 = YELLOW (North-South) based on current state.

• Sets output y2 = RED (East-West) based on current state.

• After 3 clock ticks, active state becomes Stop.

Design Rules in Moore Traffic Light
This example of a Moore traffic light illustrates the following Moore design
rules:

• The chart computes outputs in state actions.

• Actions appear in leaf states only.

• Leaf states contain no more than one action.

• The chart tests inputs in conditions on transitions.

• The chart uses temporal logic, but no asynchronous events.

• The chart defines chart inputs (sens) and outputs (y1 and y2).

6-23

6 Build Mealy and Moore Charts

Effects of Changing the Chart Type
The best practice is to not change from one Stateflow chart type to another in
the middle of development. You cannot automatically convert the semantics
of the original chart to conform to the design rules of the new chart type.
Changing type usually requires you to redesign your chart to achieve
equivalent behavior— that is, where both charts produce the same sequence
of outputs given the identical sequence of inputs. To assist you, diagnostic
messages appear at compile time (see “Debug Mealy and Moore Charts” on
page 6-25). In some cases, however, there may be no way to translate specific
behaviors without violating chart definitions.

Here is a summary of what happens when you change chart types mid-design.

From To Result

Mealy Classic Mealy charts retain their semantics when changed to
Classic type.

Classic Mealy If the Classic chart confirms to Mealy semantic rules, the
Mealy chart exhibits equivalent behavior, provided that
output is defined at every time step.

Moore Classic State actions in the Moore chart behave as entry actions
because they are not labeled. Therefore, the Classic chart
will not exhibit behavior that is equivalent to the original
Moore chart. Requires redesign.

Classic Moore Actions that are unlabeled in the Classic chart (entry
actions by default) behave as during and exit actions.
Therefore, the Moore chart will not exhibit behavior that is
equivalent to the original Classic chart. Requires redesign.

Mealy Moore

Moore Mealy

Converting between these two types does not produce
equivalent behavior because Mealy and Moore rules about
placement of actions are mutually exclusive. Requires
redesign.

6-24

Debug Mealy and Moore Charts

Debug Mealy and Moore Charts
At compile time, informative diagnostic messages appear to help you:

• Design Mealy and Moore charts from scratch

• Redesign legacy Classic charts to conform to Mealy and Moore semantics

• Redesign charts to convert between Mealy and Moore types

For example, recall the Mealy vending machine chart described in “Model a
Vending Machine Using Mealy Semantics” on page 6-6.

6-25

6 Build Mealy and Moore Charts

If you change the chart type to Moore and rebuild, you get the following
diagnostic message:

Stateflow Moore chart cannot have condition or transition actions.

This message indicates that you cannot define actions on transitions. Without
actions, you cannot compute outputs on transitions in Moore charts (see “Do
Not Use Actions on Transitions” on page 6-18). According to Moore semantics,
you must instead compute outputs in state actions (see “Design Rules for
Moore Charts” on page 6-13).

In the Mealy chart, each condition action computes output (whether or not
soda is released) based on input (the coin received). Each state represents one
of the three possible coin inputs: nickel, dime, or no coin. The Mealy chart
computes the output as it transitions to the next state. When you move this
logic out of transitions and into state actions in the Moore chart, you need
more states. The reason is that in the Moore chart, each state must represent
not only coins received, but also the soda release condition. The Moore chart
must compute output according to the active state before considering input.
As a result, there will be a delay in releasing soda, even if the machine
receives enough money to cover the cost.

The equivalent vending machine, designed as a Moore chart, is as follows.

6-26

Debug Mealy and Moore Charts

The semantics of the two charts differ as follows:

6-27

6 Build Mealy and Moore Charts

Mealy Vending Machine Moore Vending Machine

Uses 3 states Uses 5 states

Computes outputs in condition
actions

Computes outputs in state actions

Updates output based on input Updates output before evaluating
input, requiring an extra time step
to produce the soda

For this vending machine, Mealy is a better modeling paradigm because there
is no delay in releasing soda once sufficient coins are received. By contrast,
the Moore vending machine requires an extra time step to pass before
producing soda. Since the Moore vending machine accepts a nickel, a dime,
or no coin in a given time step, it is possible that the soda will be produced
in a time step in which a coin is accepted toward the next purchase. In this
situation, the delivery of a soda may appear to be in response to this coin, but
actually occurs because the vending machine received the purchase price in
previous time steps.

6-28

7

Techniques for
Streamlining Chart Design

• “Record State Activity Using History Junctions” on page 7-2

• “Encapsulate Modal Logic Using Subcharts” on page 7-6

• “Move Between Levels of Hierarchy Using Supertransitions” on page 7-12

• “Define a Graphical Function” on page 7-25

• “Manage Large Graphical Functions” on page 7-29

• “Call Graphical Functions in States and Transitions” on page 7-31

• “Specify Graphical Function Properties” on page 7-32

• “Reuse Logic Patterns Using Graphical Functions” on page 7-35

• “Export Functions for Reuse in Other Charts” on page 7-37

• “Group Chart Objects Using Boxes” on page 7-44

• “Reuse Functions with an Atomic Box” on page 7-51

• “Add Descriptive Comments in a Chart” on page 7-58

7 Techniques for Streamlining Chart Design

Record State Activity Using History Junctions

In this section...

“What Is a History Junction?” on page 7-2

“Create a History Junction” on page 7-2

“Change History Junction Size” on page 7-3

“Change History Junction Properties” on page 7-3

What Is a History Junction?
A history junction records the activity of substates inside superstates. Use
a history junction in a chart or superstate to indicate that its last active
substate becomes active when the chart or superstate becomes active.

Create a History Junction
To create a history junction, do the following:

1 In the editor toolbar, click the History Junction icon:

2 Move your pointer into the chart.

3 Click to place a history junction inside the state whose last active substate
it records.

To create multiple history junctions, do the following:

1 In the editor toolbar, double-click the History Junction icon.

The button is now in multiple-object mode.

2 Click anywhere in the drawing area to place a history junction.

3 Move to and click another location to create an additional history junction.

4 Click the History Junction icon or press the Esc key to cancel the operation.

7-2

Record State Activity Using History Junctions

To move a history junction to a new location, click and drag it to the new
position.

Change History Junction Size
To change the size of junctions:

1 Select the history junctions whose size you want to change.

2 Right-click one of the junctions and select Junction Size.

3 Select a size from the list of junction sizes.

Change History Junction Properties
To edit the properties for a junction:

1 Right-click a junction and select Properties.

The History Junction dialog box appears.

7-3

7 Techniques for Streamlining Chart Design

2 Edit the fields in the properties dialog box.

Field Description

Parent Parent of this history junction; read-only; click
the hypertext link to bring the parent to the
foreground.

Description Textual description/comment.

Document Link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

3 When finished editing, click one of the following buttons:

• Apply to save the changes

• Cancel to cancel any changes

7-4

Record State Activity Using History Junctions

• OK to save the changes and close the dialog box

• Help to display the Stateflow online help in an HTML browser window

7-5

7 Techniques for Streamlining Chart Design

Encapsulate Modal Logic Using Subcharts

In this section...

“What Is a Subchart?” on page 7-6

“Create a Subchart” on page 7-7

“Rules of Subchart Conversion” on page 7-7

“Convert a State to a Subchart” on page 7-7

“Manipulate Subcharts as Objects” on page 7-9

“Open a Subchart” on page 7-9

“Edit a Subchart” on page 7-10

“Navigate Subcharts” on page 7-10

What Is a Subchart?
A subchart is a graphical object that can contain anything a top-level chart
can, including other subcharts. A subchart, or a subcharted state, is a
superstate of the states that it contains. You can nest subcharts to any level
in your chart design.

Using subcharts, you can reduce a complex chart to a set of simpler,
hierarchically organized units. This design makes the chart easier to
understand and maintain, without changing the chart behavior. Subchart
boundaries do not apply during simulation and code generation.

The subchart appears as a block with its name in the block center. However,
you can define actions and default transitions for subcharts just as you
can for superstates. You can also create transitions to and from subcharts
just as you can create transitions to and from superstates. You can create
transitions between states residing outside a subchart and any state within
a subchart. The term supertransition refers to a transition that crosses
subchart boundaries in this way. See “Move Between Levels of Hierarchy
Using Supertransitions” on page 7-12 for more information.

Subcharts define a containment hierarchy within a top-level chart. A
subchart or top-level chart is the parent of the states it contains at the first

7-6

Encapsulate Modal Logic Using Subcharts

level and an ancestor of all the subcharts contained by its children and their
descendants at lower levels.

Some subcharts can become atomic units if they meet certain modeling
requirements. For more information, see “Restrictions for Converting to
Atomic Subcharts” on page 13-11.

Create a Subchart
You create a subchart by converting an existing state, box, or graphical
function into the subchart. The object to convert can be one that you create
for making a subchart or an existing object whose contents you want to turn
into a subchart.

To convert a new or existing state, box, or graphical function to a subchart:

1 Right-click the object and select Group & Subchart > Subchart.

2 Confirm that the object now appears as a subchart.

To convert the subchart back to its original form, right-click the subchart. In
the context menu, select Group & Subchart > Subchart.

Rules of Subchart Conversion
When you convert a box to a subchart, the subchart retains the attributes of
a box. For example, the position of the resulting subchart determines its
activation order in the chart if implicit ordering is enabled (see “Group Chart
Objects Using Boxes” on page 7-44 for more information).

You cannot undo the operation of converting a subchart back to its original
form. When you perform this operation, the undo and redo buttons are
disabled from undoing and redoing any prior operations.

Convert a State to a Subchart
Suppose that you have the following chart:

7-7

7 Techniques for Streamlining Chart Design

1 To convert the On state to a subchart, right-click the state and select Group
& Subchart > Subchart.

2 Confirm that the On state now appears as a subchart.

7-8

Encapsulate Modal Logic Using Subcharts

Manipulate Subcharts as Objects
Subcharts also act as individual objects. You can move, copy, cut, paste,
relabel, and resize subcharts as you would states and boxes. You can also
draw transitions to and from a subchart and any other state or subchart at
the same or different levels in the chart hierarchy (see “Move Between Levels
of Hierarchy Using Supertransitions” on page 7-12).

Open a Subchart
Opening a subchart allows you to view and change its contents. To open
a subchart, do one of the following:

• Double-click anywhere in the box that represents the subchart.

• Select the box representing the subchart and press the Enter key.

7-9

7 Techniques for Streamlining Chart Design

Edit a Subchart
After you open a subchart (see “Open a Subchart” on page 7-9), you can
perform any editing operation on its contents that you can perform on a
top-level chart. This means that you can create, copy, paste, cut, relabel, and
resize the states, transitions, and subcharts in a subchart. You can also group
states, boxes, and graphical functions inside subcharts.

You can also cut and paste objects between different levels in your chart. For
example, to copy objects from a top-level chart to one of its subcharts, first
open the top-level chart and copy the objects. Then open the subchart and
paste the objects into the subchart.

Transitions from outside subcharts to states or junctions inside subcharts
are called supertransitions. You create supertransitions differently than
you do ordinary transitions. See “Move Between Levels of Hierarchy Using
Supertransitions” on page 7-12 for information on creating supertransitions.

Navigate Subcharts
The Stateflow Editor toolbar contains a set of buttons for navigating the
subchart hierarchy of a chart.

Tool Description

If the Stateflow Editor is displaying a subchart, clicking this
button replaces the subchart with the subchart’s parent in
the Stateflow Editor. If the Stateflow Editor is displaying a
top-level chart, clicking this button replaces the chart with the
Simulink model window containing that chart.

Clicking this button shows the chart that you visited before the
current chart, so that you can navigate up the hierarchy.

Clicking this button shows the chart that you visited after
visiting the current chart, so that you can navigate down the
hierarchy.

7-10

Encapsulate Modal Logic Using Subcharts

Note You can also use the Escape key to navigate up to the parent object for
a subcharted state, box, or function.

7-11

7 Techniques for Streamlining Chart Design

Move Between Levels of Hierarchy Using Supertransitions

In this section...

“What Is a Supertransition?” on page 7-12

“Draw a Supertransition Into a Subchart” on page 7-15

“Draw a Supertransition Out of a Subchart” on page 7-19

“Label Supertransitions” on page 7-23

What Is a Supertransition?
A supertransition is a transition between different levels in a chart, for
example, between a state in a top-level chart and a state in one of its
subcharts, or between states residing in different subcharts at the same or
different levels in a chart. You can create supertransitions that span any
number of levels in your chart, for example, from a state at the top level to a
state that resides in a subchart several layers deep in the chart.

7-12

Move Between Levels of Hierarchy Using Supertransitions

The point where a supertransition enters or exits a subchart is called a slit.
Slits divide a supertransition into graphical segments. For example, the
following chart shows a supertransition leaving the On subchart:

7-13

7 Techniques for Streamlining Chart Design

The same supertransition appears inside the subchart as follows:

In this example, supertransition [Heater.On.warm()] goes from NORM in
the On subchart to the Off state in the parent chart. Both segments of the
supertransition have the same label.

7-14

Move Between Levels of Hierarchy Using Supertransitions

Draw a Supertransition Into a Subchart
Use the following steps to draw a supertransition from an object outside a
subchart to an object inside the subchart.

Note You cannot undo the operation of drawing a supertransition. When you
perform this operation, the undo and redo buttons are disabled from undoing
and redoing any prior operations.

1 Position your cursor over the border of the state.

The cursor assumes the crosshairs shape.

2 Drag the mouse just inside the border of the subchart.

A supertransition appears, extending from the source state into the
subchart with its arrowhead penetrating a slit in the subchart.

7-15

7 Techniques for Streamlining Chart Design

If you are not happy with the initial position of the slit, you can continue to
drag the slit around the inside edge of the subchart to the desired location.

3 Double-click the subchart to open it.

The tip of the arrowhead of the supertransition appears highlighted in
red, entering the subchart.

7-16

Move Between Levels of Hierarchy Using Supertransitions

4 Position your cursor over the arrowhead.

The cursor becomes an arrow.

5 Drag the cursor to the desired position in the subchart.

7-17

7 Techniques for Streamlining Chart Design

6 Release the cursor.

The supertransition terminates in the desired location.

7-18

Move Between Levels of Hierarchy Using Supertransitions

Draw a Supertransition Out of a Subchart
Use the following steps to draw a supertransition out of a subchart.

1 Draw an inner transition segment from the source object anywhere just
outside the border of the subchart

A slit appears as shown.

7-19

7 Techniques for Streamlining Chart Design

2 Navigate up to the parent object by selecting View > Navigate > Up to
Parent.

The tip of the arrowhead of the supertransition appears highlighted in red,
exiting the subchart.

7-20

Move Between Levels of Hierarchy Using Supertransitions

3 Position your cursor over the arrowhead.

The cursor becomes an arrow.

4 Drag the cursor to the desired position in the chart.

The parent of the subchart appears.

7-21

7 Techniques for Streamlining Chart Design

5 Release the cursor to complete the connection.

7-22

Move Between Levels of Hierarchy Using Supertransitions

Note If the parent chart is itself a subchart and the terminating object
resides at a higher level in the subchart hierarchy, repeat these steps
until you reach the desired parent. In this way, you can connect objects
separated by any number of layers in the subchart hierarchy.

Label Supertransitions
A supertransition is displayed with multiple resulting transition segments for
each layer of containment traversed. For example, if you create a transition
between a state outside a subchart and a state inside a subchart of that
subchart, you create a supertransition with three segments, each displayed at
a different containment level.

7-23

7 Techniques for Streamlining Chart Design

You can label any one of the transition segments constituting a supertransition
using the same procedure used to label a regular transition (see “Label
Transitions” on page 4-23). The resulting label appears on all the segments
that constitute the supertransition. Also, if you change the label on any one of
the segments, the change appears on all segments.

7-24

Define a Graphical Function

Define a Graphical Function

Create a Graphical Function
Use these steps to create a graphical function in your chart:

1 Click the graphical function icon in the editor toolbar:

2 Move your pointer to the location for the new graphical function in your
chart and click to insert the function box.

3 Enter the function signature.

The function signature specifies a name for your function and the formal
names for its arguments and return values. A signature has this syntax:

[r1, r2,..., rn] = func(a1,a2,..., an)

where func is the name of your function, a1, a2, ..., an are formal names for
its arguments, and r1, r2, ..., rn are formal names for its return values.

Note You can define arguments and return values as scalars, vectors,
or 2-D matrices of any data type.

4 Click outside of the function box.

The following signature is for a graphical function that has the name f1, which
takes three arguments (a, b, and c) and returns three values (x, y, and z).

7-25

7 Techniques for Streamlining Chart Design

Note In the chart, you can change the signature of your graphical function
at any time. After you edit the signature, the Model Explorer updates to
reflect the changes.

Program a Graphical Function
To program a graphical function, follow these steps:

1 Click the default transition icon in the editor toolbar:

2 Move your pointer inside the function box in your chart and click to insert
the default transition and its terminating junction.

3 Enter transition conditions and actions for your graphical function. If
necessary, add connective junctions and transitions to your function.

Note Connective junctions and transitions are the only graphical elements
you can use in a graphical function. Because a graphical function must
execute completely when you call it, you cannot use states.

This function box shows a flow chart that returns different products of its
arguments.

Define Graphical Function Data
You must define the data in your graphical function:

7-26

Define a Graphical Function

1 Open the Model Explorer.

2 Expand the chart object in the Model Explorer, so that you can see the
return values and arguments of the function signature as data items that
belong to your graphical function.

The Scope column in the Model Explorer indicates the role of each
argument or return value. Arguments have the scope Input, and return
values have the scope Output.

3 For each function argument and return value, right-click the data row in
the Model Explorer and select Properties from the context menu.

4 In the Data properties dialog box for each argument and return value,
specify the data properties.

These rules apply:

• Each argument and return value can be a scalar or matrix of values.

• Arguments cannot have initial values.

7-27

7 Techniques for Streamlining Chart Design

5 Create any additional data items that your function must have to process
its programming.

Your function can access its own data or data belonging to parent states or
the chart. The data items that you create for the function itself can have
one of these scopes:

• Local

Local data persists from one function call to the next.

• Temporary

Temporary data initializes at the start of every function call.

• Constant

Constant data retains its initial value through all function calls.

Note You can initialize your function data (other than arguments and
return values) from the MATLAB workspace. However, you can save only
local items to this workspace.

7-28

Manage Large Graphical Functions

Manage Large Graphical Functions
You can make your graphical function as large as you want, as shown below.

However, if your function grows too large, you can hide its contents
by right-clicking inside the function box and selecting Group &
Subchart > Subchart from the context menu. This option makes your
graphical function opaque.

7-29

7 Techniques for Streamlining Chart Design

To access the programming of your subcharted graphical function,
double-click the function box. This action dedicates the entire chart window
to programming your function.

To access your original chart, click the Back button .

7-30

Call Graphical Functions in States and Transitions

Call Graphical Functions in States and Transitions

Syntax
Syntax for a function call is the same as that of a function signature, with
actual arguments replacing the formal ones specified in a signature. If the
data types of the actual and formal argument differ, a function casts the
actual argument to the type of the formal argument. See “Create a Graphical
Function” on page 7-25 for information about syntax for a function signature.

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion. For
more information, see “How Scalar Expansion Works for Functions” on page
15-6.

Example
In this example, a state entry action calls a graphical function that returns
three products.

7-31

7 Techniques for Streamlining Chart Design

Specify Graphical Function Properties
You can set general properties for your graphical function through its
properties dialog box:

1 Right-click your graphical function box.

2 Select Properties from the context menu.

The properties dialog box for your graphical function appears.

The fields in the General tab of the properties dialog box are:

7-32

Specify Graphical Function Properties

Field Description

Name Click this read-only function name to bring your
function to the foreground in its native chart.

Breakpoints Select Function Call to set a breakpoint that pauses
simulation when your graphical function executes.

Function Inline
Option

Select one of these options to control the inlining of
your function in generated code:

• Auto
Decides whether or not to inline your function
based on an internal calculation.

• Inline
Inlines your function as long as you do not export it
to other charts, and it is not part of a recursion. (A
recursion exists if your function calls itself directly
or indirectly through another function call.)

• Function
Does not inline your function.

Label Specify the signature label for your function in this
field. See “Create a Graphical Function” on page 7-25
for more information.

The fields in the Documentation tab of the properties dialog box are:

7-33

7 Techniques for Streamlining Chart Design

Field Description

Description Enter a textual description or comment.

Document link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

7-34

Reuse Logic Patterns Using Graphical Functions

Reuse Logic Patterns Using Graphical Functions

In this section...

“What Is a Graphical Function?” on page 7-35

“Why Use a Graphical Function in a Stateflow Chart?” on page 7-35

“Where to Use a Graphical Function” on page 7-35

What Is a Graphical Function?
A graphical function in a Stateflow chart is a graphical element that helps
you reuse control-flow logic and iterative loops. This function is a program
you write with flow charts using connective junctions and transitions. You
create a graphical function, fill it with a flow chart, and call the function in
the actions of states and transitions.

Why Use a Graphical Function in a Stateflow Chart?
This function helps you to:

• Create modular, reusable logic that you can call anywhere in your chart.

• Track simulation behavior visually during chart animation.

Where to Use a Graphical Function
A graphical function can reside anywhere in a chart, state, or subchart.
The location of a function determines its scope, that is, the set of states and
transitions that can call the function. Follow these guidelines:

• If you want to call the function only within one state or subchart and its
substates, put your graphical function in that state or subchart. That
function overrides any other functions of the same name in the parents and
ancestors of that state or subchart.

• If you want to call the function anywhere in that chart, put your graphical
function at the chart level.

• If you want to call the function from any chart in your model, put your
graphical function at the chart level and enable exporting of chart-level

7-35

7 Techniques for Streamlining Chart Design

graphical functions. For instructions, see “Export Functions for Reuse in
Other Charts” on page 7-37.

7-36

Export Functions for Reuse in Other Charts

Export Functions for Reuse in Other Charts

In this section...

“Why Export Chart-Level Functions?” on page 7-37

“How to Export Chart-Level Functions” on page 7-37

“Rules for Exporting Chart-Level Functions” on page 7-37

“Export Chart-Level Functions” on page 7-38

Why Export Chart-Level Functions?
When you export chart-level functions, you extend the scope of your functions
to all other charts in your model.

How to Export Chart-Level Functions
To export functions for reuse in other charts:

1 Open the chart where your function resides.

2 Open the Chart properties dialog box.

3 Select Export Chart Level Functions (Make Global).

4 If your function resides in a library chart, link that chart to your main
model.

Rules for Exporting Chart-Level Functions

Link library charts to your main model to export chart-level functions
from libraries
You must perform this step to export functions from library charts. Otherwise,
a simulation error occurs.

7-37

7 Techniques for Streamlining Chart Design

Do not export chart-level functions that contain unsupported inputs
or outputs

You cannot export a chart-level function when inputs or outputs have any
of the following properties:

• Fixed-point data type with word length greater than 32 bits

• Variable size

Do not export Simulink functions

If you try to export Simulink functions, an error appears when you simulate
your model. To avoid this behavior, clear the Export Chart Level
Functions (Make Global) check box in the Chart properties dialog box.

Export Chart-Level Functions
This example describes how to export functions in library charts to your
main model.

1 Create these objects:

• Add a model named main_model, with a chart named modChart.

• Add a library model named lib1, with a chart named lib1Chart.

• Add a library model named lib2, with a chart named lib2Chart.

7-38

Export Functions for Reuse in Other Charts

2 Create these graphical functions in the library charts:

• For lib1Chart, add this graphical function.

• For lib2Chart, add this graphical function.

3 For modChart, add a graphical function and a default transition with a
lib1_func action.

7-39

7 Techniques for Streamlining Chart Design

4 For each chart, follow these steps:

a Open the Chart properties dialog box.

b In the Chart properties dialog box, select Export Chart Level
Functions (Make Global).

c Click OK.

5 Drag lib1Chart and lib2Chart into main_model from lib1 and lib2,
respectively. Your main model should look something like this:

Each chart now defines a graphical function that any chart in main_model
can call.

6 Open the Model Explorer.

7 In the Model Hierarchy pane of the Model Explorer, navigate to
main_model.

8 Add the data x and y to the Stateflow machine:

a Select Add > Data.

7-40

Export Functions for Reuse in Other Charts

b In the Name column, enter x.

c In the Initial Value column, enter 0.

d Use the default settings for other properties of x.

e Select Add > Data.

f In the Name column, enter y.

g In the Initial Value column, enter 1.

h Use the default settings for other properties of y.

This step ensures that input and output data are defined globally to
support exported graphical functions.

9 Open the Model Configuration Parameters dialog box.

10 In the Model Configuration Parameters dialog box, go to the Solver pane.

11 In the Solver options section, make these changes:

a For Type, select Fixed-step.

b For Solver, select Discrete (no continuous states).

c For Fixed-step size, enter 1.

d Click OK.

This step ensures that when you simulate your model, a discrete solver is
used. For more information, see “Solvers” in the Simulink documentation.

What Happens During Simulation
When you simulate the model, these actions take place during each time step.

7-41

7 Techniques for Streamlining Chart Design

Phase The object... Calls the
graphical
function...

Which...

1 modChart lib1_func Reads two input
arguments x and
y

2 lib1_func lib2_func Passes the two
input arguments

3 lib2_func mod_func Adds x and y and
assigns the sum
to x

How to View the Simulation Results
To view the simulation results, add a scope to your model. Follow these steps:

1 Open the Simulink Library Browser.

2 From the Simulink/Sinks Library, select the Scope block and add it to
main_model.

3 Open the Model Explorer.

4 In the Model Hierarchy pane, navigate to modChart.

5 Add the output data z to the chart:

a Select Add > Data.

b In the Name column, enter z.

c In the Scope column, select Output.

d Use the default settings for other properties.

6 For modChart, update the default transition action to read as follows:

{x = lib1_func(x,y); z = x;}

7 In the model, connect the outport from modChart to the inport of the Scope
block.

7-42

Export Functions for Reuse in Other Charts

8 Double-click the Scope block to open the display.

9 Start simulation.

10 After the simulation ends, right-click in the scope display and select
Autoscale.

The results look something like this:

7-43

7 Techniques for Streamlining Chart Design

Group Chart Objects Using Boxes

In this section...

“When to Use Boxes” on page 7-44

“Semantics of Stateflow Boxes” on page 7-44

“Rules for Using Boxes” on page 7-45

“Draw and Edit a Box” on page 7-45

“Examples of Using Boxes” on page 7-47

When to Use Boxes
Use a Stateflow box to organize graphical objects in your chart.

Semantics of Stateflow Boxes

Visibility of Graphical Objects in Boxes
Boxes add a level of hierarchy to Stateflow charts. This property affects
visibility of functions and states inside a box to objects that reside outside
of the box. If you refer to a box-parented function or state from a location
outside of the box, you must include the box name in the path. See “Group
Functions Using a Box” on page 7-47.

Activation Order of Parallel States
Boxes affect the implicit activation order of parallel states in a chart. If your
chart uses implicit ordering, parallel states within a box wake up before
other parallel states that are lower or to the right in that chart. Within a
box, parallel states wake up in top-down, left-right order. See “Group States
Using a Box” on page 7-48.

Note To specify activation order explicitly on a state-by-state basis, select
User specified state/transition execution order in the Chart properties
dialog box. This option is selected by default when you create a new chart.
For details, see “Explicit Ordering of Parallel States” on page 3-74.

7-44

Group Chart Objects Using Boxes

Rules for Using Boxes
When you use a box, these rules apply:

• Include the box name in the path when you use dot notation to refer to a
box-parented function or state from a location outside of the box.

• You can move or draw graphical objects inside a box, such as functions
and states.

• You can add data to a box so that all the elements in the box can share
the same data.

• You can group a box and its contents into a single graphical element. See
“Group States” on page 4-8.

• You can subchart a box to hide its elements. See “Encapsulate Modal Logic
Using Subcharts” on page 7-6.

• You cannot define action statements for a box, such as entry, during,
and exit actions.

• You cannot define a transition to or from a box. However, you can define a
transition to or from a state within a box.

Draw and Edit a Box

Create a Box
You create boxes in your chart by using the box tool shown below.

7-45

7 Techniques for Streamlining Chart Design

1 Click the Box tool.

2 Move your pointer into the drawing area.

7-46

Group Chart Objects Using Boxes

3 Click in any location to create a box.

The new box appears with a question mark (?) name in its upper left
corner.

4 Click the question mark label.

5 Enter a name for the box and then click outside of the box.

Delete a Box
To delete a box, click to select it and press the Delete key.

Examples of Using Boxes

Group Functions Using a Box
This chart shows a box named Status that groups together MATLAB
functions.

Chart execution takes place as follows:

1 The state Cold activates first.

2 Upon entry, the state Cold invokes the function Status.msgCold.

7-47

7 Techniques for Streamlining Chart Design

This function displays a status message that the temperature is cold.

Note Because the MATLAB function resides inside a box, the path of the
function call must include the box name Status. If you omit this prefix,
an error message appears.

3 If the value of the input data temp exceeds 80, a transition to the state
Warm occurs.

4 Upon entry, the state Warm invokes the function Status.msgWarm.

This function displays a status message that the temperature is warm.

Note Because the MATLAB function resides inside a box, the path of the
function call must include the box name Status. If you omit this prefix,
an error message appears.

5 If the value of the input data temp drops below 60, a transition to the state
Cold occurs.

6 Steps 2 through 5 repeat until the simulation ends.

Group States Using a Box
This chart shows a box named Status that groups together related states. The
chart uses implicit ordering for parallel states, instead of the default explicit
mode. (For details, see “Implicit Ordering of Parallel States” on page 3-75.)

7-48

Group Chart Objects Using Boxes

The main ideas of this chart are:

• The state Temp wakes up first, followed by the state Wind_Chill. Then,
the state Monitor wakes up.

7-49

7 Techniques for Streamlining Chart Design

Note This implicit activation order occurs because Temp and Wind_Chill
reside in a box. If you remove the box, the implicit activation order changes,
as shown, to: Temp, Monitor, Wind_Chill.

• Based on the input data temp, transitions between substates occur in the
parallel states Status.Temp and Status.Wind_Chill.

• When the transition from Status.Temp.Cold to Status.Temp.Warm occurs,
the transition condition in(Status.Temp.Warm) becomes true.

• When the transition from Status.Temp.Warm to Status.Temp.Cold occurs,
the transition condition in(Status.Temp.Cold) becomes true.

Note Because the substates Status.Temp.Cold and Status.Temp.Warm
reside inside a box, the argument of the in operator must include the
box name Status. If you omit this prefix, an error message appears. For
information about the in operator, see “Check State Activity” on page 10-94.

7-50

Reuse Functions with an Atomic Box

Reuse Functions with an Atomic Box

In this section...

“What Is an Atomic Box?” on page 7-51

“Rationale for Using an Atomic Box” on page 7-51

“How to Reuse Functions with an Atomic Box” on page 7-52

“Example of Reusing a Timer Function Multiple Times” on page 7-52

What Is an Atomic Box?
An atomic box behaves in the same way as a regular Stateflow box but with a
few differences:

• You can reuse an atomic box across multiple charts and models.

• An atomic box cannot contain states, only functions (graphical, truth table,
MATLAB, and Simulink).

Use an atomic box to reuse functions in the same way that you use an atomic
subchart to reuse states. For more information about atomic subcharts, see
“What Is an Atomic Subchart?” on page 13-2.

Rationale for Using an Atomic Box
Suppose that you have a library model that contains a set of functions for use
in multiple charts in a model. The functions reside in the library model to
enable easier configuration management.

Models that use these functions can appear as referenced blocks in a top
model. However, when the functions are exported functions of a Stateflow
chart, you can use only one instance of that referenced block per top model.
For a complete list of model referencing limitations, see “Limitations on All
Model Referencing” in the Simulink documentation.

With atomic boxes, you can avoid the limitation due to exported functions.
You can reuse models with these functions multiple times as referenced
blocks in a top model.

7-51

7 Techniques for Streamlining Chart Design

How to Reuse Functions with an Atomic Box
To reuse functions across multiple models:

1 Create a library model with an atomic box that contains the function you
want to reuse.

2 Create a separate model with multiple charts.

a In each chart that calls the function, add a linked atomic box.

b Write each call to the function using the full path:

linked_box_name.function_name

Using the full path for the function call has the following advantages:

• Makes clear the dependency on the function in the linked atomic box

• Avoids pollution of the global namespace

• Does not affect efficiency of the generated code

3 Reuse that model multiple times as referenced blocks in a top model.

Because there are no exported functions in the charts, you can use more
than one instance of that referenced block in the top model.

Example of Reusing a Timer Function Multiple Times
Suppose that you want to reuse a timer function that returns the simulation
time. The following procedure shows how you can:

• Call the timer function from multiple locations in a model.

• Reuse that model multiple times in another model.

1 Store the timer function you want to reuse in a library model.

a Create a new library named libTimerUtils.

7-52

Reuse Functions with an Atomic Box

b Add a chart named TimerUtils to the library:

c In your chart, add the following graphical function:

The function GetTime returns one output tout that corresponds to
simulation time t. For more information about literal symbols you can
use in your chart, see “Supported Symbols in Actions” on page 10-28.

d Save libTimerUtils.

2 Develop a separate model with multiple charts that use the timer function.

a Create a new model named ex_timer_function_calls.

b Add two charts, Chart1 and Chart2, to the model.

7-53

7 Techniques for Streamlining Chart Design

c In each chart, add two states, two transitions, and a linked atomic box:

To add the linked atomic box, copy the TimerUtils library chart and
paste it below state A. Name the linked atomic box as Time.

When you copy and paste a library chart that contains only functions
and no states, you get a linked atomic box. If the library chart contains
any states, you get a linked atomic subchart.

d In Chart1, add the following state action and transition condition:

Upon entry to state A, the call to GetTime returns the simulation time.
The transition from state A to B occurs when more than 5 seconds of
simulation time passes.

7-54

Reuse Functions with an Atomic Box

e In Chart2, add the following state action and transition condition:

Upon entry to state A, the call to GetTime returns the simulation time.
The transition from state A to B occurs when more than 7 seconds of
simulation time passes.

f In each chart, add local data with the following properties:

Property Value

Name t0

Scope Local

Type double

g In each chart, open the State properties dialog box for B and select
Create Output port for monitoring:. Click OK.

This step adds an output data named B that is Boolean. The value is 1
when state B is active and 0 otherwise. For more information, see “About
Active State Output” on page 21-38.

h In your model, add two Outport blocks, Out1 and Out2. Then connect
each block to the corresponding output of each chart.

7-55

7 Techniques for Streamlining Chart Design

Your model should look something like this:

i Configure your model to meet referencing requirements:

i Open the Model Configuration Parameters dialog box and navigate to
the Optimization > Signals and Parameters pane.

ii Select Inline parameters.

For more information about model referencing requirements,
see “Configuration Parameter Requirements” in the Simulink
documentation.

j Save ex_timer_function_calls.

3 Reuse the timer function in multiple referenced blocks of a top model.

a Create a new model named ex_modelref_utility_functions.

b Add two Model blocks that reference ex_timer_function_calls.

7-56

Reuse Functions with an Atomic Box

c Add four Outport blocks and connect them as follows:

d Save ex_modelref_utility_functions.

7-57

7 Techniques for Streamlining Chart Design

Add Descriptive Comments in a Chart

In this section...

“Create Notes” on page 7-58

“Change Note Properties” on page 7-58

“Change Note Font and Color” on page 7-58

“TeX Instructions” on page 7-59

Create Notes
You can enter comments or notes in any location on the chart.

1 Double-click in the desired location of the chart and start typing your
comments.

2 Press the Return key to start a new line.

3 After you finish typing, click outside the note text.

Change Note Properties
You can use the Note properties dialog box to edit note properties.

You can specify the layout of the note, including:

• Borders

• Text alignment and word wrap

• Text color and background color

• Margins between the text and the borders of the note

Change Note Font and Color
To change font and color for your chart notes, follow the procedures described
in the section “Specify Colors and Fonts in a Chart” on page 4-35.

You can also change your note text to bold or italic:

7-58

Add Descriptive Comments in a Chart

1 Right-click the note text and select Font Style.

2 In the submenu, select Bold or Italic.

TeX Instructions
In your notes, you can use a subset of TeX commands embedded in the string
to produce special characters. For example, you can embed Greek letters
and mathematical symbols.

1 Right-click the text of a note and select Enable TeX Commands.

2 Click the note text.

3 Replace the existing note text with the following expression.

\it{\omega_N = e^{(-2\pii)/N}}

4 Click outside the note.

The note in your chart looks something like this:

7-59

7 Techniques for Streamlining Chart Design

7-60

8

Define Data

• “Add Data” on page 8-2

• “Set Data Properties” on page 8-5

• “Share Data with Simulink and MATLAB Workspace” on page 8-30

• “Share Global Data with Multiple Charts” on page 8-35

• “Type Stateflow Data” on page 8-42

• “Size Stateflow Data” on page 8-51

• “Handle Integer Overflow for Chart Data” on page 8-57

• “Define Temporary Data” on page 8-62

• “Identify Data Using Dot Notation” on page 8-63

• “Resolve Data Properties from Simulink Signal Objects” on page 8-69

• “Best Practices for Using Data in Charts” on page 8-74

• “Transfer Data Across Models” on page 8-76

8 Define Data

Add Data

In this section...

“When to Add Data” on page 8-2

“Where You Can Use Data” on page 8-2

“Diagnostic for Detecting Unused Data” on page 8-2

“Add Data Using the Stateflow Editor” on page 8-3

“How to Add Data Using the Model Explorer” on page 8-3

When to Add Data
Add data when you want to store values that are visible at a specific level
of the Stateflow hierarchy.

Where You Can Use Data
You can store and retrieve data that resides internally in the Stateflow
workspace, and externally in the Simulink model or application that embeds
the chart. Actions in your chart can refer to internal and external data.

Data defined in a Stateflow chart can be used by multiple Stateflow objects in
the chart, such as states, MATLAB functions and truth tables. Stateflow data
is not available to Simulink functions within Stateflow.

Diagnostic for Detecting Unused Data
If you have unused data in your chart, a warning appears during simulation
with a list of data you can remove. By removing objects that have no effect on
simulation, you can reduce the size of your model. This diagnostic checks for
usage of Stateflow data, except for the following types:

• Machine-parented data

• Inputs and outputs of MATLAB functions

• Data of parameter scope in a chart that contains atomic subcharts

8-2

Add Data

After you select data for removal, a dialog box confirms your choice. In this
dialog box, you can specify that other deletions occur without confirmation.
If you prevent the confirmation dialog box from appearing, you can reenable
it at any time by typing at the command prompt:

sfpref('showDeleteUnusedConfGui', 1)

You can control the level of diagnostic action for unused data in the
Diagnostics > Stateflow pane of the Model Configuration Parameters
dialog box. For more information, see the documentation for the “Unused
data and events” diagnostic.

Add Data Using the Stateflow Editor

1 Based on the desired scope for the new data, select one of the following
options:

Scope Menu Option

Input Chart > Add Inputs & Outputs > Data Input From
Simulink

Output Chart > Add Inputs & Outputs > Data Output To
Simulink

Local Chart > Add Other Elements > Local Data

Constant Chart > Add Other Elements > Constant

Parameter Chart > Add Other Elements > Parameter

Data Store
Memory

Chart > Add Other Elements > Data Store Memory

The Data properties dialog box appears after you select one of those options.

2 Specify properties for the new data in the Data properties dialog box, as
described in “Set Data Properties” on page 8-5.

How to Add Data Using the Model Explorer

1 In the Stateflow Editor, select View > Model Explorer.

8-3

8 Define Data

The Model Explorer opens.

2 In theModel Hierarchy pane, select the object in the Stateflow hierarchy
where you want the new data to be visible.

The object you select becomes the parent of the new data.

3 In the Model Explorer, select Add > Data.

The Model Explorer adds a default definition for the data in the hierarchy,
and the data definition appears in a new row in the Model Explorer.

4 Change the properties of the data, as described in “Set Data Properties”
on page 8-5.

8-4

Set Data Properties

Set Data Properties

In this section...

“What Is the Data Properties Dialog Box?” on page 8-5

“When to Use the Data Properties Dialog Box” on page 8-7

“Open the Data Properties Dialog Box” on page 8-7

“Properties You Can Set in the General Pane” on page 8-8

“Properties You Can Set in the Logging Pane” on page 8-24

“Properties You Can Set in the Description Pane” on page 8-26

“Enter Expressions and Parameters for Data Properties” on page 8-27

What Is the Data Properties Dialog Box?
You use the Data properties dialog box to set and modify the properties of data
objects. Properties vary according to the scope and type of the data object.
The Data properties dialog box displays only the property fields relevant to
the data object you are defining. For example, the dialog box displays these
properties and default values for a data object whose scope is Local and type
is Fixed point.

8-5

8 Define Data

For many data properties, you can enter expressions or parameter values.
Using parameters to set properties for many data objects simplifies
maintenance of your model, because you can update multiple properties by
changing a single parameter.

8-6

Set Data Properties

When to Use the Data Properties Dialog Box

• Use the General pane to define the name, scope, size, complexity, type,
initial value, and limit range of a data object. See “Properties You Can Set
in the General Pane” on page 8-8.

• Use the Logging pane to enable logging for local data. See “Properties You
Can Set in the Logging Pane” on page 8-24.

Note You can log states and local data in charts.

• Use the Description pane to index into a data object array and enter
a description about the data object. See “Properties You Can Set in the
Description Pane” on page 8-26.

Open the Data Properties Dialog Box
To open the Data properties dialog box, use one of these methods:

• Add a new data object in the Stateflow Editor, as described in “Add Data
Using the Stateflow Editor” on page 8-3.

After you add the data object, the Data properties dialog box appears.

• Open the Data properties dialog box from the Model Explorer for a data
object that already exists in the Stateflow hierarchy. Use one of these
techniques:

- Double-click the data object in the Contents pane.

- Right-click the data object in the Contents pane and select Properties.

- Select the data object in the Contents pane and then select
View > Show Dialog Pane.

The Data properties dialog box opens inside the Model Explorer.

For more information about adding data objects in the Model Explorer, see
“How to Add Data Using the Model Explorer” on page 8-3.

8-7

8 Define Data

Properties You Can Set in the General Pane
The General pane of the Data properties dialog box appears as shown.

You can set these properties in the General pane.

Name
Name of the data object. For more information, see “Rules for Naming
Stateflow Objects” on page 2-4.

8-8

Set Data Properties

Scope
Location where data resides in memory, relative to its parent. You can set
scope to one of these values:

Scope Value Description

Local Data defined in the current chart only.

Constant Read-only constant value that is visible to the parent
Stateflow object and its children.

Parameter Constant whose value is defined in the MATLAB
workspace, or derived from a Simulink block
parameter that you define and initialize in the parent
masked subsystem. The Stateflow data object must
have the same name as the parameter.

See “Share Simulink Parameters with Charts”
on page 8-32 to learn how to use Simulink block
parameters with charts.

Input Input argument to a function if the parent is
a graphical, truth table, or MATLAB function.
Otherwise, the Simulink model provides the data to
the chart via an input port on the Stateflow block. See
“Share Output Data with Simulink” on page 8-31.

Output Return value of a function if the parent is a graphical,
truth table, or MATLAB function. Otherwise, the
chart provides the data to the Simulink model via an
output port on the Stateflow block. See “Share Output
Data with Simulink” on page 8-31.

8-9

8 Define Data

Scope Value Description

Data Store Memory Data object that binds to a Simulink data store,
which is a signal that functions like a global variable
because all blocks in a model can access that signal.
This binding allows the chart to read and write the
Simulink data store, thereby sharing global data with
the model. The Stateflow object must have the same
name as the Simulink data store. See “Share Global
Data with Multiple Charts” on page 8-35.

Temporary Data that persists only during the execution of a
function. You can define temporary data only for
a graphical, truth table, or MATLAB function, as
described in “Define Temporary Data” on page 8-62.

Exported Data from the Simulink model that is made available
to external code defined in the Stateflow hierarchy.
You can define exported data only for a Stateflow
machine.

Imported Data parented by the Simulink model that is defined
by external code embedded in the Stateflow machine.
You can define imported data only for a Stateflow
machine.

Port
Index of the port associated with the data object. This property applies only to
input and output data. See “Share Output Data with Simulink” on page 8-31.

Data must resolve to Simulink signal object
Option that specifies that output or local data explicitly inherits properties
from Simulink.Signal objects of the same name in the MATLAB base
workspace or the Simulink model workspace. The data can inherit these
properties:

• Size

• Complexity

• Type

8-10

Set Data Properties

• Minimum value

• Maximum value

• Initial value

• Storage class (in the generated code)

• Sampling mode (for Truth Table block output data)

For more information, see “Resolve Data Properties from Simulink Signal
Objects” on page 8-69.

Size
Size of the data object. The size can be a scalar value or a MATLAB vector of
values. To specify a scalar, set the Size property to 1 or leave it blank. To
specify a MATLAB vector, use a multidimensional array, where the number
of dimensions equals the length of the vector and the size of each dimension
corresponds to the value of each vector element.

The scope of the data object determines what sizes you can specify. Stateflow
data store memory inherits all of its properties — including size — from the
Simulink data store to which it is bound. For all other scopes, size can be
scalar, vector, or a matrix of n-dimensions.

For more information, see “Size Stateflow Data” on page 8-51.

Variable size
Option that specifies whether the data object changes dimensions during
simulation. This check box is available only for input and output data when
you enable the chart property Support variable-size arrays. For more
information, see “Variable-Size Data”.

Complexity
Option that specifies whether the data object accepts complex values. You can
choose one of these settings:

8-11

8 Define Data

Complexity
Setting

Description

Off Data object does not accept complex values.

On Data object accepts complex values.

Inherited Data object inherits the complexity setting from a
Simulink block.

For more information, see “How Complex Data Works in C Charts” on page
20-2.

Type
Type of data object. You can specify the data type by:

• Selecting a built-in type from the Type drop-down list.

• Using the Data Type Assistant to specify a data Mode and then specifying
the data type based on that mode.

Note Click the Show data type assistant button to display
the Data Type Assistant.

• Entering an expression in the Type field that evaluates to a data type.

Note If you enter an expression for a fixed-point data type, you must
specify scaling explicitly. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify
scaling explicitly, an error appears when you try to simulate your model.

To ensure that a data type definition is valid for fixed-point data, use one of
the two options above.

For more information, see “Type Stateflow Data” on page 8-42.

8-12

Set Data Properties

Lock data type setting against changes by the fixed-point tools
Select this check box to prevent replacement of the current fixed-point type
with a type that the “Fixed-Point Tool” or “Fixed-Point Advisor” chooses. For
methods on autoscaling fixed-point data, see “About Automatic Data Typing”
in the Fixed-Point Designer™ documentation.

Initial value
Initial value of the data object. If you do not specify a value, the default is 0.0.
The options for initializing values depend on the scope of the data object, as
follows:

Scope What to Specify for Initial Value

Local Expression or parameter defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem

Constant Constant value or expression. The expression is
evaluated when you update the chart, and the resulting
value is used as a constant for running the chart.

Parameter You cannot enter a value. The chart inherits the initial
value from the parameter.

Input You cannot enter a value. The chart inherits the initial
value from the Simulink input signal on the designated
port.

Output Expression or parameter defined in the Stateflow
hierarchy, MATLAB workspace, or Simulink masked
subsystem

Data Store
Memory

You cannot enter a value. The chart inherits the initial
value from the Simulink data store to which it resolves.

For more information, see “Initialize Data from the MATLAB Base
Workspace” on page 8-32 and “Share Simulink Parameters with Charts”
on page 8-32.

8-13

8 Define Data

Limit range properties
Range of acceptable values for this data object. Stateflow software uses this
range to validate the data object during simulation. To establish the range,
specify these properties:

• Minimum — The smallest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

• Maximum — The largest value allowed for the data item during
simulation. You can enter an expression or parameter that evaluates to a
numeric scalar value.

The smallest value you can set for Minimum is -inf and the largest value
you can set for Maximum is inf.

Note A Simulink model uses the Limit range properties to calculate
best-precision scaling for fixed-point data types. You must specify a minimum
or maximum value before you can select Calculate Best-Precision Scaling
in the General pane. For more information, see “Calculate Best-Precision
Scaling” on page 8-18.

For more information on entering values for Limit range properties, see
“Enter Expressions and Parameters for Data Properties” on page 8-27.

Watch in debugger
Option that enables you to watch the data values in the Stateflow Debugger
(see “Watch Data in the Stateflow Debugger” on page 28-57).

Fixed-Point Data Properties
Properties that apply to fixed-point data.

8-14

Set Data Properties

When the Data Type Assistant Mode is Fixed point, the Data Type
Assistant displays fields for specifying additional information about your
fixed-point data.

8-15

8 Define Data

If the Scaling is Slope and bias rather than Binary point, the Data Type
Assistant displays a Slope field and a Bias field rather than a Fraction
length field.

8-16

Set Data Properties

You can use the Data Type Assistant to set these fixed-point properties:

Signedness. Specify whether you want the fixed-point data to be Signed
or Unsigned. Signed data can represent positive and negative values, but
unsigned data represents positive values only. The default setting is Signed.

Word length. Specify the bit size of the word that holds the quantized
integer. Large word sizes represent large values with greater precision than
small word sizes. The default bit size is 16.

• For chart-level data of the following scopes, word length can be any integer
between 0 and 128.

- Input

- Output

- Parameter

- Data Store Memory

• For other Stateflow data, word length can be any integer between 0 and 32.

Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. The default method is
Binary point scaling. You can select one of two scaling modes:

Scaling
Mode

Description

Binary
point

If you select this mode, the Data Type Assistant displays
the Fraction length field, which specifies the binary point
location.

Binary points can be positive or negative integers. A positive
integer moves the binary point left of the rightmost bit by
that amount. For example, an entry of 2 sets the binary point
in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by
that amount, as in this example:

8-17

8 Define Data

Scaling
Mode

Description

The default binary point is 0.

Slope
and bias

If you select this mode, the Data Type Assistant displays fields
for entering the Slope and Bias.

Slope can be any positive real number, and the default slope
is 1.0. Bias can be any real number, and the default bias is
0.0. You can enter slope and bias as expressions that contain
parameters you define in the MATLAB workspace.

Note Use binary-point scaling whenever possible to simplify the
implementation of fixed-point data in generated code. Operations with
fixed-point data using binary-point scaling are performed with simple bit
shifts and eliminate expensive code implementations required for separate
slope and bias values.

For more information about fixed-point scaling, see “Scaling”.

Data type override. Specify whether or not to inherit the data type
override setting of the Fixed-Point Tool that applies to this model. If the data
does not inherit the model-wide setting, the specified data type applies. For
more information about the Fixed-Point Tool, see fxptdlg in the Simulink
documentation.

Calculate Best-Precision Scaling. Click this button to calculate
“best-precision” values for both Binary point and Slope and bias scaling,
based on the Limit range properties you specify in the General tab of the
Data properties dialog box.

8-18

Set Data Properties

To automatically calculate best precision scaling values:

1 In the Data properties dialog box, click the General tab.

2 Specify Limit range properties.

3 Click Calculate Best-Precision Scaling.

Simulink software calculates the scaling values and displays them in the
Fraction length field or the Slope and Bias fields. For more information,
see “Constant Scaling for Best Precision”.

Note The Limit range properties do not apply to Constant and Parameter
scopes. For Constant, Simulink software calculates the scaling values based
on the Initial value setting. The software cannot calculate best-precision
scaling for data of Parameter scope.

Show Fixed-Point Details. When you specify a fixed-point data type,
you can use the Fixed-point details subpane to see information about the
fixed-point data type that is currently defined in the Data Type Assistant. To
see the subpane, click the expander next to Fixed-point details in the Data
Type Assistant. The Fixed-point details subpane appears at the bottom
of the Data Type Assistant.

8-19

8 Define Data

8-20

Set Data Properties

The rows labeled Minimum and Maximum show the same values that appear
in the corresponding Minimum and Maximum fields in the Limit range
section. See “Signal Ranges” and “Check Parameter Values” for more
information.

The rows labeled Representable minimum, Representable maximum, and
Precision show the minimum value, maximum value, and precision that can
be represented by the fixed-point data type currently displayed in the Data
Type Assistant.

The values displayed by the Fixed-point details subpane do not
automatically update if you click Calculate Best-Precision Scaling, or
change the range limits, the values that define the fixed-point data type,
or anything elsewhere in the model. To update the values shown in the
Fixed-point details subpane, click Refresh Details. The Data Type
Assistant then updates or recalculates all values and displays the results.

Clicking Refresh Details does not change anything in the model; it changes
only the display. Click OK or Apply to put the displayed values into effect. If
the value of a field cannot be known without first compiling the model, the
Fixed-point details subpane shows the value as Unknown. If any errors
occur when you click Refresh Details, the Fixed-point details subpane
shows an error flag on the left of the applicable row and a description of the
error on the right. For example, the next figure shows two errors.

8-21

8 Define Data

The row labeled Minimum shows the error Cannot evaluate because
evaluating the expression MySymbol, specified in the Minimum field of the

8-22

Set Data Properties

Limit range section, cannot return a numeric value. When an expression
does not evaluate successfully, the Fixed-point details subpane shows the
unevaluated expression (truncating to 10 characters as needed) in place of
the unavailable value.

To correct this error, define MySymbol in the base workspace to provide a
numeric value. If you click Refresh Details, the value of MySymbol appears
in place of the unevaluated text, and the error indicator and description
disappear.

To correct the overflow error for Maximum, perform one or more of the following
changes so that the fixed-point data type can represent the maximum value
you specify:

• Decrease the value in theMaximum field of the Limit range section.

• Increase Word length.

• Decrease Fraction length.

8-23

8 Define Data

Properties You Can Set in the Logging Pane
The Logging pane of the Data properties dialog box appears as shown.

You can set these properties in the Logging pane.

Log signal data
Saves the data value to the MATLAB workspace during simulation.

8-24

Set Data Properties

Test point
Designates the data as a test point. A test point is a signal you can observe
in a Floating Scope block in a model (see “Test Points” in the Simulink
documentation). Data objects can be test points if:

• Scope is Local

• Parent is not a Stateflow machine

• Data type is not ml

Logging name
Specifies the name associated with logged signal data. Simulink software
uses the signal name as its logging name by default. To specify a custom
logging name, select Custom from the list box and enter the new name in
the adjacent edit field.

Limit data points to last
Limits the amount of data logged to the most recent samples.

Decimation
Limits the amount of data logged by skipping samples. For example, a
decimation factor of 2 saves every other sample.

8-25

8 Define Data

Properties You Can Set in the Description Pane
The Description pane of the Data properties dialog box appears as shown.

You can set these properties in the Description pane.

Save final value to base workspace
Option that assigns the value of the data item to a variable of the same name
in the base workspace at the end of simulation (see “Model Workspaces” in
the Simulink documentation).

8-26

Set Data Properties

First index
Index of the first element of the data array. The default value is 0.

Units
Units of measurement that you want to associate with the data object. The
string in this field resides with the data object in the Stateflow hierarchy.

Description
Description of the data object.

Document link
Link to online documentation for the data object. You can enter a Web URL
address or a MATLAB command that displays documentation in a suitable
online format, such as an HTML file or text in the MATLAB Command
Window. When you click the Document link hyperlink at the bottom of the
properties dialog box, Stateflow software evaluates the link and displays the
documentation.

Enter Expressions and Parameters for Data
Properties
You can enter expressions as values for these properties in the Data
properties dialog box:

• “Size” on page 8-11

• “Type” on page 8-12

• “Initial value” on page 8-13

• Minimum and Maximum (see “Limit range properties” on page 8-14)

• “Fixed-Point Data Properties” on page 8-14

Expressions can contain a mix of parameters, constants, arithmetic operators,
and calls to MATLAB functions.

8-27

8 Define Data

Default Data Property Values

When you leave an expression or parameter field blank, Stateflow software
assumes a default value, as follows:

Field Default

Initial value 0.0

Maximum inf

Minimum –inf

Word length 16

Slope 1.0

Bias 0.0

Binary point 0

First index 0

Size • 1 (inherited), for inputs, parameters, and function
outputs

• 1 (scalar), for other data objects

Use Parameters in Expressions
You can include parameters in expressions. A parameter is a constant that
you can:

• Define in the MATLAB workspace (see “Initialize Data from the MATLAB
Base Workspace” on page 8-32)

• Derive from a Simulink block parameter that you define and initialize
in the parent masked subsystem (see “Share Simulink Parameters with
Charts” on page 8-32)

You can mix both types of parameters in an expression.

8-28

Set Data Properties

Use Constants in Expressions
For expressions in the Data properties dialog box, you can use numeric
constants of the appropriate type and size. Do not use Stateflow constants
in these expressions.

Use Arithmetic Operators in Expressions
You can use these arithmetic operators in expressions in the Data properties
dialog box:

• +

• –

• *

• /

Call Functions in Expressions
In fields that accept expressions, you can call functions that return property
values of other variables defined in the Stateflow hierarchy, MATLAB
workspace, or Simulink masked subsystem. For example, these functions can
return appropriate values for specified fields in the Data properties dialog box:

Function Returns For Field

Stateflow
function type

Type of input data Data type

MATLAB
function min

Smallest element or
elements of input array

Minimum

MATLAB
function max

Largest element or
elements of input array

Maximum

Simulink
function fixdt

Simulink.NumericType
object that describes
a fixed-point or
floating-point data type

Data type

8-29

8 Define Data

Share Data with Simulink and MATLAB Workspace

In this section...

“Share Input Data with Simulink” on page 8-30

“Share Output Data with Simulink” on page 8-31

“Share Simulink Parameters with Charts” on page 8-32

“Initialize Data from the MATLAB Base Workspace” on page 8-32

“Save Data to the MATLAB Workspace” on page 8-34

Share Input Data with Simulink
Data flows from Simulink into a chart via input ports on the chart.

To add input data to a chart:

1 Add a data object to the chart, as described in “Add Data Using the
Stateflow Editor” on page 8-3.

Note Add the data to the chart itself, not to any other object in the chart.

2 Open the Data properties dialog box, as described in “Open the Data
Properties Dialog Box” on page 8-7.

3 Set the Scope property to Input.

An input port appears on the block in the model.

You assign inputs to ports in the order in which you add the data. For
example, you assign the second input to input port 2. You can change port
assignments by editing the value in the Port field of the Data properties
dialog box.

4 Set the type of the input data, as described in “Type Stateflow Data” on
page 8-42.

8-30

Share Data with Simulink and MATLAB Workspace

5 Set the size of the input data, as described in “Size Stateflow Data” on
page 8-51.

Note You cannot type or size Stateflow input data to accept frame-based
data from Simulink.

Share Output Data with Simulink
Data flows from a chart into Simulink via output ports on the chart.

To add output data to a chart:

1 Add a data object to the chart, as described in “Add Data Using the
Stateflow Editor” on page 8-3.

Note Add data to the chart itself, not to any other object in the chart.

2 Open the Data properties dialog box, as described in “Open the Data
Properties Dialog Box” on page 8-7.

3 Set the Scope property to Output.

An output port appears on the block in the model.

You assign outputs to ports in the order in which you add the data. For
example, you assign the third output to output port 3. You can change port
assignments by editing the value in the Port field of the Data properties
dialog box.

4 Set the type of the output data, as described in “Type Stateflow Data” on
page 8-42.

5 Set the size of the output data, as described in “Size Stateflow Data” on
page 8-51.

8-31

8 Define Data

Share Simulink Parameters with Charts

When to Share Simulink Parameters
Share Simulink parameters with charts to maintain consistency with your
Simulink model. By using parameters, you can also avoid hard-coding data
sizes and types.

Parameters defined in a Stateflow chart can be used by multiple Stateflow
objects in the chart, such as states, MATLAB functions and truth tables.

How to Share Simulink Parameters
To share Simulink parameters for a masked subsystem with a chart, follow
these steps:

1 In the Simulink mask editor for the parent subsystem, define and initialize
a Simulink parameter.

2 In the Stateflow hierarchy, define a data object with the same name as the
parameter (see “Add Data” on page 8-2).

3 Set the scope of the data object to Parameter.

A chart defines data of scope Parameter as a constant. You cannot change
a parameter value during model execution.

When simulation starts, Simulink tries to resolve the Stateflow data object to
a parameter at the lowest level masked subsystem. If unsuccessful, Simulink
moves up the model hierarchy to resolve the data object to a parameter at
higher level masked subsystems.

Initialize Data from the MATLAB Base Workspace
You can initialize data from the MATLAB base workspace. Initialization
requires that you define data in both the MATLAB base workspace and the
Stateflow hierarchy as follows:

1 Define and initialize a variable in the MATLAB workspace.

8-32

Share Data with Simulink and MATLAB Workspace

2 In the Stateflow hierarchy, define a data object with the same name as the
MATLAB variable (see “Add Data” on page 8-2).

3 Set the scope of the Stateflow data object to Parameter.

When simulation starts, data resolution occurs. During this process, the
Stateflow data object gets its initial value from the associated MATLAB
variable. For example, if the variable is an array, each element of the
Stateflow array initializes to the same value as the corresponding element of
the MATLAB array.

One-dimensional Stateflow arrays are compatible with MATLAB row and
column vectors of the same size. For example, a Stateflow vector of size 5
is compatible with a MATLAB row vector of size [1,5] or column vector of
size [5,1].

Time of Initialization
Data parent and scope control initialization time for Stateflow data objects.

Data Parent Scope When Initialized

Local,
Exported

Start of simulationMachine

Imported Not applicable

Input Not applicableChart

Output,
Local

Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State with History Junction Local Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

State without History Junction Local State activation

8-33

8 Define Data

Data Parent Scope When Initialized

Input,
Output

Function-call invocationFunction (graphical, truth
table, and MATLAB functions)

Local Start of simulation or when
chart reinitializes as part
of an enabled Simulink
subsystem

Save Data to the MATLAB Workspace
For all scopes except Constant and Parameter, you can instruct the chart to
save the final value of a data object at the end of simulation in the MATLAB
base workspace (not as a masked subsystem parameter).

Use one of these techniques:

• In the Description pane of the Data properties dialog box, select Save
final value to base workspace.

• In the Contents pane of the Model Explorer, follow these steps:

1 Select the row of the data object.

2 Select the check box in the SaveToWorkspace column.

8-34

Share Global Data with Multiple Charts

Share Global Data with Multiple Charts

In this section...

“About Data Stores” on page 8-35

“How Charts Work with Local and Global Data Stores” on page 8-35

“Access Data Store Memory from a Chart” on page 8-36

“Diagnostics for Sharing Data Between Charts and Simulink Blocks” on
page 8-39

“Create a Global Data Store Across Multiple Models” on page 8-40

“Best Practices for Using Data Stores in Charts” on page 8-41

About Data Stores
You can use an interface to direct charts to access global variables in Simulink
models. A Simulink model implements global variables as data stores, created
either as data store memory blocks or as instances of Simulink.Signal
objects. Data stores enable multiple Simulink blocks to share data without
the need for explicit I/O connections to pass data from one block to another.
Stateflow charts share global data with Simulink models by reading from and
writing to data store memory symbolically.

You can use data stores with buses, but not with arrays of buses. For more
information about using data stores with buses, see "Using Data Stores with
Buses and Arrays of Buses" in the Simulink documentation.

How Charts Work with Local and Global Data Stores
Charts can interface with local and global data stores. Local data stores, often
implemented as data store memory blocks, are visible to all blocks in one
model. To interact with local data stores, a chart must reside in the model
where you define the local data store:

8-35

8 Define Data

Global data stores have a broader scope, which crosses model reference
boundaries. To interact with global data stores, a chart must reside either
in the top model — where the global data store is defined — or in any model
that the top model references. You implement global data stores as Simulink
signal objects.

Access Data Store Memory from a Chart
To access global data in a Simulink model from a chart, you must bind a
Stateflow data object to a Simulink data store — either a data store memory
block or a signal object (see “Bind a Stateflow Data Object to Data Store
Memory” on page 8-36). After you create the binding, the Stateflow data
object becomes a symbolic representation of Simulink data store memory. You
can then use this symbolic object to store and retrieve global data (see “Read
and Write Global Data Programmatically” on page 8-38).

Bind a Stateflow Data Object to Data Store Memory
To bind a Stateflow data object to Simulink data store memory, you must
create a data object in the Stateflow hierarchy with the same name as the
data store and with scope set to Data Store Memory. The Stateflow data
object inherits all properties from the data store to which you bind the object.
Follow guidelines for specifying data store properties in “Best Practices for
Using Data Stores in Charts” on page 8-41.

8-36

Share Global Data with Multiple Charts

Note You cannot edit properties that the data object inherits from the data
store.

Use the Stateflow Editor to Bind a Data Object
In the Stateflow Editor, follow these steps:

1 Select Chart > Add Other Elements > Data Store Memory.

The properties dialog box for the new data object appears with scope
property set to Data Store Memory.

2 In the Name field of the Data properties dialog box, enter the name of the
Simulink data store to which you want to bind.

3 Click OK.

Use the Model Explorer to Bind a Data Object
In the Model Explorer, follow these steps:

1 Select Add > Data.

The Model Explorer adds a data object to the chart.

2 Double-click the new data object to open its properties dialog box, and enter
the following information in the General pane:

Field What to Specify

Name Enter the name of the Simulink data store memory block to
which you want to bind.

Scope Select Data Store Memory from the drop-down menu.

3 Click OK.

8-37

8 Define Data

Resolve Data Store Bindings
Multiple local and global data stores with the same name can exist in the
same model hierarchy. In this situation, the Stateflow data object binds to the
data store that is the nearest ancestor.

Read and Write Global Data Programmatically
You can use the Stateflow data object that you bind to Simulink data store
memory to store and retrieve global data in states and transitions. Think of
this object as a global variable that you reference by its symbolic name —
the same name as the data store to which you bind the object. When you
store numeric values in this variable, you are writing to Simulink data store
memory. Similarly, when you retrieve numeric values from this variable, you
are reading from the data store memory.

The following chart reads from and writes to a data store memory block
called myglobal.

8-38

Share Global Data with Multiple Charts

Diagnostics for Sharing Data Between Charts and
Simulink Blocks

Errors to Check For
Multiple reads and writes can occur unintentionally in the same time step.
To detect these situations, you can configure data store memory blocks to
generate errors or warnings for these conditions:

• Read before write

• Write after write

• Write after read

Note These diagnostics are available only for data store memory blocks used
within a single Simulink model, not for data stores created from Simulink
signal objects. In other words, these diagnostics do not work for global data
stores that cross model reference boundaries.

When to Enable Diagnostics
Enable diagnostics on data store memory blocks to ensure the validity of data
that multiple unconnected blocks share while running at different rates. In
this scenario, you can detect conditions when writes do not occur before reads
in the same time step. To prevent these violations, see “Best Practices for
Using Data Stores in Charts” on page 8-41.

When to Disable Diagnostics
If you use a data store memory block as a persistent global storage area for
accumulating values across time steps, disable diagnostics to avoid generating
unnecessary warnings.

How to Set Diagnostics for Shared Data
To set diagnostics on data store memory blocks, follow these steps:

1 Double-click the data store memory block in your Simulink model to open
its Block Parameters dialog box.

8-39

8 Define Data

2 Click the Diagnostics tab.

3 Enable diagnostics by selecting warning or error from the drop-down
menu for each condition you want to detect.

4 Click OK.

Create a Global Data Store Across Multiple Models
To create read/write references to a global data store that you can share
across multiple models:

1 Define data store memory objects that reside in each chart that shares
the data.

a Use the Model Explorer to add a data object to each chart, as described
in “How to Add Data Using the Model Explorer” on page 8-3.

b Give each data object the same name.

c Set the scope of each data object to Data Store Memory.

2 Verify that your models do not contain any Data Store Memory blocks.

However, you can include Data Store Read and Data Store Write blocks.

3 Create a Simulink.Signal object in the MATLAB base workspace.

a In the Model Explorer, navigate to Simulink Root > Base Workspace
in the Model Hierarchy pane.

b Select Add > Simulink Signal.

c Give the object the same name as the data store memory objects in your
charts.

4 Verify that these settings apply to the Simulink.Signal object:

a Set Data type to an explicit data type.

The data type cannot be auto.

b Set Dimensions to be fully specified.

The signal dimensions cannot be –1, or inherited.

8-40

Share Global Data with Multiple Charts

c Set Sample mode to Sample based.

d Set Storage class to ExportedGlobal.

Best Practices for Using Data Stores in Charts

When Binding to Data Stores in Charts
When you bind a Stateflow data object to a data store, the Stateflow object
inherits all properties from the data store. To ensure that properties
propagate correctly when you access data stores, follow these guidelines to
create data stores:

• Specify a data type other than auto.

• Minimize the use of automatic-mode properties.

When Enforcing Writes Before Reads in Unconnected Blocks
To enforce writes before reads when unconnected blocks share global data in
charts, follow these guidelines:

• Segregate reads into separate blocks from writes.

• Assign priorities to blocks so that your model invokes write blocks before
read blocks.

For instructions on how to set block execution order, see “Control and
Display the Sorted Order” in the Simulink documentation.

8-41

8 Define Data

Type Stateflow Data

In this section...

“What Is Data Type?” on page 8-42

“Specify Data Type and Mode” on page 8-42

“Built-In Data Types” on page 8-45

“Inherit Data Types from Simulink Objects” on page 8-46

“Derive Data Types from Previously Defined Data” on page 8-47

“Type Data by Using an Alias” on page 8-48

“Strong Data Typing with Simulink I/O” on page 8-49

What Is Data Type?
The term data type refers to the way computers represent numbers in
memory. The type determines the amount of storage allocated to data,
the method of encoding a data value as a pattern of binary digits, and the
operations available for manipulating the data.

Specify Data Type and Mode
To specify the type of a Stateflow data object:

1 Open the Data properties dialog box, as described in “Open the Data
Properties Dialog Box” on page 8-7.

2 Select the Scope of the data object for which you want to set the data type.

For more information, see “Properties You Can Set in the General Pane”
on page 8-8.

3 Click the Data Type Assistant button.

8-42

Type Stateflow Data

Note If you know the specific data type you want to use, you can enter the
data type directly in the Type field, or select it from the Type drop-down
list, instead of using the Data Type Assistant. For more information, see
“Data Types” in the Simulink documentation.

4 Choose aMode in the Data Type Assistant section of the dialog box.

You can choose from these modes for each scope:

Scope Data Type Modes

Inherit Built in Fixed point Enumerated Expression Bus Object

Local yes yes yes yes yes

Constant yes yes yes yes

Parameter yes yes yes yes yes yes

Input yes yes yes yes yes yes

Output yes yes yes yes yes yes

Data Store
Memory

yes

5 Based on the mode you select, specify a data type as follows:

Mode What To Specify

Inherit You cannot specify a value. You inherit the data type from previously defined
data, based on the scope you select for the data object:

• If scope is Input, you inherit the data type from the Simulink input signal
on the designated input port (see “Share Output Data with Simulink” on
page 8-31).

• If scope is Output, you inherit the data type from the Simulink output
signal on the designated output port (see “Share Output Data with
Simulink” on page 8-31).

8-43

8 Define Data

Mode What To Specify

Note Avoid inheriting data types from output signals. See “Avoid
inheriting output data properties from Simulink blocks” on page 8-74.

• If scope is Parameter, you inherit the data type from the associated
parameter, which you can define in a Simulink model or the MATLAB
workspace (see “Share Data with Simulink and MATLAB Workspace” on
page 8-30).

• If scope is Data Store Memory, you inherit the data type from the
Simulink data store to which you bind the data object (see “Share Global
Data with Multiple Charts” on page 8-35).

Built in Select a data type from the drop-down list of supported data types, as described
in “Built-In Data Types” on page 8-45.

Fixed point Specify the following information about the fixed-point data:

• Whether the data is signed or unsigned

• Word length

• Scaling mode

For information on how to specify these fixed-point data properties, see
“Fixed-Point Data Properties” on page 8-14.

Enumerated Specify the class name for the enumerated data type. For more information,
see “Define Enumerated Data in a Chart” on page 17-8.

8-44

Type Stateflow Data

Mode What To Specify

Expression Enter an expression that evaluates to a data type in the Type field. You can
use these expressions:

• Alias type from the MATLAB workspace, as described in “Type Data by
Using an Alias” on page 8-48

• type operator to specify the type of previously defined data, as described in
“Derive Data Types from Previously Defined Data” on page 8-47

• fixdt function to create a Simulink.NumericType object that describes a
fixed-point or floating-point data type

For more information on how to build expressions in the Data properties dialog
box, see “Enter Expressions and Parameters for Data Properties” on page 8-27.

Bus object In the Bus object field, enter the name of a Simulink.Bus object to associate
with the Stateflow bus object structure. You must define the bus object in the
base workspace. If you have not yet defined a bus object, click Edit to create or
edit a bus object in the Bus Editor.

Note You can also inherit bus object properties from Simulink signals.

6 Click Apply to save the data type settings.

Built-In Data Types
You can choose from these built-in data types:

8-45

8 Define Data

Data Type Description

double 64-bit double-precision floating point

single 32-bit single-precision floating point

int32 32-bit signed integer

int16 16-bit signed integer

int8 8-bit signed integer

uint32 32-bit unsigned integer

uint16 16-bit unsigned integer

uint8 8-bit unsigned integer

boolean Boolean (1 = true; 0 = false)

ml Typed internally with the MATLAB array
mxArray. The ml data type provides Stateflow
data with the benefits of the MATLAB
environment, including the ability to assign
the Stateflow data object to a MATLAB
variable or pass it as an argument to a
MATLAB function. See “ml Data Type” on
page 10-46.

Note ml data cannot have a scope outside the
Stateflow hierarchy; that is, it cannot have a
scope of Input to Simulink or Output to
Simulink.

Inherit Data Types from Simulink Objects
Stateflow data objects of scope Input, Output, Parameter, and Data Store
Memory can inherit their data types from Simulink objects, as follows:

8-46

Type Stateflow Data

Scope: Can inherit type from:

Input Simulink input signal connected to corresponding input
port in chart

Output Simulink output signal connected to corresponding
output port in chart

Note Avoid inheriting data types from output signals.
See “Avoid inheriting output data properties from
Simulink blocks” on page 8-74.

Parameter Corresponding MATLAB workspace variable or
Simulink parameter in a masked subsystem

Data Store
Memory

Corresponding Simulink data store

To configure these objects to inherit data types, create the corresponding
objects in the Simulink model, and then select Inherit: Same as Simulink
from the Type drop-down list in the Data properties dialog box. For more
information, see “Specify Data Type and Mode” on page 8-42.

To determine the data types that the objects inherit, build the Simulink model
and look at the Compiled Type column for each Stateflow data object in
the Model Explorer.

Derive Data Types from Previously Defined Data
You can use the type operator to derive data types from previously defined
Stateflow data. In the following example, the expression type(inbus)
specifies the data type of the Stateflow structure counterbus_struct, where
inbus is defined by the Simulink.Bus object COUNTERBUS. Therefore, the
structure counterbus_struct also derives its data type from the bus object
COUNTERBUS.

8-47

8 Define Data

After you build your model, the Compiled Type column of the Model
Explorer shows the type of each data object in the compiled simulation
application. For more information, see “type Operator” on page 10-26.

Type Data by Using an Alias
You can specify the type of Stateflow data by using a Simulink data type
alias (see Simulink.AliasType in the Simulink Reference documentation).
Suppose that you define a data type alias named MyFloat as follows:

MyFloat = Simulink.AliasType;
MyFloat.BaseType = 'single';

In the following example, the data y has the same type as MyFloat.

8-48

Type Stateflow Data

After you build your model, the Compiled Type column of the Model
Explorer shows the type used in the compiled simulation application.

Strong Data Typing with Simulink I/O

By default, inputs to and outputs from charts are of type double. Input
signals from Simulink models convert to the type of the corresponding input
data objects in charts. Likewise, the data output objects convert to double
before they are exported as output signals to Simulink models.

To interface directly with signals of data types other than double without the
need for conversion, select Use Strong Data Typing with Simulink I/O in
the Chart properties dialog box (see “Specify Chart Properties” on page 21-5).
When you select this check box, the chart accepts input signals of any data
type that Simulink supports, as long as the data type of the input signal
matches the type of the corresponding Stateflow data object. Otherwise, you
receive a type mismatch error.

8-49

8 Define Data

Note For fixed-point data, select Use Strong Data Typing with Simulink
I/O to flag mismatches between input or output fixed-point data in charts and
their counterparts in Simulink models.

8-50

Size Stateflow Data

Size Stateflow Data

In this section...

“Methods for Sizing Stateflow Data” on page 8-51

“How to Specify Data Size” on page 8-52

“Inherit Input or Output Size from Simulink Signals” on page 8-52

“Guidelines for Sizing Data with Numeric Values” on page 8-53

“Guidelines for Sizing Data with MATLAB Expressions” on page 8-54

“Examples of Valid Data Size Expressions” on page 8-55

“Name Conflict Resolution for Variables in Size Expressions” on page 8-55

“Best Practices for Sizing Stateflow Data” on page 8-56

Methods for Sizing Stateflow Data
You can specify the size of Stateflow data by:

• Inheriting the size from a Simulink signal

• Using numeric values

• Using MATLAB expressions

Support for a sizing method depends on the scope of your data:

Method for Sizing DataScope of Data

Inherit the Size Use Numeric
Values

Use MATLAB
Expressions

Local No Yes Yes

Constant No Yes Yes

Parameter No Yes Yes

Input Yes Yes Yes

8-51

8 Define Data

Method for Sizing DataScope of Data

Inherit the Size Use Numeric
Values

Use MATLAB
Expressions

Output Yes Yes Yes

Data store
memory

Yes No No

Stateflow data store memory inherits all data properties, including size,
from the Simulink data store to which it resolves. You cannot specify any
properties explicitly for data store memory.

How to Specify Data Size

Use the Size Field of the Data Properties Dialog Box
To specify the size of Stateflow data in the Data properties dialog box, you use
the Size field, as described in “Properties You Can Set in the General Pane”
on page 8-8. For more information, see:

• “Inherit Input or Output Size from Simulink Signals” on page 8-52

• “Guidelines for Sizing Data with Numeric Values” on page 8-53

• “Guidelines for Sizing Data with MATLAB Expressions” on page 8-54

Set the Stateflow.Data Object Property
To specify the size of Stateflow data using API commands, you set the
Props.Array.Size property to a numeric value or a MATLAB expression
that represents a scalar, vector, matrix, or n-dimensional array. For more
information on using the API, see “Stateflow.Data Properties” in the Stateflow
API documentation.

Inherit Input or Output Size from Simulink Signals
To configure Stateflow input and output data to inherit size from the
corresponding Simulink input and output signals, enter –1 in the Size field
of the Data properties dialog box. This default setting applies to input and
output data that you add to your chart. After you build your model, the

8-52

Size Stateflow Data

Compiled Size column of the Model Explorer displays the actual size that
the compiled simulation application uses.

The equivalent API command for specifying an inherited data size is:

data_handle.Props.Array.Size = '-1';

Chart actions that store values in the specified output infer the inherited
size of output data. If the expected size in the Simulink signal matches the
inferred size, inheritance is successful. Otherwise, a mismatch occurs during
build time.

Note Charts cannot inherit frame-based data sizes from Simulink signals.

Guidelines for Sizing Data with Numeric Values
When you specify data size using numeric values in the Size field of the Data
properties dialog box, follow these guidelines:

Dimensionality What to Specify in the Dialog
Box

Equivalent API Command

Scalar 1 (or leave the field blank) data_handle.Props.Array.Size =
'1';
data_handle.Props.Array.Size =
'';

Vector The number of elements in the row
or column vector

data_handle.Props.Array.Size =
'number_of_elements';

8-53

8 Define Data

Dimensionality What to Specify in the Dialog
Box

Equivalent API Command

Matrix An expression of the format
[r c], where:

• r is the number of rows

• c is the number of columns

data_handle.Props.Array.Size =
'[r c]';

N-dimensional
array

An expression of the format
[Size_of_dim1 Size_of_dim2 ...
Size_of_dimN], where:

• Size_of_dim1 is the size of the
first dimension

• Size_of_dim2 is the size of the
second dimension

• Size_of_dimN is the size of the
N-th dimension

data_handle.Props.Array.Size =
'[Size_of_dim1 Size_of_dim2 ...
Size_of_dimN];

One-dimensional Stateflow vectors are compatible with Simulink row or
column vectors of the same size. For example, Stateflow input or output data
of size 3 is compatible with a Simulink row vector of size [1 3] or column
vector of size [3 1].

Guidelines for Sizing Data with MATLAB Expressions
When you specify data size using MATLAB expressions, follow the same
guidelines that apply to sizing with numeric values (see “Guidelines for Sizing
Data with Numeric Values” on page 8-53). The following guidelines also apply.

• Expressions that specify the size of a dimension:

- Can contain a mix of numeric values, variables, arithmetic operators,
parameters, and calls to MATLAB functions.

- Must evaluate to a positive integer value.

8-54

Size Stateflow Data

• To specify inherited data size, you must enter –1 in the Size field or set
the Props.Array.Size property for the data to –1. Expressions cannot
evaluate to a value of –1.

• If the expression contains an enumerated value, you must include the type
prefix for consistency with MATLAB naming rules.

For example, Colors.Red is valid but Red is not.

• You cannot size Stateflow input data with an expression that accepts
frame-based data from Simulink.

Examples of Valid Data Size Expressions
The following examples are valid MATLAB expressions for sizing data in
your chart:

• K+3, where K is a chart-level Stateflow data

• N/2, where N is a variable in the MATLAB base workspace

• 2*Colors.Red, where Red is an enumerated value of type Colors

• [fi(2,1,16,2) fi(4,1,16,2)], which specifies a data size of [2 4] using
a signed fixed-point type with word length of 16 and fraction length of 2

Name Conflict Resolution for Variables in Size
Expressions
When multiple variables with identical names exist in a model, the variable
with the highest priority applies:

1 Mask parameters

2 Model workspace

3 MATLAB base workspace

4 Stateflow data

8-55

8 Define Data

Best Practices for Sizing Stateflow Data

Avoid use of variables that can lead to naming conflicts
For example, if a variable named off exists in the MATLAB base workspace
and as local chart data, do not use off in the Size field of the Data properties
dialog box.

Avoid use of size(u) expressions

Instead of using a size(u) expression, use a MATLAB expression that
evaluates directly to the size of Stateflow data.

8-56

Handle Integer Overflow for Chart Data

Handle Integer Overflow for Chart Data

In this section...

“When Integer Overflow Can Occur” on page 8-57

“Support for Handling Integer Overflow in Charts” on page 8-58

“Effect of Integer Promotion Rules on Saturation” on page 8-59

“Impact of Saturation on Debugger Checks” on page 8-61

When Integer Overflow Can Occur
For some arithmetic operations, a processor might need to take an n-bit
fixed-point value and store it in m bits, where m ≠ n. If m < n, the reduced
range of the value can cause an overflow for an arithmetic operation. Some
processors identify this overflow as Inf or NaN. Other processors, especially
digital signal processors (DSPs), handle overflows by saturating or wrapping
the value.

For more information about saturation and wrapping for integer overflow,
see “What Are Saturation and Wrapping?” in the Fixed-Point Designer
documentation.

8-57

8 Define Data

Support for Handling Integer Overflow in Charts
For charts, you can control whether or not saturation occurs for integer
overflow. Use the chart property, Saturate on integer overflow, to control
overflow handling.

8-58

Handle Integer Overflow for Chart Data

Check Box When to Use This
Setting

Overflow Handling Example of the Result

Selected Overflow is possible
for data in your chart
and you want explicit
saturation protection in
the generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit
integer saturates to –128
or +127 in the generated
code.

Cleared You want to optimize
efficiency of the generated
code.

The handling of overflows
depends on the C
compiler that you use
for generating code.

The number 130 does
not fit in a signed 8-bit
integer and wraps to
–126 in the generated
code.

Arithmetic operations for which you can enable saturation protection are:

• Unary minus: –a

• Binary operations: a + b, a – b, a * b, a / b, a ^ b

• Assignment operations: a += b, a –=b, a *= b, a /= b

Keep the following considerations in mind when you select Saturate on
integer overflow:

• Saturation applies to all intermediate operations, not just the output or
final result.

• The code generator can detect cases when overflow is not possible. In these
cases, the generated code does not include saturation protection.

Effect of Integer Promotion Rules on Saturation
Charts use ANSI® C rules for integer promotion.

• All arithmetic operations use a data type that has the same word length as
the target word size. Therefore, the intermediate data type in a chained
arithmetic operation can be different from the data type of the operands or
the final result.

8-59

8 Define Data

• For operands with integer types smaller than the target word size,
promotion to a larger type of the same word length as the target size occurs.
This implicit cast occurs before any arithmetic operations take place.

For example, when the target word size is 32 bits, an implicit cast to int32
occurs for operands with a type of uint8, uint16, int8, or int16 before any
arithmetic operations occur.

Suppose that you have the following expression, where y, u1, u2, and u3 are of
uint8 type:

y = (u1 + u2) - u3;

Based on integer promotion rules, that expression is equivalent to the
following statements:

uint8_T u1, u2, u3, y;
int32_T tmp, result;
tmp = (int32_T) u1 + (int32_T) u2;
result = tmp - (int32_T) u3;
y = (uint8_T) result;

For each calculation, the following data types and saturation limits apply.

Calculation Data Type Saturation Limits

tmp int32 (MIN_INT32, MAX_INT32)

result int32 (MIN_INT32, MAX_INT32)

y uint8 (MIN_UINT8, MAX_UINT8)

Suppose that u1, u2, and u3 are equal to 200. Because the saturation limits
depend on the intermediate data types and not the operand types, you get
the following values:

• tmp is 400.

• result is 200.

• y is 200.

8-60

Handle Integer Overflow for Chart Data

Impact of Saturation on Debugger Checks
Suppose that you select Enable overflow detection (with debugging)
in the Simulation Target pane of the Model Configuration Parameters
dialog box. When you select Saturate on integer overflow, the Stateflow
debugger does not flag cases of integer overflow during simulation. However,
the debugger continues to flag the following situations:

• Out-of-range data violations based on minimum and maximum range
checks

• Division-by-zero operations

8-61

8 Define Data

Define Temporary Data

In this section...

“When to Define Temporary Data” on page 8-62

“How to Define Temporary Data” on page 8-62

When to Define Temporary Data
Define temporary data when you want to use data that is only valid while a
function executes. You can define temporary data in graphical, truth table,
and MATLAB functions in your chart. For example, you can designate a
loop counter to have Temporary scope if the counter value does not need to
persist after the function completes.

How to Define Temporary Data
To define temporary data for a Stateflow function, follow these steps:

1 Open the Model Explorer.

2 In the Model Explorer, select the graphical, truth table, or MATLAB
function that will use temporary data.

3 Select Add > Data.

The Model Explorer adds a default definition for the data in the Stateflow
hierarchy, with a scope set to Temporary by default.

4 Change other properties of the data if necessary, as described in “Set Data
Properties” on page 8-5.

8-62

Identify Data Using Dot Notation

Identify Data Using Dot Notation

In this section...

“What Is Dot Notation?” on page 8-63

“Resolution of Qualified Data Names with Dot Notation” on page 8-64

“Best Practices for Using Dot Notation in Qualified Data Names” on page
8-65

What Is Dot Notation?
Dot notation is a way to identify data at a specific level of the chart hierarchy.
A qualified data name uses dot notation to specify the path to the parent
state for that data.

For example, you can specify qualified data names in state actions and
transitions by using dot notation.

In this chart, data resides in the state aa. The qualified data names in state
actions and transitions use dot notation to refer to this data.

• In state a, the entry action contains the qualified data name aa.data.

• In state b, the entry action contains the qualified data name a.aa.data.

• In the default transition, the action contains the qualified data name
a.aa.data.

8-63

8 Define Data

Resolution of Qualified Data Names with Dot
Notation
During simulation, the chart searches for data that matches the qualified
data name with dot notation. These rules apply:

• The chart does not do an exhaustive search of all data.

• The chart does not stop searching after finding one match. The search
continues until it reaches the chart level.

Display an
error

message.

Process for Resolving Qualified Data Names

8-64

Identify Data Using Dot Notation

The flow chart describes the following search process.

Stage Action

1 The search begins at the level of the hierarchy where the qualified
data name appears.

• For a state action, that state is the starting point.

• For a transition label, the parent of the source object is the
starting point.

2 The chart searches at that level of the hierarchy for a path to the
data. If the chart finds a match, it adds that path to the list of
possible matches.

3 The chart moves up to the next highest level of the hierarchy. At
that level, the chart searches for a path to the data. If the chart
finds a match, it adds that path to the list of possible matches.

4 The previous step repeats until the search reaches the chart level.

5 At the chart level, one more search occurs for a path to the data.
If a match exists, that path becomes part of the list of possible
matches. Then, the search ends.

6 After the search ends, one of the following occurs:

• If a unique match exists, the statement containing the qualified
data name executes.

• If no matches or multiple matches exist, an error message
appears.

Best Practices for Using Dot Notation in Qualified
Data Names
These examples show how to avoid problems when using dot notation in
qualified data names.

Use a Specific Path in the Qualified Data Name
Be specific when defining the path to the data.

8-65

8 Define Data

Suppose that state aa contains data. In state b, the entry action contains
aa.data, a qualified data name that the chart cannot resolve. The following
search process occurs:

Stage Action Finds a Match?

1 Chooses state b as the starting point and
searches at that level for an object aa that
contains data.

No

2 Moves up to the next level of the hierarchy
and searches at the chart level for an object
aa that contains data.

No

The search ends, and an error message appears because no match exists
for aa.data.

To avoid this error, use a specific path for the qualified data name in the
entry action of state b:

en: a.aa.data+=1;

Use Unique State Names
Use unique names when you name the states in a chart.

8-66

Identify Data Using Dot Notation

Suppose that both states named aa contain a data object named data. In state
a, the entry action contains two instances of aa.data that the chart cannot
resolve. The following search process occurs:

Stage Action Finds a Match?

1 Chooses state a as the starting point and
searches at that level for an object aa that
contains data.

Yes

2 Moves up to the next level of the hierarchy
and searches at the chart level for an object
aa that contains data.

Yes

The search ends, and an error message appears because multiple matches
exist for aa.data.

8-67

8 Define Data

To avoid this error, perform one of these corrective actions:

• Rename one of the two states named aa.

• Use a more specific path for the qualified data names in the entry action of
state a:

en: y+=a.aa.data, a.aa.data+=1;

• Enclose the outer state aa in a box or another state. Adding an enclosure
prevents the search process from detecting that outer state.

8-68

Resolve Data Properties from Simulink Signal Objects

Resolve Data Properties from Simulink Signal Objects

In this section...

“About Explicit Signal Resolution” on page 8-69

“Inherited Properties” on page 8-69

“Enable Explicit Signal Resolution” on page 8-70

“A Simple Example” on page 8-70

About Explicit Signal Resolution
Stateflow local and output data in charts can explicitly inherit properties from
Simulink.Signal objects in the model workspace or base workspace. This
process is called signal resolution and requires that the resolved signal have
the same name as the chart output or local data.

For information about Simulink signal resolution, see “Symbol Resolution”
and “Symbol Resolution Process” in the Simulink documentation.

Inherited Properties
When Stateflow local or output data resolve to Simulink signal objects, they
inherit these properties:

• Size

• Complexity

• Type

• Minimum value

• Maximum value

• Initial value

• Storage class

Storage class controls the appearance of chart data in the generated
code. See “Apply Custom Storage Classes” in the Embedded Coder
documentation.

8-69

8 Define Data

Enable Explicit Signal Resolution
To enable explicit signal resolution, follow these steps:

1 In the model workspace or base workspace, define a Simulink.Signal
object with the properties you want your Stateflow data to inherit.

For more information about creating Simulink signals, see
Simulink.Signal in the Simulink Reference documentation.

2 Add output or local data to a chart.

The Data properties dialog box opens.

3 Enter a name for your data that matches the name of the Simulink.Signal
object.

4 In the Data properties dialog box, select the Data must resolve to
Simulink signal object check box.

After you select this check box, the dialog box removes or grays out the
properties that your data inherits from the signal. For a list of properties
that your data can inherit during signal resolution, see “Inherited
Properties” on page 8-69.

A Simple Example
The following model shows how a chart resolves local and output data to
Simulink.Signal objects.

8-70

Resolve Data Properties from Simulink Signal Objects

In the base workspace, there are three Simulink.Signal objects with these
properties:

Name Data Type Dimensions Storage Class

y1 double 1 SimulinkGlobal

y2 uint32 [2 2] Auto

local single 1 ExportedGlobal

8-71

8 Define Data

The chart contains three data objects — two outputs and a local variable —
that will resolve to a signal with the same name, as follows:

8-72

Resolve Data Properties from Simulink Signal Objects

When you build the model, each data object inherits the properties of the
identically named signal:

The generated code declares the data based on the storage class that the data
inherits from the associated Simulink signal. For example, the header file
below declares local to be an exported global variable:

/*
* Exported States
*
* Note: Exported states are block states with an exported
* global storage class designation.
*
*/

extern real32_T local; /* '<Root>/Chart' */

8-73

8 Define Data

Best Practices for Using Data in Charts

In this section...

“Avoid inheriting output data properties from Simulink blocks” on page 8-74

“Restrict use of machine-parented data” on page 8-74

Avoid inheriting output data properties from
Simulink blocks
Stateflow output data should not inherit properties from output signals,
because the values back propagate from Simulink blocks and can be
unpredictable.

Restrict use of machine-parented data
Use machine-parented data when you want to use global data definitions
for Mealy and Moore charts, which do not support data store memory (see
“Overview of Mealy and Moore Machines” on page 6-2 for details). Otherwise,
avoid using machine-parented data. The presence of machine-parented data
in a model prevents reuse of generated code and other code optimizations. This
type of data is also incompatible with many Simulink and Stateflow features.

For example, the following features do not support machine-parented data:

• Enumerated data (see “What Is Enumerated Data?” on page 17-2)

• Simulink functions (see “What Is a Simulink Function?” on page 26-2)

• Chart SimState (see “What Is a SimState?” on page 14-2)

• Implicit change events (see “Keywords for Implicit Events” on page 9-39)

• Detection of unused data (see “Diagnostic for Detecting Unused Data” on
page 8-2)

• Model referencing (see “Limitations on All Model Referencing” in the
Simulink documentation)

• Analysis by Simulink Design Verifier™ software

• Code generation by Simulink PLC Coder™ software

8-74

Best Practices for Using Data in Charts

To make Stateflow data accessible to other charts and blocks in a model,
use data store memory. For details, see “Share Global Data with Multiple
Charts” on page 8-35.

8-75

8 Define Data

Transfer Data Across Models

In this section...

“Copy Data Objects” on page 8-76

“Move Data Objects” on page 8-76

Copy Data Objects
When you copy a chart from one Simulink model to another, all data objects
in the chart hierarchy are copied except those that the Stateflow machine
parents. However, you can use the Model Explorer to transfer individual
data objects from machine to machine.

To copy a data object, follow these steps:

1 In the Contents pane of the Model Explorer, right–click the data object
you want to copy and select Copy from the context menu.

2 In the Model Hierarchy pane, right-click the destination Stateflow
machine and select Paste from the context menu.

Move Data Objects
To move a data object, click the object in the Contents pane of the Model
Explorer and drag it to the destination Stateflow machine in the Model
Hierarchy pane.

8-76

9

Define Events

• “How Events Work in Stateflow Charts” on page 9-2

• “Define Events” on page 9-5

• “Set Properties for an Event” on page 9-7

• “Activate a Stateflow Chart Using Input Events” on page 9-12

• “Control States When Function-Call Inputs Reenable Charts” on page 9-17

• “Activate a Simulink Block Using Output Events” on page 9-25

• “Control Chart Execution Using Implicit Events” on page 9-39

• “Count Events” on page 9-44

• “Best Practices for Using Events in Stateflow Charts” on page 9-46

9 Define Events

How Events Work in Stateflow Charts

In this section...

“What Is an Event?” on page 9-2

“When to Use Events” on page 9-2

“Types of Events” on page 9-3

“Where You Can Use Events” on page 9-3

“Diagnostic for Detecting Unused Events” on page 9-4

What Is an Event?
An event is a Stateflow object that can trigger actions in one of these objects:

• A Simulink triggered subsystem

• A Simulink function-call subsystem

• A Stateflow chart

When to Use Events
Use events when you want to:

• Activate a Simulink triggered subsystem (see “Activate a Simulink Block
Using Edge Triggers” on page 9-25)

• Activate a Simulink function-call subsystem (see “Activate a Simulink
Block Using Function Calls” on page 9-34)

• Trigger actions in parallel states of a Stateflow chart (see “Broadcast
Events to Synchronize States” on page 10-57)

Although Stateflow software does not limit the number of events you can use
in a chart, the underlying C compiler enforces a theoretical limit of (2^31)-1
events for the generated code.

When should I use conditions instead of events?

Use conditions on transitions when you want to:

9-2

How Events Work in Stateflow® Charts

• Represent conditional statements, for example, x < 1 or x == 0

• Represent a change of input value from a Simulink block

For more information about using conditions on transitions, see “Transition
Action Types” on page 10-7.

Types of Events
An explicit event is an event that you define and can have one of the following
scopes.

Scope Description

Local Event that can occur anywhere in a Stateflow machine
but is visible only in the parent object (and descendants
of the parent). See “Directed Event Broadcasting” on
page 10-57.

Input from
Simulink

Event that occurs in a Simulink block but is broadcast
to a Stateflow chart. See “Activate a Stateflow Chart
Using Input Events” on page 9-12.

Output to
Simulink

Event that occurs in a Stateflow chart but is broadcast
to a Simulink block. See “Activate a Simulink Block
Using Output Events” on page 9-25.

An implicit event is a built-in event that broadcasts automatically during
chart execution (see “Control Chart Execution Using Implicit Events” on
page 9-39).

Where You Can Use Events
You can define explicit events at these levels of the Stateflow hierarchy.

An event you define
in a...

Is visible to...

Chart The chart and all states and substates

Subchart The subchart and all states and substates

State The state and all substates

9-3

9 Define Events

Diagnostic for Detecting Unused Events
If you have unused events in your chart, a warning message appears during
simulation with a list of events you can remove. By removing objects that
have no effect on simulation, you can reduce the size of your model. This
diagnostic checks for usage of Stateflow events, except for the following types:

• Function-call input events

• Edge-triggered input events

After you select an event for removal, a dialog box confirms your choice.
In this dialog box, you can specify that other deletions occur without
confirmation. If you prevent the confirmation dialog box from appearing, you
can reenable it at any time by typing at the command prompt:

sfpref('showDeleteUnusedConfGui', 1)

You can control the level of diagnostic action for unused events in the
Diagnostics > Stateflow pane of the Model Configuration Parameters
dialog box. For more information, see the documentation for the “Unused
data and events” diagnostic.

9-4

Define Events

Define Events

In this section...

“How to Add Events Using the Stateflow Editor” on page 9-5

“How to Add Events Using the Model Explorer” on page 9-5

How to Add Events Using the Stateflow Editor

1 Based on the desired scope for the new event, select one of the following
options:

Scope Menu Option

Input Chart > Add Inputs & Outputs > Event Input From
Simulink

Output Chart > Add Inputs & Outputs > Event Output To
Simulink

Local Chart > Add Other Elements > Local Event

The Event properties dialog box appears after you select one of those
options.

2 Specify properties for the new event in the Event properties dialog box, as
described in “Set Properties for an Event” on page 9-7.

How to Add Events Using the Model Explorer

1 In the Stateflow Editor, select View > Model Explorer.

The Model Explorer appears.

2 In theModel Hierarchy pane, select the object in the Stateflow hierarchy
where you want the new event to be visible.

The object you select becomes the parent of the event.

3 In the Model Explorer, select Add > Event.

9-5

9 Define Events

The Model Explorer adds a default definition for the new event in the
hierarchy and displays an entry row for the new event in the Contents
pane.

4 Change the properties of the event you add in one of these ways:

• Right-click the event row and select Properties to open the Event
properties dialog box.

See “Set Properties for an Event” on page 9-7 for a description of each
property for an event.

• Click individual cells in the entry row to set specific properties such as
Name, Scope, and Port.

9-6

Set Properties for an Event

Set Properties for an Event

In this section...

“When to Use the Event Properties Dialog Box” on page 9-7

“Access the Event Properties Dialog Box” on page 9-9

“Property Fields” on page 9-10

When to Use the Event Properties Dialog Box
Use the Event properties dialog box when you want to modify properties of an
event, which can vary based on the scope of the event. The Event properties
dialog box displays only the property fields that apply to the event you are
modifying.

For example, the dialog box displays these properties and default values for
an event whose scope is Local.

9-7

9 Define Events

9-8

Set Properties for an Event

For input events, the dialog box displays these properties and defaults.

Access the Event Properties Dialog Box
To access the Event properties dialog box, use one of these methods:

• Add a new event from the Stateflow Editor.

The Event properties dialog box appears, as described in “How to Add
Events Using the Stateflow Editor” on page 9-5.

• Open the Event properties dialog box in the Model Explorer in one of
these ways:

9-9

9 Define Events

- Double-click the event in the Contents pane.

- Right-click the event in the Contents pane and select Properties.

- Select the event in the Contents pane and then select View > Show
Dialog Pane.

The Event properties dialog box opens inside the Model Explorer.

See “How to Add Events Using the Model Explorer” on page 9-5.

Property Fields

Name
Name of the event. Actions reference events by their names. Names must
begin with an alphabetic character, cannot include spaces, and cannot be
shared by sibling events.

Scope
Scope of the event. The scope specifies where the event occurs relative to the
parent object. For information about types of scope, see “Types of Events”
on page 9-3.

Port
Property that applies to input and output events.

• For input events, port is the index of the input signal that triggers the
event.

• For output events, port is the index of the signal that outputs this event.

You assign input and output events to ports in the order in which you add the
events. For example, you assign the first input event to input port 1 and the
third output event to output port 3.

You can change port assignments in the Model Explorer or the Event
properties dialog box. When you change the number of one port, the
numbers of other ports adjust automatically to preserve the relative order.
See “Association of Input Events with Control Signals” on page 9-15 and
“Association of Output Events with Output Ports” on page 9-37.

9-10

Set Properties for an Event

Trigger
Type of signal that triggers an input or output event. See “Activate a
Stateflow Chart Using Input Events” on page 9-12 or “Activate a Simulink
Block Using Output Events” on page 9-25.

Debugger Breakpoints
Option for setting debugger breakpoints at the start or end of an event
broadcast. Available breakpoints depend on the scope of the event:

Scope of Event Available Breakpoints

Start of Broadcast End of Broadcast

Local Yes Yes

Input Yes No

Output No No

Description
Description of this event. You can enter brief descriptions of events in the
hierarchy.

Document Link
Link to online documentation for events in a Stateflow chart. To document a
particular event, set the Document Link property to a Web URL address or
MATLAB expression that displays documentation in a suitable online format
(for example, an HTML file or text in the MATLAB Command Window). When
you click the blue Document Link text, the chart evaluates the expression.

9-11

9 Define Events

Activate a Stateflow Chart Using Input Events

In this section...

“What Is an Input Event?” on page 9-12

“Activate a Stateflow Chart Using Edge Triggers” on page 9-12

“Activate a Stateflow Chart Using Function Calls” on page 9-14

“Association of Input Events with Control Signals” on page 9-15

What Is an Input Event?
An input event occurs outside a chart but is visible only in that chart. This
type of event allows other Simulink blocks, including other Stateflow charts,
to notify a specific chart of events that occur outside it.

You can activate a Stateflow chart via a change in control signal (an
edge-triggered input event) or a function call from a Simulink block (a
function-call input event). The sections that follow describe when and how to
use each type of input event.

Note You cannot mix edge-triggered and function-call input events in a
Stateflow chart. If you try to mix these input events, an error message
appears during simulation.

Activate a Stateflow Chart Using Edge Triggers
An edge-triggered input event causes a Stateflow chart to execute during the
current time step of simulation. This type of input event works only when a
change in control signal acts as a trigger.

When to Use an Edge-Triggered Input Event
Use an edge-triggered input event to activate a chart when your model
requires chart execution at regular (or periodic) intervals.

9-12

Activate a Stateflow® Chart Using Input Events

How to Define an Edge-Triggered Input Event
To define an edge-triggered input event:

1 Add an event to the Stateflow chart, as described in “Define Events” on
page 9-5.

Note You must add an input event to the chart and not to one of its objects.

2 Set the Scope property for the event to Input from Simulink.

A single trigger port appears at the top of the Stateflow block in the
Simulink model.

3 Set the Trigger property to one of these edge triggers.

Edge Trigger
Type Description

Rising Rising edge trigger, where the control signal
changes from either zero or a negative value to a
positive value.

Falling Falling edge trigger, where the control signal
changes from a positive value to either zero or a
negative value.

Either Either rising or falling edge trigger.

In all cases, the signal must cross 0 to be a valid edge trigger. For example,
a signal that changes from -1 to 1 is a valid rising edge, but a signal that
changes from 1 to 2 is not valid.

Example of Using an Edge-Triggered Input Event
The model sf_loop_scheduler shows how to use an edge-triggered input
event to activate a Stateflow chart at regular intervals. For information on
running this model and how it works, see “Schedule One Subsystem in a
Single Step” on page 23-15.

9-13

9 Define Events

Activate a Stateflow Chart Using Function Calls
A function-call input event causes a Stateflow chart to execute during the
current time step of simulation.

Note When you use this type of input event, you must also define a
function-call output event for the block that calls the Stateflow chart.

When to Use a Function-Call Input Event
Use a function-call input event to activate a chart when your model requires
access to output data from the chart in the same time step as the function call.

How to Define a Function-Call Input Event
To define a function-call input event:

1 Add an event to the Stateflow chart, as described in “Define Events” on
page 9-5.

Note You must add an input event to the chart and not to one of its objects.

2 Set the Scope property for the event to Input from Simulink.

A single trigger port appears at the top of the Stateflow block in the
Simulink model.

3 Set the Trigger property to Function call.

Example of Using a Function-Call Input Event
The model sf_loop_scheduler shows how to use a function-call input event
to activate a Stateflow chart. For information on running this model and how
it works, see “Schedule One Subsystem in a Single Step” on page 23-15.

9-14

Activate a Stateflow® Chart Using Input Events

Association of Input Events with Control Signals
When you define one or more input events for a chart, a single trigger port
to the chart block appears. External Simulink blocks can trigger the input
events via a signal or vector of signals connected to the trigger port. The Port
property of an input event associates the event with a specific element of a
control signal vector that connects to the trigger port (see “Port” on page 9-10).

The number of the port that you assign to the input event acts as an index
into the control signal vector. For example, the first element of the signal
vector triggers the input event assigned to input port 1, the fourth element
triggers the input event assigned to input port 4, and so on. You assign port
numbers in the order in which you add the events. However, you can change
these assignments by setting the Port property of an event to the index of the
signal that you use to trigger the event.

Data Types Allowed for Input Events
For multiple input events to a trigger port, the data types of all signals must
be identical. If you use signals of different data types as input events, an error
message appears when you try to simulate your model.

For example, you can mux two input signals of type double to use as input
events to a chart.

9-15

9 Define Events

However, you cannot mux two input signals of different data types, such as
boolean and double.

Behavior of Edge-Triggered Input Events
At any given time step, input events are checked in ascending order based
on their port numbers. The chart awakens once per valid event. For
edge-triggered input events, multiple edges can occur in the same time step,
which wake the chart more than once in that time step. In this situation,
events occur (and wake the chart) in an ascending order based on their port
numbers.

Behavior of Function-Call Input Events
For function-call input events, only one trigger event exists. The caller of the
event explicitly calls and executes the chart. Only one function call can be
valid in a single time step.

9-16

Control States When Function-Call Inputs Reenable Charts

Control States When Function-Call Inputs Reenable Charts

In this section...

“Set Behavior for a Reenabled Chart” on page 9-17

“Behavior When the Parent Is the Model Root” on page 9-18

“Behavior When the Chart Is Inside a Model Block” on page 9-21

Set Behavior for a Reenabled Chart
If you define a function-call input event for a chart, you can control the
behavior of states when this event reenables the chart:

1 Open the Chart properties dialog box.

2 For States When Enabling, select one of these options:

• Held — Maintain most recent values of the states.

• Reset— Revert to the initial values of the states.

• Inherit— Inherit this setting from the parent subsystem.

If... The inherited setting is...

The parent of the chart is the
model root

Held

The chart is inside a Model block Reset

For more information, see “Model
Reference”.

For new charts, the default setting is Held.

9-17

9 Define Events

Behavior When the Parent Is the Model Root
When the parent of your chart is the model root, the following types of
behavior can occur when a function-call input event reenables the chart.

The chart... When you set the States When
Enabling property to...

Maintains the most recent values of
the states

Inherit or Held

Reverts to the initial values of the
states

Reset

What Happens When the Setting Is Inherit or Held
In the following model, the Caller chart uses the event E to wake up and
execute the Callee chart.

9-18

Control States When Function-Call Inputs Reenable Charts

The Caller chart contains two states, A and B.

When you bind E to A:

• Entering A enables the Callee chart.

• Exiting A disables the Callee chart.

• Reentering A reenables the Callee chart.

Each time the Callee chart executes, the output data y increments by one.

In the Chart properties dialog box for Callee, States When Enabling
is Inherit. Because the parent of this chart is the model root, the chart
maintains the most recent values of all states when reenabled.

9-19

9 Define Events

During simulation, Callee maintains the most recent value of its state when
the function-call input event reenables the chart at t = 20 and 40.

The key behaviors are:

Time Interval Caller Chart Callee Chart

0 – 10 State A is active and
enables Callee.

State A executes by
incrementing y.

10 – 20 State B is active and
disables Callee.

State A does not
execute.

20 – 30 State A is active and
reenables Callee.

State A executes by
incrementing y.

30 – 40 State B is active and
disables Callee.

State A does not
execute.

40 – 50 State A is active and
reenables Callee.

State A executes by
incrementing y.

9-20

Control States When Function-Call Inputs Reenable Charts

If States When Enabling is Held, the output is the same.

What Happens When the Setting Is Reset
Suppose that the States When Enabling property is Reset for Callee.
During simulation, Callee reverts to the initial value of its state when the
function-call input event reenables the chart at t = 20 and 40.

Behavior When the Chart Is Inside a Model Block
When your chart is inside a Model block, the following types of behavior can
occur when a function-call input event reenables the chart.

The chart... When you set the States When
Enabling property to...

Maintains the most recent values of
the states

Held

Reverts to the initial values of the
states

Inherit or Reset

9-21

9 Define Events

What Happens When the Setting Is Inherit or Reset
The following model contains a Model block and a scope. (For more
information about using Model blocks, see For more information, see “Model
Reference”..)

The Model block contains the Caller and Callee charts from “Behavior When
the Parent Is the Model Root” on page 9-18.

In the Chart properties dialog box for Callee, States When Enabling is
Inherit. Because this chart is inside a Model block, the chart reverts to the
initial values of all states when reenabled.

9-22

Control States When Function-Call Inputs Reenable Charts

During simulation, Callee reverts to the initial value of its state when the
function-call input event reenables the chart at t = 20 and 40.

The key behaviors are:

Time Interval Caller Chart Callee Chart

0 – 10 State A is active and
enables Callee.

State A executes by
incrementing y.

10 – 20 State B is active and
disables Callee.

State A does not
execute.

20 – 30 State A is active and
reenables Callee.

State A executes by
incrementing y.

30 – 40 State B is active and
disables Callee.

State A does not
execute.

40 – 50 State A is active and
reenables Callee.

State A executes by
incrementing y.

9-23

9 Define Events

If States When Enabling is Reset, the output is the same.

What Happens When the Setting Is Held
Suppose that the States When Enabling property is Held for Callee.
During simulation, Callee maintains the most recent value of its state when
the function-call input event reenables the chart at t = 20 and 40.

9-24

Activate a Simulink® Block Using Output Events

Activate a Simulink Block Using Output Events

In this section...

“What Is an Output Event?” on page 9-25

“Activate a Simulink Block Using Edge Triggers” on page 9-25

“Activate a Simulink Block Using Function Calls” on page 9-34

“Association of Output Events with Output Ports” on page 9-37

“Access Simulink Subsystems Triggered By Output Events” on page 9-38

What Is an Output Event?
An output event is an event that occurs in a Stateflow chart but is visible in
Simulink blocks outside the chart. This type of event allows a chart to notify
other blocks in a model about events that occur in the chart.

You use output events to activate other blocks in the same model. You can
define multiple output events in a chart, where each output event maps to an
output port (see “Port” on page 9-10).

Note Output events must be scalar.

Activate a Simulink Block Using Edge Triggers
An edge-triggered output event activates a Simulink block to execute during
the current time step of simulation. This type of output event works only
when a change in control signal acts as a trigger.

When to Use an Edge-Triggered Output Event
Use an edge-triggered output event to activate a Simulink subsystem when
your model requires subsystem execution at regular (or periodic) intervals.

How to Define an Edge-Triggered Output Event
To define an edge-triggered output event:

9-25

9 Define Events

1 Add an event to the Stateflow chart, as described in “Define Events” on
page 9-5.

2 Set the Scope property for the event to Output to Simulink.

For each output event you define, an output port appears on the Stateflow
block.

3 Set the Trigger property of the output event to Either Edge.

Note Unlike edge-triggered input events, you cannot specify a Rising or
Falling edge trigger.

Example of Using an Edge-Triggered Output Event
The following model shows how to use an edge-triggered output event to
activate triggered subsystems at regular intervals.

The chart contains the edge-triggered output event e1 and the local data a,
which switches between 0 and 1 during simulation.

9-26

Activate a Simulink® Block Using Output Events

In a chart, the Trigger property of an edge-triggered output event is always
Either Edge. However, Simulink triggered subsystems can have a Rising,
Falling, or Either Edge trigger. This model shows the difference between
triggering a rising edge subsystem and an either edge subsystem.

The output event e1
triggers the...

On... When the data a
switches...

Either edge subsystem Every event broadcast From 0 to 1, or from 1
to 0

Rising edge subsystem Every other event
broadcast

From 0 to 1

9-27

9 Define Events

When you simulate the model, the scope shows these results.

Queuing Behavior for Broadcasting an Edge-Triggered Output
Event Multiple Times
If a chart tries to broadcast the same edge-triggered output event multiple
times in a single time step, the chart dispatches only one of these broadcasts
in the present time step. However, the chart queues up any pending
broadcasts for dispatch — that is, one at a time in successive time steps. Each
time the chart wakes up in successive time steps, if any pending broadcasts
exist for the output event, the chart signals the edge-triggered subsystem
for execution. Based on the block sorted order of the Simulink model, the
edge-triggered subsystem executes. (For details, see “Control and Display the
Sorted Order” in the Simulink documentation.)

Note For information on what happens for function-call output events,
see “Interleaving Behavior for Broadcasting a Function-Call Output Event
Multiple Times” on page 9-35.

9-28

Activate a Simulink® Block Using Output Events

Queue Edge-Triggered Output Event Broadcasts
In this model, the chart Caller uses the edge-triggered output event
output_cmd to activate the chart Callee.

The chart Caller tries to broadcast the same edge-triggered output event four
times in a single time step, as shown.

Each time the chart Callee is activated, the output data y increments by one.

9-29

9 Define Events

When you simulate the model, you see this output in the scope.

At t = 1, the chart Caller dispatches only one of the four output events.
Therefore, the chart Callee executes once during that time step. However, the
chart Caller queues up the other three event broadcasts for future dispatch
— that is, one at a time for t = 2, 3, and 4. Each time Caller wakes up in
successive time steps, it activates Callee for execution. Therefore, the action
y++ occurs once per time step at t = 1, 2, 3, and 4. During simulation, Callee
executes based on the block sorted order of the Simulink model.

Approximate a Function Call Using Queuing Behavior
When you cannot use a function-call output event, such as for HDL code
generation, you can approximate a function call by using:

• An edge-triggered output event

• An enabled subsystem

• Two consecutive event broadcasts

9-30

Activate a Simulink® Block Using Output Events

Note While you can approximate a function call, a subtle difference in
execution behavior exists. Execution of a function-call subsystem occurs
during execution of the chart action that provides the trigger. However,
execution of an enabled subsystem occurs after execution of that chart action
is complete.

In the following model, the chart Caller uses the edge-triggered output event
output_cmd to activate the enabled subsystem. The scope shows the value of
the output event during simulation.

9-31

9 Define Events

The chart Caller broadcasts the edge-triggered output event using a send
action.

When you simulate the model, you see the following output in the scope.
The simulation runs for 40 seconds.

When simulation starts, the value of output_cmd is 0. At t = 20, the chart
dispatches output_cmd. Because this value changes to 1, the enabled
subsystem becomes active and executes during that time step. Because no

9-32

Activate a Simulink® Block Using Output Events

other event broadcasts occur, the enabled subsystem continues to execute at
every time step until simulation ends. Therefore, the Display block shows a
final value of 40.

To approximate a function call, add a second event broadcast in the same
action.

When you simulate the model, you see the following output in the scope.
The simulation runs for 40 seconds.

9-33

9 Define Events

When simulation starts, the value of output_cmd is 0. At t = 20, the chart
dispatches output_cmd. Because this value changes to 1, the enabled
subsystem becomes active and executes during that time step. The chart
also queues up the second event for dispatch at the next time step. At t = 21,
the chart dispatches the second output event, which changes the value of
output_cmd to 0. Therefore, the enabled subsystem stops executing and the
Display block shows a final value of 20.

The queuing behavior of consecutive edge-triggered output events enables you
to approximate a function call with an enabled subsystem.

Activate a Simulink Block Using Function Calls
A function-call output event activates a Simulink block to execute during the
current time step of simulation. This type of output event works only on
blocks that you can trigger with a function call.

When to Use a Function-Call Output Event
Use a function-call output event to activate a Simulink block when your
model requires access to output data from the block in the same time step as
the function call.

How to Define a Function-Call Output Event
To define a function-call output event:

1 Add an event to the chart, as described in “Define Events” on page 9-5.

2 Set the Scope property for the event to Output to Simulink.

For each output event you define, an output port appears on the Stateflow
block.

3 Set the Scope property of the output event to Function call.

Example of Using a Function-Call Output Event
The model sf_loop_scheduler shows how to use a function-call output event
to activate a Simulink block. For information on running this model and how
it works, see “Schedule One Subsystem in a Single Step” on page 23-15.

9-34

Activate a Simulink® Block Using Output Events

The function-call output
event...

Of the chart... Activates...

call Edge to Function The chart Looping Scheduler

A1 Looping Scheduler The function-call subsystem
A1

Interleaving Behavior for Broadcasting a Function-Call Output
Event Multiple Times
If a chart tries to broadcast the same function-call output event multiple times
in a single time step, the chart dispatches all the broadcasts in that time step.

9-35

9 Define Events

Execution of function-call subsystems is interleaved with the execution of
the function-call initiator so that output from the function-call subsystem is
available right away in the function-call initiator. (For details, see “Create a
Function-Call Subsystem” in the Simulink documentation.)

Note For information on what happens for edge-triggered output events,
see “Queuing Behavior for Broadcasting an Edge-Triggered Output Event
Multiple Times” on page 9-28.

Interleave Function-Call Output Event Broadcasts
In this model, the chart Caller uses the function-call output event output_cmd
to activate the chart Callee.

The chart Caller tries to broadcast the same function-call output event four
times in a single time step, as shown.

9-36

Activate a Simulink® Block Using Output Events

Each time the chart Callee is activated, the output data y increments by one.

When you simulate the model, you see this output in the scope.

At t = 1, the chart Caller dispatches all four output events. Therefore, the
chart Callee executes four times during that time step. Therefore, the action
y++ also occurs four times in that time step. During simulation, execution of
Callee is interleaved with execution of Caller so that output from Callee is
available right away.

Association of Output Events with Output Ports
The Port property associates an output event with an output port on the
chart block that owns the event. This property specifies the position of the
output port relative to others.

9-37

9 Define Events

All output ports appear sequentially from top to bottom. Output data ports
appear sequentially above output event ports on the right side of a chart block.
As you add output events, their default Port properties appear sequentially
at the end of the current port list.

You can change the default port assignment of an event by resetting its Port
property. When you change the Port property for an output event, the ports
for the remaining output events automatically renumber, preserving the
original order. For example, assume you have three output events, OE1, OE2,
and OE3, which associate with the output ports 4, 5, and 6, respectively. If you
change the Port property for OE2 to 6, the ports for OE1 and OE3 renumber to
4 and 5, respectively.

Access Simulink Subsystems Triggered By Output
Events
To access the Simulink subsystem associated with a Stateflow output event:

1 In your chart, right-click the state or transition that contains the event of
interest and select Explore.

2 Select the desired event.

The Simulink subsystem associated with the event appears.

9-38

Control Chart Execution Using Implicit Events

Control Chart Execution Using Implicit Events

In this section...

“What Are Implicit Events?” on page 9-39

“Keywords for Implicit Events” on page 9-39

“Transition Between States Using Implicit Events” on page 9-40

“Execution Order of Transitions with Implicit Events” on page 9-41

What Are Implicit Events?
Implicit events are built-in events that occur when a chart executes:

• Chart waking up

• Entry into a state

• Exit from a state

• Value assigned to an internal data object

These events are implicit because you do not define or trigger them explicitly.
Implicit events are children of the chart in which they occur and are visible
only in the parent chart.

Keywords for Implicit Events
To reference implicit events, action statements use this syntax:

event(object)

where event is the name of the implicit event and object is the state or
data in which the event occurs.

Each keyword below generates implicit events in the action language notation
for states and transitions.

9-39

9 Define Events

Implicit Event Meaning

change(data_name)
or chg(data_name)

Specifies and implicitly generates a local event
when Stateflow software writes a value to the
variable data_name.

The variable data_name cannot be
machine-parented data. This implicit event
works only with data that is at the chart level or
lower in the hierarchy. For machine-parented data,
use change detection operators to determine when
the data value changes. For more information, see
“Detect Changes in Data Values” on page 10-81.

enter (state_name)
or en(state_name)

Specifies and implicitly generates a local event
when the specified state_name is entered.

exit (state_name)
or ex(state_name)

Specifies and implicitly generates a local event
when the specified state_name is exited.

tick Specifies and implicitly generates a local event when
the chart of the action being evaluated awakens.

wakeup Same as the tick keyword.

If more than one object has the same name, use the dot operator to qualify
the name of the object with the name of its parent. These examples are valid
references to implicit events:

enter(switch_on)
en(switch_on)
change(engine.rpm)

Note The tick (or wakeup) event refers to the chart containing the action
being evaluated. The event cannot refer to a different chart by argument.

Transition Between States Using Implicit Events
This example illustrates use of implicit tick events.

9-40

Control Chart Execution Using Implicit Events

Fan and Heater are parallel (AND) superstates. The first time that an event
awakens the Stateflow chart, the states Fan.Off and Heater.Off become
active.

Assume that you are running a discrete-time simulation. Each time that the
chart awakens, a tick event broadcast occurs. After four broadcasts, the
transition from Fan.Off to Fan.On occurs. Similarly, after three broadcasts,
the transition from Heater.Off to Heater.On occurs.

For information about the after operator, see “Control Chart Execution
Using Temporal Logic” on page 10-61.

Execution Order of Transitions with Implicit Events
Suppose that:

• Your chart contains parallel states.

• In multiple parallel states, the same implicit event is used to guard a
transition from one substate to another.

9-41

9 Define Events

When multiple transitions are valid in the same time step, the transitions
execute based on the order in which they were created in the chart. This order
does not necessarily match the activation order of the parallel states that
contain the transitions. For example, consider the following chart:

When the transition from IV.HERE to IV.THERE occurs, the condition
ex(IV.HERE) is valid for the transitions from A to B for the parallel states I,
II, and III. The three transitions from A to B execute in the order in which
they were created: in state I, then II, and finally III. This order does not
match the activation order of those states.

To ensure that valid transitions execute in the same order that the parallel
states become active, use the in operator instead of implicit enter or exit
events:

9-42

Control Chart Execution Using Implicit Events

With this modification, the transitions from A to B occur in the same order as
activation of the parallel states. For more information about the in operator,
see “Check State Activity” on page 10-94.

9-43

9 Define Events

Count Events

In this section...

“When to Count Events” on page 9-44

“How to Count Events” on page 9-44

“Collect and Store Input Data in a Vector” on page 9-44

When to Count Events
Count events when you want to keep track of explicit or implicit events in
your chart.

How to Count Events
You can count occurrences of explicit and implicit events using the
temporalCount operator. For information about the syntax of this operator,
see “Operators for Event-Based Temporal Logic” on page 10-62.

Collect and Store Input Data in a Vector
The following model collects and stores input data in a vector during chart
simulation:

The chart contains two states and one MATLAB function:

9-44

Count Events

Stage 1: Observation of Input Data
The chart awakens and remains in the Observe state, until the input data u is
positive. Then, the transition to the state Collect_Data occurs.

Stage 2: Storage of Input Data
After the state Collect_Data becomes active, the value of the input data u
is assigned to the first element of the vector y. While this state is active,
each subsequent value of u is assigned to successive elements of y using the
temporalCount operator.

Stage 3: Display of Data Stored in the Vector
After 10 ticks, the data collection process ends, and the transition to the state
Observe occurs. Just before the state Collect_Data becomes inactive, a
function call to status displays the vector data at the MATLAB prompt.

For more information about ticks in a Stateflow chart, see “Control Chart
Execution Using Implicit Events” on page 9-39.

9-45

9 Define Events

Best Practices for Using Events in Stateflow Charts
Use the send command to broadcast explicit events in actions

In state actions (entry, during, exit, and on event_name) and condition
actions, use the send command to broadcast explicit events. Using this
command enhances readability of a chart and ensures that explicit events are
not mistaken for data. See “Directed Event Broadcasting” on page 10-57 for
details.

Do not mix edge-triggered input events and function-call input
events in a chart

If you mix input events that use edge triggers and function calls, the chart
detects this violation during parsing or code generation. An error message
appears and chart execution stops.

Avoid using the enter implicit event to check state activity

Use the in operator instead of the enter implicit event to check state activity.
See “Check State Activity” on page 10-94 for details.

9-46

10

Use Actions in Charts

• “Supported Action Types for States and Transitions” on page 10-2

• “Combine State Actions to Eliminate Redundant Code” on page 10-16

• “Supported Operations on Chart Data” on page 10-20

• “Supported Symbols in Actions” on page 10-28

• “Call C Functions in C Charts” on page 10-32

• “Access Built-In MATLAB Functions and Workspace Data” on page 10-41

• “Use Data and Event Arguments in Actions” on page 10-54

• “Use Arrays in Actions” on page 10-55

• “Broadcast Events to Synchronize States” on page 10-57

• “Control Chart Execution Using Temporal Logic” on page 10-61

• “Detect Changes in Data Values” on page 10-81

• “Check State Activity” on page 10-94

• “Control Function-Call Subsystems Using Bind Actions” on page 10-104

10 Use Actions in Charts

Supported Action Types for States and Transitions

In this section...

“State Action Types” on page 10-2

“Transition Action Types” on page 10-7

“Execution of Actions in States and Transitions” on page 10-12

State Action Types
States can have different action types, which include entry, during, exit,
bind, and, on event_name actions. The actions for states are assigned to an
action type using label notation with this general format:

name/
entry:entry actions
during:during actions
exit:exit actions
bind:data_name, event_name
on event_name:on event_name actions

10-2

Supported Action Types for States and Transitions

For example, different state action types appear in the following chart.

After you enter the name in the state label, enter a carriage return and
specify the actions for the state. The order you use to enter action types in
the label does not matter. If you do not specify the action type explicitly for a
statement, the chart treats that statement as an entry action.

This table summarizes the different state action types.

State Action Abbreviation Description

entry en Executes when the state
becomes active

exit ex Executes when the state is
active and a transition out of
the state occurs

during du Executes when the state is
active and a specific event
occurs

10-3

10 Use Actions in Charts

State Action Abbreviation Description

bind none Binds an event or data object
so that only that state and
its children can broadcast the
event or change the data value

on event_name none Executes when the state
is active and it receives a
broadcast of event_name

on after(n,
event_name)

none Executes when the state is
active and after it receives n
broadcasts of event_name

on before(n,
event_name)

none Executes when the state is
active and before it receives n
broadcasts of event_name

on at(n, event_name) none Executes when the state is
active and it receives exactly n
broadcasts of event_name

on every(n,
event_name)

none Executes when the state is
active and upon receipt of every
n broadcasts of event_name

For a full description of entry, exit, during, bind, and on event_name
actions, see the sections that follow. For more information about the after,
before, at, and every temporal logic operators, see “Control Chart Execution
Using Temporal Logic” on page 10-61.

In the preceding table, the temporal logic operators use the syntax of
event-based temporal logic. For absolute-time temporal logic, the operators use
a different syntax. For details, see “Operators for Absolute-Time Temporal
Logic” on page 10-68.

Entry Actions
Entry actions are preceded by the prefix entry or en for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,). If you enter the name

10-4

Supported Action Types for States and Transitions

and slash followed directly by actions, the actions are interpreted as entry
action(s). This shorthand is useful if you are specifying entry actions only.

Entry actions for a state execute when the state is entered (becomes active). In
the preceding example in “State Action Types” on page 10-2, the entry action
id = x+y executes when the state A is entered by the default transition.

For a detailed description of the semantics of entering a state, see “Steps for
Entering a State” on page 3-68 and “State Execution Example” on page 3-70.

Exit Actions
Exit actions are preceded by the prefix exit or ex for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

Exit actions for a state execute when the state is active and a transition out of
the state occurs.

For a detailed description of the semantics of exiting a state, see “Steps for
Exiting an Active State” on page 3-70 and “State Execution Example” on
page 3-70.

During Actions
During actions are preceded by the prefix during or du for short, followed by a
required colon (:), followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,).

During actions for a state execute when the state is active and an event occurs
and no valid transition to another state is available.

For a detailed description of the semantics of executing an active state, see
“Steps for Executing an Active State” on page 3-69 and “State Execution
Example” on page 3-70.

Bind Actions
Bind actions are preceded by the prefix bind, followed by a required colon (:),
followed by one or more events or data. Separate multiple data/events with
a carriage return, semicolon (;), or a comma (,).

10-5

10 Use Actions in Charts

Bind actions bind the specified data and events to a state. Data bound to a
state can be changed by the actions of that state or its children. Other states
and their children are free to read the bound data, but they cannot change it.
Events bound to a state can be broadcast only by that state or its children.
Other states and their children are free to listen for the bound event, but
they cannot send it.

Bind actions apply to a chart whether the binding state is active or not. In
the preceding example in “State Action Types” on page 10-2, the bind action
bind: id, time_out for state A binds the data id and the event time_out
to state A. This binding prevents any other state (or its children) in the chart
from changing id or broadcasting event time_out.

If another state includes actions that change data or broadcast events that
bind to another state, a parsing error occurs. The following example shows a
few of these error conditions:

10-6

Supported Action Types for States and Transitions

State Action Reason for Parse Error

bind: id in state B Only one state can change the data
id, which binds to state A

entry: time_out in state C Only one state can broadcast the
event time_out, which binds to state
A

Binding a function-call event to a state also binds the function-call subsystem
that it calls. In this case, the function-call subsystem is enabled when the
binding state is entered and disabled when the binding state is exited. For
more information about this behavior, see “Control Function-Call Subsystems
Using Bind Actions” on page 10-104.

On Event_Name Actions
On event_name actions are preceded by the prefix on, followed by a unique
event, event_name, followed by one or more actions. Separate multiple actions
with a carriage return, semicolon (;), or a comma (,). You can specify actions
for more than one event by adding additional on event_name lines for different
events. If you want different events to trigger different actions, enter multiple
on event_name action statements in the state’s label, each specifying the
action for a particular event or set of events, for example:

on ev1: action1();
on ev2: action2();

On event_name actions execute when the state is active and the event
event_name is received by the state. This action coincides with execution of
during actions for the state.

For a detailed description of the semantics of executing an active state, see
“Steps for Executing an Active State” on page 3-69.

Transition Action Types
In “State Action Types” on page 10-2, you see how you can attach actions to
the label for a state. You can also attach actions to a transition on its label.
Transitions can have different action types, which include event triggers,

10-7

10 Use Actions in Charts

conditions, condition actions, and transition actions. The action types follow
the label notation with this general format:

event_trigger[condition]{condition_action}/transition_action

The following example shows typical transition label syntax:

Transition Event
Trigger

Condition Condition
Action

Transition
Action

State A to
state C

event1 temp > 50 func1() None

State A to
state B

event2 None None data1 = 5

Event Triggers
In transition label syntax, event triggers appear first as the name of an event.
They have no distinguishing special character to separate them from other
actions in a transition label. In the example in “Transition Action Types” on

10-8

Supported Action Types for States and Transitions

page 10-7, both transitions from state A have event triggers. The transition
from state A to state B has the event trigger event2 and the transition from
state A to state C has the event trigger event1.

10-9

10 Use Actions in Charts

Event triggers specify an event that causes the transition to be taken, provided
the condition, if specified, is true. Specifying an event is optional. The absence
of an event indicates that the transition is taken upon the occurrence of any
event. Multiple events are specified using the OR logical operator (|).

Conditions
In transition label syntax, conditions are Boolean expressions enclosed in
square brackets ([]). In the example in “Transition Action Types” on page
10-7, the transition from state A to state C has the condition temp > 50.

A condition is a Boolean expression to specify that a transition occurs given
that the specified expression is true. Follow these guidelines for defining
and using conditions:

• The condition expression must be a Boolean expression that evaluates to
true (1) or false (0).

• The condition expression can consist of any of the following:

- Boolean operators that make comparisons between data and numeric
values

- A function that returns a Boolean value

- An in(state_name) condition that evaluates to true when the state
specified as the argument is active (see “Check State Activity” on page
10-94)

Note A chart cannot use the in condition to trigger actions based on the
activity of states in other charts.

- Temporal logic conditions (see “Control Chart Execution Using Temporal
Logic” on page 10-61)

• The condition expression can call a graphical function, truth table function,
or MATLAB function that returns a numeric value.

For example, [test_function(x, y) < 0] is a valid condition expression.

10-10

Supported Action Types for States and Transitions

Note If the condition expression calls a function with multiple return
values, only the first value applies. The other return values are not used.

• The condition expression should not call a function that causes the chart to
change state or modify any variables.

• Boolean expressions can be grouped using & for expressions with AND
relationships and | for expressions with OR relationships.

• Assignment statements are not valid condition expressions.

• Unary increment and decrement actions are not valid condition expressions.

Condition Actions
In transition label syntax, condition actions follow the transition condition
and are enclosed in curly braces ({}). In the example in “Transition Action
Types” on page 10-7, the transition from state A to state C has the condition
action func1(), a function call.

Condition actions are executed as soon as the condition is evaluated as true,
but before the transition destination has been determined to be valid. If no
condition is specified, an implied condition evaluates to true and the condition
action is executed.

Note A condition is checked only if the event trigger (if any) is active.

Transition Actions
In transition label syntax, transition actions are preceded with a forward
slash (/). In the example in “Transition Action Types” on page 10-7, the
transition from state A to state B has the transition action data1 = 5.

Transition actions execute only after the complete transition path is taken.
They execute after the transition destination has been determined to be valid,
and the condition, if specified, is true. If the transition consists of multiple
segments, the transition action executes only after the entire transition path
to the final destination is determined to be valid.

10-11

10 Use Actions in Charts

Execution of Actions in States and Transitions
The following chart with C as the action language shows how different
constructs interact during simulation:

10-12

Supported Action Types for States and Transitions

When you simulate the model, you get the following results:

10-13

10 Use Actions in Charts

The following actions occur in the TransAction state:

Time What Happens in the TransAction State

State TA becomes active.0.0

In TA, the entry action executes by setting the value of outVal to 0.

The transition from TA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The transition action does not execute, because the full transition path from J1 to TB is
not complete.

Evaluation of the condition between J2 and TB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and TB occurs, which returns false. Therefore,
execution returns to TA.

0.1

In TA, the during action executes by decrementing the value of outVal by 1.

0.2 –
1.0

The execution pattern from t = 0.1 repeats for each time step.

The transition from TA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The transition action does not execute, because the full transition path from J1 to TB is
not complete.

Evaluation of the condition between J2 and TB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and TB occurs, which returns true.

State TB becomes active.

1.1

Because the transition from J3 to TB is now complete, the transition action executes by
setting the value of outVal to 0.

10-14

Supported Action Types for States and Transitions

The following actions occur in the CondAction state:

Time What Happens in the CondAction State

State CA becomes active.0.0

In CA, the entry action executes by setting the value of outVal_2 to 0.

The transition from CA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The condition action executes by decrementing the value of outVal_2 by 2.

Evaluation of the condition between J2 and CB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and CB occurs, which returns false. Therefore,
execution returns to CA.

0.1

In CA, the during action executes by decrementing the value of outVal_2 by 1.

0.2 –
0.3

The execution pattern from t = 0.1 repeats for each time step.

The transition from CA to junction J1 occurs, because the path is unconditional.

Evaluation of the condition between J1 and J2 occurs, which returns true.

The condition action executes by decrementing the value of outVal_2 by 2.

Evaluation of the condition between J2 and CB occurs, which returns false. Therefore,
execution returns to J1.

The transition from J1 to J3 occurs, because the path is unconditional.

Evaluation of the condition between J3 and CB occurs, which returns true.

The condition action executes by setting the value of outVal_2 to 0.

0.4

State CB becomes active.

10-15

10 Use Actions in Charts

Combine State Actions to Eliminate Redundant Code

In this section...

“State Actions You Can Combine” on page 10-16

“Why Combine State Actions” on page 10-16

“How to Combine State Actions” on page 10-17

“Order of Execution of Combined Actions” on page 10-18

“Rules for Combining State Actions” on page 10-19

State Actions You Can Combine
You can combine entry, during, and exit actions that execute the same
tasks in a state.

Why Combine State Actions
By combining state actions that execute the same tasks, you eliminate
redundant code. For example:

Separate Actions Equivalent Combined Actions

entry:
y = 0;
y++;

during: y++;

entry: y = 0;
entry, during: y++;

en:
fcn1();
fcn2();

du: fcn1();
ex: fcn1();

en, du, ex: fcn1();
en: fcn2();

Combining state actions this way produces the same chart execution behavior
(semantics) and generates the same code as the equivalent separate actions.

10-16

Combine State Actions to Eliminate Redundant Code

See Also

• “How to Combine State Actions” on page 10-17

• “Order of Execution of Combined Actions” on page 10-18

• “Rules for Combining State Actions” on page 10-19

How to Combine State Actions
Combine a set of entry, during, and/or exit actions that perform the same
task as a comma-separated list in a state. Here is the syntax:

entry, during, exit: task1; task2;...taskN;

You can also use the equivalent abbreviations:

en, du, ex: task1; task2;...taskN;

Valid Combinations
You can use any combination of the three actions. For example, the following
combinations are valid:

• en, du:

• en, ex:

• du, ex:

• en, du, ex:

You can combine actions in any order in the comma-separated list. For
example, en, du: gives the same result as du, en:. See “Order of Execution
of Combined Actions” on page 10-18.

Invalid Combinations
You cannot combine two or more actions of the same type. For example, the
following combinations are invalid:

• en, en:

• ex, en, ex:

10-17

10 Use Actions in Charts

• du, du, ex:

If you combine multiple actions of the same type, you receive a warning that
the chart executes the action only once.

Order of Execution of Combined Actions
States execute combined actions in the same order as they execute separate
actions:

1 Entry actions first, from top to bottom in the order they appear in the state

2 During actions second, from top to bottom

3 Exit actions last, from top to bottom

The order in which you combine actions does not affect state execution
behavior. For example:

This state... Executes actions in this order...

1 en: y = 0;

2 en: y++;

3 du: y++;

1 en: y++;

2 en: y = 0;

3 du: y++;

10-18

Combine State Actions to Eliminate Redundant Code

This state... Executes actions in this order...

1 en: y++;

2 en: y = 0;

3 du: y++;

1 en: y++;

2 en: y = 10;

3 du: y++;

4 ex: y = 10;

Rules for Combining State Actions

• Do not combine multiple actions of the same type.

• Do not create data or events that have the same name as the action
keywords: entry, en, during, du, exit, ex.

10-19

10 Use Actions in Charts

Supported Operations on Chart Data

In this section...

“Binary and Bitwise Operations” on page 10-20

“Unary Operations” on page 10-22

“Unary Actions” on page 10-23

“Assignment Operations” on page 10-23

“Pointer and Address Operations” on page 10-24

“Type Cast Operations” on page 10-25

“Replace Operators with Target-Specific Implementations” on page 10-26

Binary and Bitwise Operations
The table below summarizes the interpretation of all binary operators in C
charts. These operators work with the following order of precedence (0 =
highest, 10 = lowest). Binary operators evaluate from left to right.

You can specify that the binary operators &, ^, |, &&, and || are interpreted
as bitwise operators in Stateflow generated C code for a chart or for all the
charts in a model. See these individual operators in the table below for
specific binary or bitwise operator interpretations.

Example Precedence Description

a ^ b 0 Operand a raised to power b

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box. See “Specify Chart
Properties” on page 21-5.

a * b 1 Multiplication

a / b 1 Division

a %% b 1 Remainder

a + b 2 Addition

10-20

Supported Operations on Chart Data

Example Precedence Description

a - b 2 Subtraction

a >> b 3 Shift operand a right by b bits.
Noninteger operands for this operator
are first cast to integers before the bits
are shifted.

a << b 3 Shift operand a left by b bits. Noninteger
operands for this operator are first cast
to integers before the bits are shifted.

a > b 4 Comparison of the first operand greater
than the second operand

a < b 4 Comparison of the first operand less than
the second operand

a >= b 4 Comparison of the first operand greater
than or equal to the second operand

a <= b 4 Comparison of the first operand less than
or equal to the second operand

a == b 5 Comparison of equality of two operands

a ~= b 5 Comparison of inequality of two operands

a != b 5 Comparison of inequality of two operands

a <> b 5 Comparison of inequality of two operands

a & b 6 One of the following:

• Bitwise AND of two operands

Enabled when you selectEnable C-bit
operations in the Chart properties
dialog box (default). See “Specify
Chart Properties” on page 21-5.

• Logical AND of two operands

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box.

10-21

10 Use Actions in Charts

Example Precedence Description

a ^ b 7 Bitwise XOR of two operands

Enabled when you select Enable C-bit
operations in the Chart properties
dialog box (default). See “Specify Chart
Properties” on page 21-5.

a | b 8 One of the following:

• Bitwise OR of two operands

Enabled when you selectEnable C-bit
operations in the Chart properties
dialog box (default). See “Specify
Chart Properties” on page 21-5.

• Logical OR of two operands

Enabled when you clear Enable C-bit
operations in the Chart properties
dialog box.

a && b 9 Logical AND of two operands

a || b 10 Logical OR of two operands

Unary Operations
The following unary operators are supported in C charts. Unary operators
have higher precedence than binary operators and are evaluated right to
left (right associative).

Example Description

~a Logical NOT of a

Complement of a (if bitops is enabled)

!a Logical NOT of a

-a Negative of a

10-22

Supported Operations on Chart Data

Unary Actions
The following unary actions are supported in C charts.

Example Description

a++ Increment a

a-- Decrement a

Assignment Operations
The following assignment operations are supported in C charts.

Example Description

a = expression Simple assignment

a := expression Used primarily with fixed-point numbers. See
“Assignment (=, :=) Operations” on page 19-34 for a
detailed description.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

The following assignment operations are supported in C charts when Enable
C-bit operations is selected in the properties dialog box for the chart. See
“Specify Chart Properties” on page 21-5.

10-23

10 Use Actions in Charts

Example Description

a |= expression Equivalent to a = a | expression (bit operation). See
operation a | b in “Binary and Bitwise Operations”
on page 10-20.

a &= expression Equivalent to a = a & expression (bit operation). See
operation a & b in “Binary and Bitwise Operations”
on page 10-20.

a ^= expression Equivalent to a = a ^ expression (bit operation). See
operation a ^ b in “Binary and Bitwise Operations”
on page 10-20.

Pointer and Address Operations
The address operator (&) is available in C charts for use with both Stateflow
and custom code variables. The pointer operator (*) is available for use only
with custom code variables.

Note The parser uses a relaxed set of restrictions and does not catch syntax
errors until compile time.

The following examples show syntax that is valid for both Stateflow and
custom code variables. The prefix cc_ shows the places where you can use
only custom code variables, and the prefix sfcc_ shows the places where you
can use either Stateflow or custom code variables.

cc_varPtr = &sfcc_var;
cc_ptr = &sfcc_varArray[<expression>];
cc_function(&sfcc_varA, &sfcc_varB, &sfcc_varC);
cc_function(&sfcc_sf.varArray[<expression>]);

The following examples show syntax that is valid only for custom code
variables.

varStruct.field = <expression>;
(*varPtr) = <expression>;
varPtr->field = <expression>;

10-24

Supported Operations on Chart Data

myVar = varPtr->field;
varPtrArray[index]->field = <expression>;
varPtrArray[expression]->field = <expression>;
myVar = varPtrArray[expression]->field;

Type Cast Operations
You can use type cast operators to convert a value of one type to a value that
can be represented in another type. Normally, you do not need to use type
cast operators in actions because Stateflow software checks whether the
types involved in a variable assignment differ and compensates by inserting
the required type cast operator of the target language (typically C) in the
generated code. However, external (custom) code might require data in a
different type from those currently available. In this case, Stateflow software
cannot determine the required type casts, and you must explicitly use a type
cast operator to specify the target language type cast operator to generate.

For example, you might have a custom code function that requires integer
RGB values for a graphic plot. You might have these values in Stateflow data,
but only in data of type double. To call this function, you must type cast the
original data and assign the result to integers, which you use as arguments
to the function.

Stateflow type cast operations have two forms: the MATLAB type cast form
and the explicit form using the cast operator. These operators and the special
type operator, which works with the explicit cast operator, are described in
the topics that follow.

MATLAB Form Type Cast Operators
The MATLAB type casting form has the general form

<type_op>(<expression>)

<type_op> is a conversion type operator that can be double, single, int32,
int16, int8, uint32, uint16, uint8, or boolean. <expression> is the
expression to be converted. For example, you can cast the expression x+3 to a
16-bit unsigned integer and assign its value to the data y as follows:

y = uint16(x+3)

10-25

10 Use Actions in Charts

Explicit Type Cast Operator
You can also type cast with the explicit cast operator, which has the following
general form:

cast(<expression>,<type>)

As in the preceding example, the statement

y = cast(x+3,uint16)

will cast the expression x+3 to a 16-bit unsigned integer and assign it to y,
which can be of any type.

type Operator
To make type casting more convenient, you can use a type operator that
works with the explicit type cast operator cast to let you assign types to
data based on the types of other data.

The type operator returns the type of an existing Stateflow data according to
the general form

type(<data>)

where <data> is the data whose type you want to return.

The return value from a type operation can be used only in an explicit cast
operation. For example, if you want to convert the data y to the same type as
that of data z, use the following statement:

cast(y,type(z))

In this case, the data z can have any acceptable Stateflow type.

Replace Operators with Target-Specific
Implementations
Using the code replacement library published by Embedded Coder code
generation software, you can replace a subset of arithmetic operators with
target-specific implementations. Operator entries of the code replacement

10-26

Supported Operations on Chart Data

library can specify integral or fixed-point operand and result patterns.
Operator entries can be used for the following built-in operators:

+
-
*
/

For example, you can replace an expression such as y = u1 + u2 with a
target-specific implementation, as long as u1, u2, and y have types that permit
a match with an addition entry in the code replacement library.

C chart semantics might limit operator entry matching because the chart uses
the target integer size as its intermediate type in all arithmetic expressions.
For example, suppose a Stateflow action contains this arithmetic expression:

y = (u1 + u2) % 3

This expression computes the intermediate addition into a target integer. If
the target integer size is 32 bits, you cannot replace this expression with
an addition operator from the code replacement library to produce a signed
16-bit result, without a loss of precision.

To learn how to create and register code replacement tables, see “Introduction
to Code Replacement Libraries”.

10-27

10 Use Actions in Charts

Supported Symbols in Actions

In this section...

“Boolean Symbols, true and false” on page 10-28

“Comment Symbols, %, //, /*” on page 10-29

“Hexadecimal Notation Symbols, 0xFF” on page 10-29

“Infinity Symbol, inf” on page 10-29

“Line Continuation Symbol, ...” on page 10-30

“Literal Code Symbol, $” on page 10-30

“MATLAB Display Symbol, ;” on page 10-30

“Single-Precision Floating-Point Number Symbol, F” on page 10-30

“Time Symbol, t” on page 10-31

Boolean Symbols, true and false
Use the symbols true and false to represent Boolean constants. You can use
these symbols as scalars in expressions. Examples include:

cooling_fan = true;
heating_fan = false;

Tip These symbols are case-sensitive. Therefore, TRUE and FALSE are not
Boolean symbols.

Do not use true and false in the following cases. Otherwise, error messages
appear.

• Left-hand side of assignment statements

- true++;

- false += 3;

- [true, false] = my_function(x);

10-28

Supported Symbols in Actions

• Argument of the change implicit event (see “Control Chart Execution Using
Implicit Events” on page 9-39)

- change(true);

- chg(false);

• Indexing into a vector or matrix (see “Assign and Access Vector and Matrix
Values” on page 15-8)

- x = true[1];

- y = false[1][1];

Note If you define true and false as Stateflow data objects, your custom
definitions of true and false override the built-in Boolean constants.

Comment Symbols, %, //, /*
Use the symbols %, //, and /* to represent comments as shown in these
examples:

% MATLAB comment line
// C++ comment line
/* C comment line */

You can also include comments in generated code for an embedded target (see
“Code Generation Pane: Comments”. C chart comments in generated code
use multibyte character code. Therefore, you can have code comments with
characters for non-English alphabets, such as Japanese Kanji characters.

Hexadecimal Notation Symbols, 0xFF
C charts support C style hexadecimal notation, for example, 0xFF. You can
use hexadecimal values wherever you can use decimal values.

Infinity Symbol, inf
Use the MATLAB symbol inf to represent infinity in C charts. Calculations
like n/0, where n is any nonzero real value, result in inf.

10-29

10 Use Actions in Charts

Note If you define inf as a Stateflow data object, your custom definition
of inf overrides the built-in value.

Line Continuation Symbol, ...
Use the characters ... at the end of a line to indicate that the expression
continues on the next line. For example, you can use the line continuation
symbol in a state action:

entry: total1 = 0, total2 = 0, ...
total3 = 0;

Literal Code Symbol, $
Use $ characters to mark actions that you want the parser to ignore but you
want to appear in the generated code. For example, the parser does not
process any text between the $ characters below.

$
ptr -> field = 1.0;
$

Note Avoid frequent use of literal symbols.

MATLAB Display Symbol, ;
Omitting the semicolon after an expression displays the results of the
expression in the MATLAB Command Window. If you use a semicolon, the
results do not appear.

Single-Precision Floating-Point Number Symbol, F
Use a trailing F to specify single-precision floating-point numbers in C charts.
For example, you can use the action statement x = 4.56F; to specify a
single-precision constant with the value 4.56. If a trailing F does not appear
with a number, double precision applies.

10-30

Supported Symbols in Actions

Time Symbol, t
Use the letter t to represent absolute time that the chart inherits from a
Simulink signal in simulation targets. For example, the condition [t -
On_time > Duration] specifies that the condition is true if the difference
between the simulation time t and On_time is greater than the value of
Duration.

The letter t has no meaning for nonsimulation targets, since t depends on the
specific application and target hardware.

Note If you define t as a Stateflow data object, your custom definition of t
overrides the built-in value.

10-31

10 Use Actions in Charts

Call C Functions in C Charts

In this section...

“Call C Library Functions” on page 10-32

“Call the abs Function” on page 10-33

“Call min and max Functions” on page 10-33

“Replacement of C Math Library Functions with Target-Specific
Implementations” on page 10-34

“Call Custom C Code Functions” on page 10-36

Call C Library Functions
You can call this subset of the C Math Library functions:

abs* ** acos** asin** atan** atan2** ceil**

cos** cosh** exp** fabs floor** fmod**

labs ldexp** log** log10** pow** rand

sin** sinh** sqrt** tan** tanh**

* The Stateflow abs function goes beyond that of its standard C counterpart
with its own built-in functionality. See “Call the abs Function” on page 10-33.

** You can also replace calls to the C Math Library with target-specific
implementations for this subset of functions. For more information,
see “Replacement of C Math Library Functions with Target-Specific
Implementations” on page 10-34.

When you call these math functions, double precision applies unless all the
input arguments are explicitly single precision. When a type mismatch
occurs, a cast of the input arguments to the expected type replace the
original arguments. For example, if you call the sin function with an integer
argument, a cast of the input argument to a floating-point number of type
double replaces the original argument.

10-32

Call C Functions in C Charts

If you call other C library functions not listed above, include the appropriate
#include... statement in the Simulation Target > Custom Code pane of
the Model Configuration Parameters dialog box.

Call the abs Function
Interpretation of the Stateflow abs function goes beyond the standard C
version to include integer and floating-point arguments of all types as follows:

• If x is an integer of type int32, the standard C function abs applies to
x, or abs(x).

• If x is an integer of type other than int32, the standard C abs function
applies to a cast of x as an integer of type int32, or abs((int32)x).

• If x is a floating-point number of type double, the standard C function
fabs applies to x, or fabs(x).

• If x is a floating-point number of type single, the standard C function fabs
applies to a cast of x as a double, or fabs((double)x).

• If x is a fixed-point number, the standard C function fabs applies to a cast
of the fixed-point number as a double, or fabs((double)Vx), where Vx
is the real-world value of x.

If you want to use the abs function in the strict sense of standard C, cast its
argument or return values to integer types. See “Type Cast Operations” on
page 10-25.

Note If you declare x in custom code, the standard C abs function applies in
all cases. For instructions on inserting custom code into charts, see “Share
Data Using Custom C Code” on page 27-44.

Call min and max Functions
You can call min and max by emitting the following macros automatically
at the top of generated code.

#define min(x1,x2) ((x1) > (x2) ? (x2):(x1))
#define max(x1,x2) ((x1) > (x2) ? (x1):(x2))

10-33

10 Use Actions in Charts

To allow compatibility with user graphical functions named min() or max(),
generated code uses a mangled name of the following form: <prefix>_min.
However, if you export min() or max() graphical functions to other charts
in your model, the name of these functions can no longer be emitted with
mangled names in generated code and conflict occurs. To avoid this conflict,
rename the min() and max() graphical functions.

Replacement of C Math Library Functions with
Target-Specific Implementations
You can use the code replacement library published by Embedded Coder
code generation software to replace the default implementations of a subset
of C library functions with target-specific implementations (see “Supported
Functions for Code Replacement” on page 10-34). When you specify a code
replacement library, Stateflow software generates code that calls the target
implementations instead of the associated C library functions. Stateflow
software also uses target implementations in cases where the compiler
generates calls to math functions, such as in fixed-point arithmetic utilities.

Use of Code Replacement Libraries
To learn how to create and register code replacement tables in a library,
see “Introduction to Code Replacement Libraries” and “Map Math
Functions to Application-Specific Implementations” in the Embedded Coder
documentation.

Supported Functions for Code Replacement
You can replace the following math functions with target-specific
implementations:

Function Data Type Support

abs

Note See also “Replacement of
Calls to abs” on page 10-35.

Floating-point and integer

acos Floating-point

10-34

Call C Functions in C Charts

Function Data Type Support

asin Floating-point

atan Floating-point

atan2 Floating-point

ceil Floating-point

cos Floating-point

cosh Floating-point

exp Floating-point

floor Floating-point

fmod Floating-point

ldexp Floating-point

log Floating-point

log10 Floating-point

max Floating-point and integer

min Floating-point and integer

pow Floating-point

sin Floating-point

sinh Floating-point

sqrt Floating-point

tan Floating-point

tanh Floating-point

Replacement of Calls to abs
Replacement of calls to abs can occur as follows:

10-35

10 Use Actions in Charts

Type of Argument for abs Result

Floating-point Replacement with target-specific
implementation

Integer Replacement with target-specific
implementation

Fixed-point with zero bias Replacement with ANSI C function

Fixed-point with nonzero bias Error

Call Custom C Code Functions
You can specify custom code functions for use in C charts for simulation and C
code generation.

• “Specify Custom C Functions for Simulation” on page 10-36

• “Specify Custom C Functions for Code Generation” on page 10-37

• “Guidelines for Calling Custom C Functions in Your Chart” on page 10-37

• “Guidelines for Writing Custom C Functions That Access Input Vectors” on
page 10-37

• “Function Call in Transition Action” on page 10-38

• “Function Call in State Action” on page 10-39

• “Pass Arguments by Reference” on page 10-40

Specify Custom C Functions for Simulation
To specify custom C functions for simulation:

1 Open the Model Configuration Parameters dialog box.

2 Select Simulation Target > Custom Code.

3 Specify your custom C files, as described in “Integrate Custom C Code for
Nonlibrary Charts for Simulation” on page 27-8.

10-36

Call C Functions in C Charts

Specify Custom C Functions for Code Generation
To specify custom C functions for code generation:

1 Open the Model Configuration Parameters dialog box.

2 Select Code Generation > Custom Code.

3 Specify your custom C files, as described in “Integrate Custom C Code for
Nonlibrary Charts for Code Generation” on page 27-23.

Guidelines for Calling Custom C Functions in Your Chart

• Define a function by its name, any arguments in parentheses, and an
optional semicolon.

• Pass string parameters to user-written functions using single quotation
marks. For example, func('string').

• An action can nest function calls.

• An action can invoke functions that return a scalar value (of type double in
the case of MATLAB functions and of any type in the case of C user-written
functions).

Guidelines for Writing Custom C Functions That Access Input
Vectors

• Use the sizeof function to determine the length of an input vector.

For example, your custom function can include a for-loop that uses sizeof
as follows:

for(i=0; i < sizeof(input); i++) {
......
}

• If your custom function uses the value of the input vector length multiple
times, include an input to your function that specifies the input vector
length.

For example, you can use input_length as the second input to a sum
function as follows:

10-37

10 Use Actions in Charts

int sum(double *input, double input_length)

Your sum function can include a for-loop that iterates over all elements of
the input vector:

for(i=0; i < input_length; i++) {
......
}

Function Call in Transition Action
Example formats of function calls using transition action notation appear
in the following chart.

A function call to fcn1 occurs with arg1, arg2, and arg3 if the following are
true:

• S1 is active.

• Event e occurs.

• Condition c is true.

10-38

Call C Functions in C Charts

• The transition destination S2 is valid.

The transition action in the transition from S2 to S3 shows a function call
nested within another function call.

Function Call in State Action
Example formats of function calls using state action notation appear in the
following chart.

Chart execution occurs as follows:

1 When the default transition into S1 occurs, S1 becomes active.

2 The entry action, a function call to fcn1 with the specified arguments,
executes.

3 After 5 seconds of simulation time, S1 becomes inactive and S2 becomes
active.

4 The during action, a function call to fcn2 with the specified arguments,
executes.

5 After 10 seconds of simulation time, S2 becomes inactive and S1 becomes
active again.

6 Steps 2 through 5 repeat until the simulation ends.

10-39

10 Use Actions in Charts

Pass Arguments by Reference
A Stateflow action can pass arguments to a user-written function by reference
rather than by value. In particular, an action can pass a pointer to a value
rather than the value itself. For example, an action could contain the
following call:

f(&x);

where f is a custom-code C function that expects a pointer to x as an argument.

If x is the name of a data item defined in the Stateflow hierarchy, the
following rules apply:

• Do not use pointers to pass data items input from a Simulink model.

If you need to pass an input item by reference, for example, an array,
assign the item to a local data item and pass the local item by reference.

• If x is a Simulink output data item having a data type other than double,
the chart property Use Strong Data Typing with Simulink I/O must be
on (see “Specify Chart Properties” on page 21-5).

• If the data type of x is boolean, you must turn off the coder option
Use bitsets for storing state configuration (see “How to Optimize
Generated Code for Embeddable Targets” on page 27-30).

• If x is an array with its first index property set to 0 (see “Set Data
Properties” on page 8-5), then you must call the function as follows.

f(&(x[0]));

This passes a pointer to the first element of x to the function.

• If x is an array with its first index property set to a nonzero number (for
example, 1), the function must be called in the following way:

f(&(x[1]));

This passes a pointer to the first element of x to the function.

10-40

Access Built-In MATLAB® Functions and Workspace Data

Access Built-In MATLAB Functions and Workspace Data

In this section...

“MATLAB Functions and Stateflow Code Generation” on page 10-41

“ml Namespace Operator” on page 10-41

“ml Function” on page 10-42

“ml Expressions” on page 10-44

“Which ml Should I Use?” on page 10-45

“ml Data Type” on page 10-46

“How Charts Infer the Return Size for ml Expressions” on page 10-49

MATLAB Functions and Stateflow Code Generation
You can call MATLAB functions and access MATLAB workspace variables in
Stateflow actions, using the ml namespace operator or the ml function.

Caution Because MATLAB functions are not available in a target
environment, do not use the ml namespace operator and the ml function if you
plan to build a code generation target.

ml Namespace Operator
The ml namespace operator uses standard dot (.) notation to reference
MATLAB variables and functions. For example, the statement a = ml.x
returns the value of the MATLAB workspace variable x to the Stateflow data
a.

For functions, the syntax is as follows:

[return_val1, return_val2,...] = ml.matfunc(arg1, arg2,...)

For example, the statement [a, b, c] = ml.matfunc(x, y) passes the
return values from the MATLAB function matfunc to the Stateflow data
a, b, and c.

10-41

10 Use Actions in Charts

If the MATLAB function you call does not require arguments, you must still
include the parentheses. If you omit the parentheses, Stateflow software
interprets the function name as a workspace variable, which, when not found,
generates a run-time error during simulation.

Examples
In these examples, x, y, and z are workspace variables and d1 and d2 are
Stateflow data:

• a = ml.sin(ml.x)

In this example, the MATLAB function sin evaluates the sine of x, which
is then assigned to Stateflow data variable a. However, because x is a
workspace variable, you must use the namespace operator to access it.
Hence, ml.x is used instead of just x.

• a = ml.sin(d1)

In this example, the MATLAB function sin evaluates the sine of d1, which
is assigned to Stateflow data variable a. Because d1 is Stateflow data,
you can access it directly.

• ml.x = d1*d2/ml.y

The result of the expression is assigned to x. If x does not exist prior to
simulation, it is automatically created in the MATLAB workspace.

• ml.v[5][6][7] = ml.matfunc(ml.x[1][3], ml.y[3], d1, d2,
'string')

The workspace variables x and y are arrays. x[1][3] is the (1,3) element
of the two-dimensional array variable x. y[3] is the third element of
the one-dimensional array variable y. The last argument, 'string', is
a literal string.

The return from the call to matfunc is assigned to element (5,6,7)
of the workspace array, v. If v does not exist prior to simulation, it is
automatically created in the MATLAB workspace.

ml Function
You can use the ml function to specify calls to MATLAB functions through a
string expression. The format for the ml function call uses this notation:

10-42

Access Built-In MATLAB® Functions and Workspace Data

ml(evalString, arg1, arg2,...);

evalString is a string expression that is evaluated in the MATLAB
workspace. It contains a MATLAB command (or a set of commands, each
separated by a semicolon) to execute along with format specifiers (%g, %f,
%d, etc.) that provide formatted substitution of the other arguments (arg1,
arg2, etc.) into evalString.

The format specifiers used in ml functions are the same as those used in the C
functions printf and sprintf. The ml function call is equivalent to calling
the MATLAB eval function with the ml namespace operator if the arguments
arg1, arg2,... are restricted to scalars or string literals in the following
command:

ml.eval(ml.sprintf(evalString, arg1, arg2,...))

Stateflow software assumes scalar return values from ml namespace operator
and ml function calls when they are used as arguments in this context. See
“How Charts Infer the Return Size for ml Expressions” on page 10-49.

Examples
In these examples, x is a MATLAB workspace variable, and d1 and d2 are
Stateflow data:

• a = ml('sin(x)')

In this example, the ml function calls the MATLAB function sin to evaluate
the sine of x in the MATLAB workspace. The result is then assigned
to Stateflow data variable a. Because x is a workspace variable, and
sin(x) is evaluated in the MATLAB workspace, you enter it directly in the
evalString argument ('sin(x)').

• a = ml('sin(%f)', d1)

In this example, the MATLAB function sin evaluates the sine of d1 in
the MATLAB workspace and assigns the result to Stateflow data variable
a. Because d1 is Stateflow data, its value is inserted in the evalString
argument ('sin(%f)') using the format expression %f. This means that if
d1 = 1.5, the expression evaluated in the MATLAB workspace is sin(1.5).

• a = ml('matfunc(%g, ''abcdefg'', x, %f)', d1, d2)

10-43

10 Use Actions in Charts

In this example, the string 'matfunc(%g, ''abcdefg'', x, %f)' is the
evalString shown in the preceding format statement. Stateflow data d1
and d2 are inserted into that string with the format specifiers %g and %f,
respectively. The string ''abcdefg'' is a string literal enclosed with two
single pairs of quotation marks because it is part of the evaluation string,
which is already enclosed in single quotation marks.

• sfmat_44 = ml('rand(4)')

In this example, a square 4-by-4 matrix of random numbers between 0 and
1 is returned and assigned to the Stateflow data sf_mat44. Stateflow data
sf_mat44 must be defined as a 4-by-4 array before simulation. If its size is
different, a size mismatch error is generated during run-time.

ml Expressions
You can mix ml namespace operator and ml function expressions along with
Stateflow data in larger expressions. The following example squares the sine
and cosine of an angle in workspace variable X and adds them:

ml.power(ml.sin(ml.X),2) + ml('power(cos(X),2)')

The first operand uses the ml namespace operator to call the sin function.
Its argument is ml.X, since X is in the MATLAB workspace. The second
operand uses the ml function. Because X is in the workspace, it appears in
the evalString expression as X. The squaring of each operand is performed
with the MATLAB power function, which takes two arguments: the value
to square, and the power value, 2.

Expressions using the ml namespace operator and the ml function can be used
as arguments for ml namespace operator and ml function expressions. The
following example nests ml expressions at three different levels:

a = ml.power(ml.sin(ml.X + ml('cos(Y)')),2)

In composing your ml expressions, follow the levels of precedence set out in
“Binary and Bitwise Operations” on page 10-20. Use parentheses around
power expressions with the ^ operator when you use them in conjunction with
other arithmetic operators.

Stateflow software checks expressions for data size mismatches in your
actions during parsing of charts and during run time. Because the return

10-44

Access Built-In MATLAB® Functions and Workspace Data

values for ml expressions are not known until run time, Stateflow software
must infer the size of their return values. See “How Charts Infer the Return
Size for ml Expressions” on page 10-49.

Which ml Should I Use?
In most cases, the notation of the ml namespace operator is more
straightforward. However, using the ml function call does offer a few
advantages:

• Use the ml function to dynamically construct workspace variables.

The following flow chart creates four new MATLAB matrices:

The for loop creates four new matrix variables in the MATLAB workspace.
The default transition initializes the Stateflow counter i to 0, while the
transition segment between the top two junctions increments it by 1. If i
is less than 5, the transition segment back to the top junction evaluates
the ml function call ml('A%d = rand(%d)',i,i) for the current value of i.
When i is greater than or equal to 5, the transition segment between the
bottom two junctions occurs and execution stops.

The transition executes the following MATLAB commands, which create a
workspace scalar (A1) and three matrices (A2, A3, A4):

A1 = rand(1)
A2 = rand(2)
A3 = rand(3)

10-45

10 Use Actions in Charts

A4 = rand(4)

• Use the ml function with full MATLAB notation.

You cannot use full MATLAB notation with the ml namespace operator, as
the following example shows:

ml.A = ml.magic(4)
B = ml('A + A''')

This example sets the workspace variable A to a magic 4-by-4 matrix using
the ml namespace operator. Stateflow data B is then set to the addition
of A and its transpose matrix, A', which produces a symmetric matrix.
Because the ml namespace operator cannot evaluate the expression A', the
ml function is used instead. However, you can call the MATLAB function
transpose with the ml namespace operator in the following equivalent
expression:

B = ml.A + ml.transpose(ml.A)

As another example, you cannot use arguments with cell arrays or subscript
expressions involving colons with the ml namespace operator. However,
these can be included in an ml function call.

ml Data Type
Stateflow data of type ml is typed internally with the MATLAB type mxArray.
You can assign (store) any type of data available in the Stateflow hierarchy to
a data of type ml. These types include any data type defined in the Stateflow
hierarchy or returned from the MATLAB workspace with the ml namespace
operator or ml function.

Rules for Using ml Data Type
These rules apply to Stateflow data of type ml:

• You can initialize ml data from the MATLAB workspace just like other data
in the Stateflow hierarchy (see “Initialize Data from the MATLAB Base
Workspace” on page 8-32).

10-46

Access Built-In MATLAB® Functions and Workspace Data

• Any numerical scalar or array of ml data in the Stateflow hierarchy can
participate in any kind of unary operation and any kind of binary operation
with any other data in the hierarchy.

If ml data participates in any numerical operation with other data, the size
of the ml data must be inferred from the context in which it is used, just as
return data from the ml namespace operator and ml function are. See “How
Charts Infer the Return Size for ml Expressions” on page 10-49.

Note The preceding rule does not apply to ml data storing MATLAB 64-bit
integers. You can use ml data to store 64-bit MATLAB integers but you
cannot use 64-bit integers in C charts.

• You cannot define ml data with the scope Constant.

This option is disabled in the Data properties dialog box and in the Model
Explorer for Stateflow data of type ml.

• You can use ml data to build a simulation target but not to build an
embeddable code generation target.

• If data of type ml contains an array, you can access the elements of the
array via indexing with these rules:

1 You can index only arrays with numerical elements.

2 You can index numerical arrays only by their dimension.

In other words, you can access only one-dimensional arrays by a single
index value. You cannot access a multidimensional array with a single
index value.

3 The first index value for each dimension of an array is 1, and not 0, as in
C language arrays.

In the examples that follow, mldata is a Stateflow data of type ml,
ws_num_array is a 2-by-2 MATLAB workspace array with numerical
values, and ws_str_array is a 2-by-2 MATLAB workspace array with
string values.

mldata = ml.ws_num_array; /* OK */
n21 = mldata[2][1]; /* OK for numerical data of type ml */

10-47

10 Use Actions in Charts

n21 = mldata[3]; /* NOT OK for 2-by-2 array data */
mldata = ml.ws_str_array; /* OK */
s21 = mldata[2][1]; /* NOT OK for string data of type ml*/

• ml data cannot have a scope outside a C chart; that is, you cannot define
the scope of ml data as Input to Simulink or Output to Simulink.

Place Holder for Workspace Data
Both the ml namespace operator and the ml function can access data directly
in the MATLAB workspace and return it to a C chart. However, maintaining
data in the MATLAB workspace can present Stateflow users with conflicts
with other data already resident in the workspace. Consequently, with the
ml data type, you can maintain ml data in a chart and use it for MATLAB
computations in C charts.

As an example, in the following statements, mldata1 and mldata2 are
Stateflow data of type ml:

mldata1 = ml.rand(3);
mldata2 = ml.transpose(mldata1);

In the first line of this example, mldata1 receives the return value of the
MATLAB function rand, which, in this case, returns a 3-by-3 array of random
numbers. Note that mldata1 is not specified as an array or sized in any way.
It can receive any MATLAB workspace data or the return of any MATLAB
function because it is defined as a Stateflow data of type ml.

In the second line of the example, mldata2, also of Stateflow data type ml,
receives the transpose matrix of the matrix in mldata1. It is assigned the
return value of the MATLAB function transpose in which mldata1 is the
argument.

Note the differences in notation if the preceding example were to use
MATLAB workspace data (wsdata1 and wsdata2) instead of Stateflow ml
data to hold the generated matrices:

ml.wsdata1 = ml.rand(3);
ml.wsdata2 = ml.transpose(ml.wsdata1);

10-48

Access Built-In MATLAB® Functions and Workspace Data

In this case, each workspace data must be accessed through the ml namespace
operator.

How Charts Infer the Return Size for ml Expressions
Stateflow expressions using the ml namespace operator and the ml function
evaluate in the MATLAB workspace at run time. The actual size of the data
returned from the following expression types is known only at run time:

• MATLAB workspace data or functions using the ml namespace operator or
the ml function call

For example, the size of the return values from the expressions ml.var,
ml.func(), or ml(evalString, arg1, arg2,...), where var is a
MATLAB workspace variable and func is a MATLAB function, cannot be
known until run-time.

• Stateflow data of type ml

• Graphical functions that return Stateflow data of type ml

When these expressions appear in actions, Stateflow code generation creates
temporary data to hold intermediate returns for evaluation of the full
expression of which they are a part. Because the size of these return values
is unknown until run time, Stateflow software must employ context rules to
infer the sizes for creation of the temporary data.

During run time, if the actual returned value from one of these commands
differs from the inferred size of the temporary variable that stores it, a size
mismatch error appears. To prevent run-time errors, use the following
guidelines to write actions with MATLAB commands or ml data:

10-49

10 Use Actions in Charts

Guideline Example

Return sizes of MATLAB commands or data in an
expression must match return sizes of peer expressions.

In the expression ml.func() * (x +
ml.y), if x is a 3-by-2 matrix, then
ml.func() and ml.y are also assumed
to evaluate to 3-by-2 matrices. If either
returns a value of different size (other
than a scalar), an error results during
run-time.

Expressions that return a scalar never produce an
error.

You can combine matrices and scalars in larger
expressions because MATLAB commands use scalar
expansion.

In the expression ml.x + y, if y is
a 3-by-2 matrix and ml.x returns a
scalar, the resulting value is the result
of adding the scalar value of ml.x to
every member of y to produce a matrix
with the size of y, that is, a 3-by-2
matrix.

The same rule applies to subtraction
(-), multiplication (*), division (/), and
any other binary operations.

Arguments

The expression
for each function
argument is a larger
expression for which
the return size of
MATLAB commands
or Stateflow data
of type ml must be
determined.

In the expression z + func(x +
ml.y), the size of ml.y is independent
of the size of z, because ml.y is used at
the function argument level. However,
the return size for func(x + ml.y)
must match the size of z, because they
are both at the same expression level.

MATLAB commands or
Stateflow data of type ml can be
members of these independent
levels of expression, for which
resolution of return size is
necessary:

Array indices

The expression for
an array index is an
independent level of
expression that must
be scalar in size.

In the expression x + array[y], the
size of y is independent of the size of x
because y and x are at different levels
of expression. Also, y must be a scalar.

10-50

Access Built-In MATLAB® Functions and Workspace Data

Guideline Example

The return size for an indexed array element access
must be a scalar.

The expression x[1][1], where x is a
3-by-2 array, must evaluate to a scalar.

MATLAB command or data elements used in an
expression for the input argument of a MATLAB
function called through the ml namespace operator are
resolved for size. This resolution uses the rule for peer
expressions (preceding rule 1) for the expression itself,
because no size definition prototype is available.

In the function call ml.func(x +
ml.y), if x is a 3-by-2 array, ml.y must
return a 3-by-2 array or a scalar.

MATLAB command or data elements used for the input
argument for a graphical function in an expression are
resolved for size by the function prototype.

If the graphical function gfunc has the
prototype gfunc(arg1), where arg1
is a 2-by-3 Stateflow data array, the
calling expression, gfunc(ml.y + x),
requires that both ml.y and x evaluate
to 2-by-3 arrays (or scalars) during
run-time.

ml function calls can take only scalar or string literal
arguments. Any MATLAB command or data that
specifies an argument for the ml function must return
a scalar value.

In the expression a = ml('sin(x)'),
the ml function calls the MATLAB
function sin to evaluate the sine of x
in the MATLAB workspace. Stateflow
data variable a stores that result.

In an assignment, the size of the right-hand expression
must match the size of the left-hand expression, with
one exception. If the left-hand expression is a single
MATLAB variable, such as ml.x, or Stateflow data
of type ml, the right-hand expression determines the
sizes of both expressions.

In the expression s = ml.func(x),
where x is a 3-by-2 matrix and s is
scalar Stateflow data, ml.func(x)
must return a scalar to match the
left-hand expression, s. However, in
the expression ml.y = x + s, where x
is a 3-by-2 data array and s is scalar,
the left-hand expression, workspace
variable y, is assigned the size of a
3-by-2 array to match the size of the
right-hand expression, x+s, a 3-by-2
array.

10-51

10 Use Actions in Charts

Guideline Example

In an assignment, Stateflow column vectors on the
left-hand side are compatible with MATLAB row or
column vectors of the same size on the right-hand side.

A matrix you define with a row dimension of 1 is
considered a row vector. A matrix you define with
one dimension or with a column dimension of 1 is
considered a column vector.

In the expression s = ml.func(),
where ml.func() returns a 1-by-3
matrix, if s is a vector of size 3, the
assignment is valid.

If you cannot resolve the return size of MATLAB
command or data elements in a larger expression by
any of the preceding rules, they are assumed to return
scalar values.

In the expression ml.x = ml.y +
ml.z, none of the preceding rules can
be used to infer a common size among
ml.x, ml.y, and ml.z. In this case,
both ml.y and ml.z are assumed to
return scalar values. Even if ml.y
and ml.z return matching sizes at
run-time, if they return nonscalar
values, a size mismatch error results.

The preceding rules for resolving the size of member
MATLAB commands or Stateflow data of type ml in a
larger expression apply only to cases in which numeric
values are expected for that member. For nonnumeric
returns, a run-time error results.

Note Member MATLAB commands or data of type ml
in a larger expression are limited to numeric values
(scalar or array) only if they participate in numeric
expressions.

The expression x + ml.str, where
ml.str is a string workspace variable,
produces a run-time error stating that
ml.str is not a numeric type.

Special cases exist, in which no size checking occurs to resolve the size of
MATLAB command or data expressions that are part of larger expressions.
Use of the following expressions does not require enforcement of size checking
at run-time:

• ml.var

• ml.func()

10-52

Access Built-In MATLAB® Functions and Workspace Data

• ml(evalString, arg1, arg2,...)

• Stateflow data of type ml

• Graphical function returning a Stateflow data of type ml

In these cases, assignment of a return to the left-hand side of an assignment
statement or a function argument occurs without checking for a size mismatch
between the two:

• An assignment in which the left-hand side is a MATLAB workspace
variable

For example, in the expression ml.x = ml.y, ml.y is a MATLAB workspace
variable of any size and type (structure, cell array, string, and so on).

• An assignment in which the left-hand side is a data of type ml

For example, in the expression m_x = ml.func(), m_x is a Stateflow data
of type ml.

• Input arguments of a MATLAB function

For example, in the expression ml.func(m_x, ml.x, gfunc()), m_x is a
Stateflow data of type ml, ml.x is a MATLAB workspace variable of any
size and type, and gfunc() is a Stateflow graphical function that returns a
Stateflow data of type ml. Although size checking does not occur for the
input type, if the passed-in data is not of the expected type, an error results
from the function call ml.func().

• Arguments for a graphical function that are specified as Stateflow data of
type ml in its prototype statement

Note If you replace the inputs in the preceding cases with non-MATLAB
numeric Stateflow data, conversion to an ml type occurs.

10-53

10 Use Actions in Charts

Use Data and Event Arguments in Actions
When you use data and event objects as arguments to functions that you
call in actions, the chart assumes that these arguments appear at the same
level in the hierarchy. If the data and event arguments are not at that level,
object name resolution occurs by searching up the hierarchy. Data or event
object arguments parented anywhere else must have their path hierarchies
defined explicitly.

In the following example, state A calls the graphical function addit to add the
Stateflow data x and y and store the result in data z.

The call to function addit from state A can resolve z because that data object
belongs to state A. However, the function call cannot resolve x and y by
looking above state A in the chart hierarchy. Therefore, the function call must
reference x and y explicitly to the parent state AA.

For information about functions you can call in actions that use data as
arguments, see these sections:

• “Reuse Logic Patterns Using Graphical Functions” on page 7-35

• “Call C Functions in C Charts” on page 10-32

• “Access Built-In MATLAB Functions and Workspace Data” on page 10-41

Only operators for event-based temporal logic take events as arguments. See
“Control Chart Execution Using Temporal Logic” on page 10-61.

10-54

Use Arrays in Actions

Use Arrays in Actions

In this section...

“Array Notation” on page 10-55

“Arrays and Custom Code” on page 10-56

Array Notation
A Stateflow action in a C chart uses C style syntax and zero-based indexing
by default to access array elements. This syntax differs from MATLAB
notation, which uses one-based indexing. For example, suppose you define
a Stateflow input A of size [3 4]. To access the element in the first row,
second column, use the expression A[0][1]. Other examples of zero-based
indexing in C charts include:

local_array[1][8][0] = 10;

local_array[i][j][k] = 77;

var = local_array[i][j][k];

Note Use the same notation for accessing arrays in C charts, from Simulink
models, and from custom code.

As an exception to zero-based indexing, scalar expansion is available. This
statement assigns a value of 10 to all the elements of the array local_array.

local_array = 10;

Scalar expansion is available for performing general operations. This
statement is valid if the arrays array_1, array_2, and array_3 have the
same value for the Sizes property.

array_1 = (3*array_2) + array_3;

10-55

10 Use Actions in Charts

Arrays and Custom Code
C charts provide the same syntax for Stateflow arrays and custom code arrays.

Note Any array variable that is referred to in a C chart but is not defined in
the Stateflow hierarchy is identified as a custom code variable.

10-56

Broadcast Events to Synchronize States

Broadcast Events to Synchronize States

In this section...

“Directed Event Broadcasting” on page 10-57

“Directed Local Event Broadcast Using send” on page 10-57

“Directed Local Event Broadcast Using Qualified Event Names” on page
10-59

“Diagnostic for Detecting Undirected Local Event Broadcasts” on page 10-60

Directed Event Broadcasting
You can broadcast events directly from one state to another to synchronize
parallel (AND) states in the same chart. The following rules apply:

• The receiving state must be active during the event broadcast.

• An action in one chart cannot broadcast events to states in another chart.

Using a directed local event broadcast provides the following benefits over an
undirected broadcast:

• Prevents unwanted recursion during simulation.

• Improves the efficiency of generated code.

For information about avoiding unwanted recursion, see “Guidelines for
Avoiding Unwanted Recursion in a Chart” on page 28-53.

Directed Local Event Broadcast Using send
The format of a directed local event broadcast with send is:

send(event_name,state_name)

where event_name is broadcast to state_name and any offspring of that state
in the hierarchy. The event you send must be visible to both the sending state
and the receiving state (state_name).

10-57

10 Use Actions in Charts

The state_name argument can include a full hierarchy path to the state.
For example, if the state A contains the state A1, send an event e to state A1
with the following broadcast:

send(e, A.A1)

Tip Do not include the chart name in the full hierarchy path to a state.

The following example of a directed local event broadcast uses the
send(event_name,state_name) syntax.

In this example, event E_one belongs to the chart and is visible to both A
and B. See “Directed Event Broadcast Using Send” on page B-55 for more
information on the semantics of this notation.

10-58

Broadcast Events to Synchronize States

Directed Local Event Broadcast Using Qualified Event
Names
The format of a directed local event broadcast using qualified event names is:

send(state_name.event_name)

where event_name is broadcast to its owning state (state_name) and any
offspring of that state in the hierarchy. The event you send is visible only
to the receiving state (state_name).

The state_name argument can also include a full hierarchy path to the
receiving state. Do not use the chart name in the full path name of the state.

The following example shows the use of a qualified event name in a directed
local event broadcast.

In this example, event E_one belongs to state B and is visible only to that
state. See “Directed Event Broadcast Using Qualified Event Name” on page
B-56 for more information on the semantics of this notation.

10-59

10 Use Actions in Charts

Diagnostic for Detecting Undirected Local Event
Broadcasts
If you have undirected local event broadcasts in state actions or condition
actions in your chart, a warning appears by default during simulation.
Examples of state actions with undirected local event broadcasts include:

• entry: send(E1), where E1 is a local event in the chart

• exit: E2, where E2 is a local event in the chart

You can control the level of diagnostic action for undirected local event
broadcasts in the Diagnostics > Stateflow pane of the Model Configuration
Parameters dialog box. Set the Undirected event broadcasts diagnostic to
none, warning, or error. For more information, see the documentation for the
“Undirected event broadcasts” diagnostic.

10-60

Control Chart Execution Using Temporal Logic

Control Chart Execution Using Temporal Logic

In this section...

“What Is Temporal Logic?” on page 10-61

“Rules for Using Temporal Logic Operators” on page 10-61

“Operators for Event-Based Temporal Logic” on page 10-62

“Examples of Event-Based Temporal Logic” on page 10-64

“Notations for Event-Based Temporal Logic” on page 10-66

“Operators for Absolute-Time Temporal Logic” on page 10-68

“Define Time Delays with Temporal Logic” on page 10-70

“Examples of Absolute-Time Temporal Logic” on page 10-72

“Run a Model That Uses Absolute-Time Temporal Logic” on page 10-73

“Absolute-Time Temporal Logic in Conditionally Executed Subsystems” on
page 10-73

“How Sample Time Affects Chart Execution” on page 10-77

“Best Practices for Absolute-Time Temporal Logic” on page 10-78

What Is Temporal Logic?
Temporal logic controls execution of a chart in terms of time. In state actions
and transitions, you can use two types of temporal logic: event-based and
absolute-time. Event-based temporal logic keeps track of recurring events,
and absolute-time temporal logic defines time periods based on the simulation
time of your chart. To operate on these recurring events or simulation time,
you use built-in functions called temporal logic operators.

Rules for Using Temporal Logic Operators
These rules apply to the use of temporal logic operators:

• You can use any explicit or implicit event as a base event for a temporal
operator. A base event is a recurring event on which a temporal operator
operates.

10-61

10 Use Actions in Charts

• For a chart with no input events, you can use the tick or wakeup event to
denote the implicit event of a chart waking up.

• Temporal logic operators can appear only in:

- State actions

- Transitions that originate from states

- Transition segments that originate from junctions when the full
transition path connects two states

Note This restriction means that you cannot use temporal logic operators
in default transitions or flow chart transitions.

Every temporal logic operator has an associated state: the state in which
the action appears or from which the transition originates.

• You must use event notation (see “Notations for Event-Based Temporal
Logic” on page 10-66) to express event-based temporal logic in state actions.

Operators for Event-Based Temporal Logic
For event-based temporal logic, use the operators as described below.

Operator Syntax Description

after after(n, E)

where E is the base event for the
after operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred at least n times since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
after(n, tick) or after(n,
wakeup) returns true if the chart
has woken up n times or more since
activation of the associated state.

10-62

Control Chart Execution Using Temporal Logic

Operator Syntax Description

Resets the counter for E to 0
each time the associated state
reactivates.

before before(n, E)

where E is the base event for the
before operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true if the base event E
has occurred fewer than n times
since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
before(n, tick) or before(n,
wakeup) returns true if the chart
has woken up fewer than n times
since activation of the associated
state.

Resets the counter for E to 0
each time the associated state
reactivates.

at at(n, E)

where E is the base event for the
at operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true only at the nth

occurrence of the base event E since
activation of the associated state.
Otherwise, the operator returns
false.

In a chart with no input events,
at(n, tick) or at(n, wakeup)
returns true if the chart has woken
up for the nth time since activation
of the associated state.

Resets the counter for E to 0
each time the associated state
reactivates.

10-63

10 Use Actions in Charts

Operator Syntax Description

every every(n, E)

where E is the base event for the
every operator and n is one of the
following:

• A positive integer

• An expression that evaluates to
a positive integer value

Returns true at every nth

occurrence of the base event
E since activation of the associated
state. Otherwise, the operator
returns false.

In a chart with no input events,
every(n, tick) or every(n,
wakeup) returns true if the chart
has woken up an integer multiple
n times since activation of the
associated state.

Resets the counter for E to 0
each time the associated state
reactivates. Therefore, this
operator is useful only in state
actions and not in transitions.

temporalCount temporalCount(E)

where E is the base event for the
temporalCount operator.

Increments by 1 and returns a
positive integer value for each
occurrence of the base event E that
takes place after activation of the
associated state. Otherwise, the
operator returns a value of 0.

Resets the counter for E to 0
each time the associated state
reactivates.

Examples of Event-Based Temporal Logic
These examples illustrate usage of event-based temporal logic in state actions
and transitions.

10-64

Control Chart Execution Using Temporal Logic

Operator Usage Example Description

after State action

(on after)

on after(5, CLK): status('on'); A status message
appears during each
CLK cycle, starting
5 clock cycles after
activation of the
state.

after Transition ROTATE[after(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no sooner
than 10 CLK cycles
after activation of
the state.

before State action

(on before)

on before(MAX, CLK): temp++; The temp variable
increments once per
CLK cycle until the
state reaches the MAX
limit.

before Transition ROTATE[before(10, CLK)] A transition out
of the associated
state occurs only on
broadcast of a ROTATE
event, but no later
than 10 CLK cycles
after activation of
the state.

at State action

(on at)

on at(10, CLK): status('on'); A status message
appears at exactly
10 CLK cycles after
activation of the
state.

10-65

10 Use Actions in Charts

Operator Usage Example Description

at Transition ROTATE[at(10, CLK)] A transition out
of the associated
state occurs only
on broadcast of a
ROTATE event, at
exactly 10 CLK cycles
after activation of
the state.

every State action

(on every)

on every(5, CLK): status('on'); A status message
appears every 5
CLK cycles after
activation of the
state.

temporalCount State action

(during)

du: y = mm[temporalCount(tick)]; This action counts
and returns the
integer number
of ticks that have
elapsed since
activation of the
state. Then, the
action assigns to
the variable y the
value of the mm
array whose index
is the value that
the temporalCount
operator returns.

Notations for Event-Based Temporal Logic
You can use one of two notations to express event-based temporal logic.

Event Notation
Use event notation to define a state action or a transition condition that
depends only on a base event.

10-66

Control Chart Execution Using Temporal Logic

Event notation follows this syntax:

tlo(n, E)[C]

where

• tlo is a Boolean temporal logic operator (after, before, at, or every)

• n is the occurrence count of the operator

• E is the base event of the operator

• C is an optional condition expression

Conditional Notation
Use conditional notation to define a transition condition that depends on base
and nonbase events.

Conditional notation follows this syntax:

E1[tlo(n, E2) && C]

where

• E1 is any nonbase event

• tlo is a Boolean temporal logic operator (after, before, at, or every)

• n is the occurrence count of the operator

• E2 is the base event of the operator

• C is an optional condition expression

10-67

10 Use Actions in Charts

Examples of Event and Conditional Notation

Notation Usage Example Description

Event State action

(on after)

on after(5, CLK): temp = WARM; The temp variable
becomes WARM 5
CLK cycles after
activation of the
state.

Event Transition after(10, CLK)[temp == COLD] A transition out of
the associated state
occurs if the temp
variable is COLD,
but no sooner than
10 CLK cycles after
activation of the
state.

Conditional Transition ON[after(5, CLK) && temp == COLD] A transition out
of the associated
state occurs only on
broadcast of an ON
event, but no sooner
than 5 CLK cycles
after activation of
the state and only if
the temp variable is
COLD.

Note You must use event notation in state actions, because the syntax of
state actions does not support the use of conditional notation.

Operators for Absolute-Time Temporal Logic
For absolute-time temporal logic, use the operators as described below.

10-68

Control Chart Execution Using Temporal Logic

Operator Syntax Description

after after(n, sec)

after(n, msec)

after(n, usec)

n is any positive number or
expression. sec, msec, and usec
are keywords that denote the
simulation time elapsed since
activation of the associated state.

Returns true if n specified seconds
(sec), milliseconds (msec), or
microseconds (usec) of simulation
time have elapsed since activation
of the associated state. Otherwise,
the operator returns false.

Resets the counter for sec, msec,
and usec to 0 each time the
associated state reactivates.

before before(n, sec)

before(n, msec)

before(n, usec)

n is any positive number or
expression. sec, msec, and usec
are keywords that denote the
simulation time elapsed since
activation of the associated state.

Returns true if n specified seconds
(sec), milliseconds (msec), or
microseconds (usec) of simulation
time have elapsed since activation
of the associated state. Otherwise,
the operator returns false.

Resets the counter for sec, msec,
and usec to 0 each time the
associated state reactivates.

temporalCount temporalCount(sec)

temporalCount(msec)

temporalCount(usec)

sec, msec, and usec are keywords
that denote the simulation time

Counts and returns the
number of specified seconds
(sec), milliseconds (msec), or
microseconds (usec) of simulation
time that have elapsed since
activation of the associated state.

10-69

10 Use Actions in Charts

Operator Syntax Description

elapsed since activation of the
associated state.

Resets the counter for sec, msec
and usec to 0 each time the
associated state reactivates.

Define Time Delays with Temporal Logic
Use one of the keywords sec , msec, or usec to define simulation time in
seconds, milliseconds, or microseconds that have elapsed since activation of a
state. These keywords are valid only in state actions and in transitions that
originate from states.

Example of Defining Time Delays
The following continuous-time chart defines two absolute time delays in
transitions.

Chart execution occurs as follows:

1 When the chart awakens, the state Input activates first.

2 After 5.33 milliseconds of simulation time, the transition from Input to
Output occurs.

3 The state Input deactivates, and then the state Output activates.

10-70

Control Chart Execution Using Temporal Logic

4 After 10.5 seconds of simulation time, the transition from Output to Input
occurs.

5 The state Output deactivates, and then the state Input activates.

6 Steps 2 through 5 are repeated, until the simulation ends.

Example of Detecting Elapsed Time
In the following model, the Step block provides a unit step input to the chart.

The chart determines when the input u equals 1.

If the input equals 1... A transition occurs from...

Before t = 2 Start to Fast

Between t = 2 and t = 5 Start to Good

After t = 5 Start to Slow

Advantages of Using Absolute-Time Temporal Logic for Delays
Use absolute-time temporal logic instead of the implicit tick event for these
reasons:

10-71

10 Use Actions in Charts

• Delay expressions that use absolute-time temporal logic are independent
of the sample time of the model. However, the tick event is dependent
on sample time.

• Absolute-time temporal logic works in charts that have function-call input
events. The tick event does not work in charts with function-call inputs.

• Absolute-time temporal logic supports seconds (sec), milliseconds (msec)
and microseconds (usec) syntax for the before and after operators.

Examples of Absolute-Time Temporal Logic
These examples illustrate absolute-time temporal logic in state actions and
transitions.

Operator Usage Example Description

after State action

(on after)

on after(12.3, sec): temp = LOW; After 12.3 seconds
of simulation time
since activation
of the state, temp
variable becomes LOW
.

after Transition after(8, msec) After 8 milliseconds
of simulation time
have passed since
activation of the
state, a transition
out of the associated
state occurs.

after Transition after(5, usec) After 5 microseconds
of simulation time
have passed since
activation of the
state, a transition
out of the associated
state occurs.

10-72

Control Chart Execution Using Temporal Logic

Operator Usage Example Description

before Transition [temp > 75 && before(12.34, sec)] If the variable temp
exceeds 75 and fewer
than 12.34 seconds
have elapsed since
activation of the
state, a transition
out of the associated
state occurs.

temporalCount State action

(exit)

ex: y = temporalCount(sec); This action counts
and returns the
number of seconds
of simulation time
that pass between
activation and
deactivation of the
state.

Run a Model That Uses Absolute-Time Temporal Logic
The sf_boiler model shows the use of absolute-time temporal logic to
implement a bang-bang controller. To run the model:

1 Type sf_boiler at the MATLAB command prompt.

2 Start simulation of the model.

Absolute-Time Temporal Logic in Conditionally
Executed Subsystems
You can use absolute-time temporal logic in a chart that resides in a
conditionally executed subsystem. When the subsystem is disabled, the chart
becomes inactive and the temporal logic operator pauses while the chart is
asleep. The operator does not continue to count simulation time until the
subsystem is reenabled and the chart is awake.

10-73

10 Use Actions in Charts

Model with Absolute-Time Temporal Logic in an Enabled
Subsystem
Suppose that your model has an enabled subsystem that contains a chart
with the after operator. In the subsystem, the States when enabling
parameter is set to held.

Model with Enabled Subsystem Chart in Enabled Subsystem

The Signal Builder block provides the following input signal to the subsystem.

10-74

Control Chart Execution Using Temporal Logic

������
���	��

�	
�
��
������

������
��
�	��

�	
�
��
������

������
�����	��

�	
�
��
������

�������
����	���

10-75

10 Use Actions in Charts

The total time elapsed in an enabled state (both A and B) is as follows.

�����������
����
�����

��������

��
�����

������������
����
�����

��������

��
�����

 ��������
��
!���"�
�#$��

������

��
�	���

��	
�
��
�
���
�	���

When the input signal enables the subsystem at time t = 0, the state A
becomes active, or enabled. While the state is active, the time elapsed
increases. However, when the subsystem is disabled at t = 2, the chart goes to
sleep and state A becomes inactive.

For 2 < t < 6, the time elapsed in an enabled state stays frozen at 2 seconds
because neither state is active. When the chart wakes up at t = 6, state A
becomes active again and time elapsed starts to increase. The transition from
state A to state B depends on the time elapsed while state A is enabled, not on
the simulation time. Therefore, state A stays active until t = 9, so that the
time elapsed in that state totals 5 seconds.

When the transition from A to B occurs at t = 9, the output value y changes
from 0 to 1.

10-76

Control Chart Execution Using Temporal Logic

This model behavior applies only to subsystems where you set the Enable
block parameter States when enabling to held. If you set the parameter to
reset, the chart reinitializes completely when the subsystem is reenabled.
In other words, default transitions execute and any temporal logic counters
reset to 0.

Note These semantics also apply to the before operator.

How Sample Time Affects Chart Execution
If a chart has a discrete sample time, any action in the chart occurs at integer
multiples of this sample time.

10-77

10 Use Actions in Charts

Suppose you have a chart with a discrete sample time of 0.1 seconds:

State A becomes active at time t = 0, and the transition to state B occurs at t =
2.2 seconds. This behavior applies because the Simulink solver does not wake
the chart at exactly t = 2.15 seconds. Instead, the solver wakes the chart at
integer multiples of 0.1 seconds, such as t = 2.1 and 2.2 seconds.

Note This behavior also applies to the before operator.

Best Practices for Absolute-Time Temporal Logic

Use the after Operator to Replace the at Operator
If you use the at operator with absolute-time temporal logic, an error message
appears when you try to simulate your model. Use the after operator instead.

Suppose that you want to define a time delay using the transition at(5.33,
sec).

Change the transition to after(5.33, sec), as shown below.

10-78

Control Chart Execution Using Temporal Logic

Use an Outer Self-Loop Transition with the after Operator to
Replace the every Operator
If you use the every operator with absolute-time temporal logic, an error
message appears when you try to simulate your model. Use an outer self-loop
transition with the after operator instead.

Suppose that you want to print a status message for an active state every 2.5
seconds during chart execution, as shown in the state action of Check_status.

Replace the state action with an outer self-loop transition, as shown below.

10-79

10 Use Actions in Charts

You must also add a history junction in the state so that the chart remembers
the state settings prior to each self-loop transition. (See “Record State Activity
Using History Junctions” on page 7-2.)

Use Charts with Discrete Sample Times for More Efficient Code
Generation
The code generated for discrete charts that are not inside a triggered
or enabled subsystem uses integer counters to track time instead of
Simulink provided time. This allows for more efficient code generation in
terms of overhead and memory, as well as enabling this code for use in
Software-in-the-Loop(SIL) and Processor-in-the-Loop(PIL) simulation modes.

10-80

Detect Changes in Data Values

Detect Changes in Data Values

In this section...

“Types of Data Value Changes That You Can Detect” on page 10-81

“Run a Model That Uses Change Detection” on page 10-82

“How Change Detection Works” on page 10-84

“Change Detection Operators” on page 10-86

“Chart with Change Detection” on page 10-91

Types of Data Value Changes That You Can Detect
You can detect changes in Stateflow data from one time step to the next time
step. All charts can detect changes on chart input data. C charts can also
detect changes in chart output data, local chart variables, machine-parented
variables, and data store memory data.

For each of these types of data, you can use operators that detect the following
changes.

Type of Change Operator

Data changes value from the
beginning of the last time step to the
beginning of the current time step.

See “hasChanged Operator” on page
10-87.

Data changes from a specified value
at the beginning of the last time step
to a different value at the beginning
of the current time step.

See “hasChangedFrom Operator” on
page 10-88.

Data changes to a specified value
at the beginning of the current time
step from a different value at the
beginning of the last time step.

See “hasChangedTo Operator” on
page 10-89.

Change detection operators return 1 if the data value changes or 0 if there is
no change. See “Change Detection Operators” on page 10-86.

10-81

10 Use Actions in Charts

Run a Model That Uses Change Detection
Stateflow software ships with a model sf_tetris2 that shows how you can
detect asynchronous changes in inputs — in this case, user keystrokes — to
manipulate a Tetris shape as it moves through the playing field. The chart
TetrisLogic implements this logic:

TetrisLogic contains a subchart called Moving that calls the operator
hasChanged to determine when users press any of the Tetris control keys, and
then moves the shape accordingly. Here is a look inside the subchart:

10-82

Detect Changes in Data Values

To run the model, follow these steps:

1 Open the model by typing sf_tetris2 at the MATLAB prompt.

2 Start simulation.

10-83

10 Use Actions in Charts

How Change Detection Works
A chart detects changes in chart data by evaluating values at time step
boundaries. That is, the chart compares the value at the beginning of the
previous execution step with the value at the beginning of the current
execution step. To detect changes, the chart automatically double-buffers
these values in local variables, as follows:

Local Buffer: Stores:

var_name_prev Value of data at the beginning of the last
time step

var_name_start Value of data at the beginning of the
current time step

Note Double-buffering occurs once per time step except if multiple input
events occur in the same time step. Then, double-buffering occurs once per
input event (see “Handle Changes When Multiple Input Events Occur” on
page 10-86).

When you invoke change detection operations in an action, Stateflow software
performs the following operations:

1 Double-buffers data values after a Simulink event triggers the chart, but
before the chart begins execution.

2 Compares values in _prev and _start buffers. If the values match, the
change detection operator returns 0 (no change); otherwise, it returns
1 (change).

10-84

Detect Changes in Data Values

The following diagram places these tasks in the context of the chart life cycle:

����
����% &������!����

��	����������!
��
�����
��

�
�� &������!����
��	����������!
�����������
��

� &������!����
�������!
�����������
��

'

�$��
���%�(

)�*�
�$��
���%�

'������"���$��
	���+������

��!���
����
����
��$

�������*
�%���������

���!��#
�$��

���

��

���!��#�
�!#���
���	��,	�!!��
����

����% �
���

�
�� ��

-$������

��
����
�������+
�%��

-$��
�+����

���%���$������
$������$������
�����,��#�

�����

�%��.��///
�%��.�

$�
-$������0+1
�������

����% �
�����

10-85

10 Use Actions in Charts

The fact that buffering occurs before chart execution has implications for
change detection in the following scenarios:

• “Handle Transient Changes in Local Variables” on page 10-86

• “Handle Changes When Multiple Input Events Occur” on page 10-86

Handle Transient Changes in Local Variables
Stateflow software attempts to filter out transient changes in local chart
variables by evaluating their values only at time boundaries (see “How
Change Detection Works” on page 10-84). This behavior means that the
software evaluates the specified local variable only once at the end of the
execution step and, therefore, returns a consistent result. That is, the return
value remains constant even if the value of the local variable fluctuates
within a given time step.

For example, suppose that in the current time step a local variable temp
changes from its value at the previous time step, but then reverts to the
original value. In this case, the operator hasChanged(temp) returns 0 for the
next time step, indicating that no change occurred. For more information, see
“Change Detection Operators” on page 10-86.

Handle Changes When Multiple Input Events Occur
When multiple input events occur in the same time step, Stateflow software
updates the _prev and _start buffers once per event. In this way, a chart
detects changes between input events, even if the changes occur more than
once in a given time step.

Change Detection Operators
Change detection operators check for changes in chart inputs, outputs, and
local variables, and in Stateflow data that is bound to Simulink data store
memory.

You can invoke change detection operators wherever you call built-in
functions in a chart — in state actions, transition actions, condition actions,
and conditions. There are three change detection operators:

• “hasChanged Operator” on page 10-87

10-86

Detect Changes in Data Values

• “hasChangedFrom Operator” on page 10-88

• “hasChangedTo Operator” on page 10-89

hasChanged Operator
The hasChanged operator detects any change in Stateflow data since the last
time step, using the following heuristic:

hasChanged x x xprev start() = ≠{ 0
1

otherwise
if

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChanged (u)
hasChanged (m [expr])
hasChanged (s [expr])

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a chart

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the argument of the hasChanged
operator. With this option enabled, the hasChanged operator always
returns 0 (or false), so there is no reason to use change detection.

• Stateflow data that is bound to Simulink data store memory

The arguments cannot be expressions or custom code variables.

Description. hasChanged (u) returns 1 if u changes value since the last
time step. If u is a matrix, hasChanged returns 1 if any element of u changes
value since the last time step.

10-87

10 Use Actions in Charts

hasChanged (m [expr]) returns 1 if the value at location expr of matrix
m changes value since the last time step. expr can be an arbitrary expression
that evaluates to a scalar value.

hasChanged (s [expr]) returns 1 if the value at location expr of
aggregate data s has changed since the last time step. s must be a fully
qualified name, such as u.foo.bar, which resolves to an aggregate data type
such as a structure or bus signal. expr can be an arbitrary expression that
evaluates to a scalar value.

All forms of hasChanged return zero if a chart writes to the data, but does
not change its value.

hasChangedFrom Operator
The hasChangedFrom operator detects when Stateflow data changes from a
specified value since the last time step, using the following heuristic:

hasChangedFrom x x x x xprev start prev x(,)0
0

0
1= ≠ ={ otherwise

if and

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedFrom (u , v)
hasChangedFrom (m [expr], v)
hasChangedFrom (s [expr], v)

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a chart

10-88

Detect Changes in Data Values

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the first argument of the
hasChangedFrom operator. With this option enabled, the operator always
returns 0 (or false) for outputs, so there is no reason to use change
detection.

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to a scalar value or a
matrix value with the same dimensions as the first argument.

Description. hasChangedFrom (u, v) returns 1 if u changes from the
value specified by v since the last time step. If u is a matrix variable whose
elements all equal the value specified by v, hasChangedFrom returns 1 if one
or more elements of the matrix changes to a different value in the current
time step.

hasChangedFrom (m [expr], v) returns 1 if the value at location expr of
matrix m changes from the value specified by v since the last time step. expr
can be an arbitrary expression that evaluates to a scalar value.

hasChangedFrom (s [expr], v) returns 1 if the value at location expr
of aggregate data s changes from the value specified by v since the last time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

hasChangedTo Operator
The hasChangedTo operator detects when Stateflow data changes to a
specified value since the last time step, using the following heuristic:

hasChangedTo x x x x xprev start start x(,)0
0

0
1= ≠ ={ otherwise

if and

10-89

10 Use Actions in Charts

where xstart represents the value at the beginning of the current time step
and xprev represents the value at the beginning of the previous time step.

Syntax.

hasChangedTo (u , v)
hasChangedTo (m [expr], v)
hasChangedTo (s [expr], v)

where u is a scalar or matrix variable, m is a matrix, and s is aggregate data.

The arguments u, m, and s must be one of the following data types:

• Input, output, or local variable in a chart

Note If you enable the chart option Initialize Outputs Every Time
Chart Wakes Up, do not use an output as the first argument of the
hasChangedTo operator. With this option enabled, the operator always
returns 0 (or false) for outputs, so there is no reason to use change
detection.

• Stateflow data that is bound to Simulink data store memory

Note The first arguments u, m, and s cannot be expressions or custom code
variables. The second argument v can be an expression. However, if the first
argument is a matrix variable, then v must resolve to either a scalar value or
a matrix value with the same dimensions as the first argument.

Description. hasChangedTo (u, v) returns 1 if u changes to the value
specified by v in the current time step. If u is a matrix variable, hasChangedTo
returns 1 if any its of its elements changes value so that all elements of the
matrix equal the value specified by v in the current time step.

hasChangedTo (m [expr], v) returns 1 if the value at location expr of
matrix m changes to the value specified by v in the current time step. expr
can be an arbitrary expression that evaluates to a scalar value.

10-90

Detect Changes in Data Values

hasChangedTo (s [expr], v) returns 1 if the value at location expr
of aggregate data s changes to the value specified by v in the current time
step. s must be a fully qualified name, such as u.foo.bar, which resolves to
an aggregate data type such as a structure or bus signal. expr can be an
arbitrary expression that evaluates to a scalar value.

Chart with Change Detection
The following model shows how to use the hasChanged, hasChangedFrom, and
hasChangedTo operators to detect specific changes in an input signal. In this
example, a Ramp block sends a discrete, increasing time signal to a chart:

The model uses a fixed-step solver with a step size of 1. The signal increments
by 1 at each time step. The chart analyzes the input signal for the following
changes at each time step:

• Any change from the previous time step

• Change to the value 3

• Change from the value 3

10-91

10 Use Actions in Charts

To check the signal, the chart calls three change detection operators in a
transition action, and outputs the return values as y1, y2, and y3, as follows:

10-92

Detect Changes in Data Values

During simulation, the outputs y1, y2, and y3 represent changes in the input
signal, as shown in this scope:

��
	

��
����
����
������� �2

�
��
����
	����
����*���

������
���

�
 ��

��
����
����
������� �
#$������$����
����2
���
����
�	��*����

�� 3�#$�����������
�

!��������3

��
���
����
������� 3

#$������$����
�!��������32
���
����
�	��*����

�� ��#$�����������
�

�!����3����

10-93

10 Use Actions in Charts

Check State Activity

In this section...

“When to Check State Activity” on page 10-94

“How to Check State Activity” on page 10-94

“The in Operator” on page 10-94

“How Checking State Activity Works” on page 10-95

“State Resolution for Identically Named Substates” on page 10-98

“Best Practices for Checking State Activity” on page 10-100

When to Check State Activity
Check state activity when you have substates in parallel states that can
be active at the same time. For example, checking state activity helps you
synchronize substates in two parallel states.

How to Check State Activity
Use the in operator to check if a state is active. You can use this operator in
state actions and transitions that originate from states.

The in Operator

Purpose
Checks if a state is active in a given time step during chart execution.

Syntax

in(S)

where S is a fully qualified state name.

10-94

Check State Activity

Description
The in operator is true and returns a value of 1 whenever state S is active;
otherwise, it returns a value of 0.

Example
This example illustrates the use of the in operator in transition conditions.

In this chart, using the in operator to check state activity synchronizes
substates in the parallel states Place and Tracker. For example, when
the input position u becomes positive, the state transition from Place.L to
Place.R occurs. This transition makes the condition [in(Place.R)] true, and
the transition from Tracker.Moved_Left to Tracker.Moved_Right occurs.

How Checking State Activity Works
Checking state activity is a two-stage process. First, the in operator must find
the desired state. Then, the operator determines if the desired state is active.

• The in operator does not perform an exhaustive search for all states in a
chart that can match the argument. It performs a localized search and
stops.

10-95

10 Use Actions in Charts

• The in operator does not stop searching after it finds one match. It
continues to search until it reaches the chart level.

This diagram shows the detailed process of checking state activity.

10-96

Check State Activity

Display an
error

message.

10-97

10 Use Actions in Charts

When you use the in operator to check state activity, these actions take place:

1 The search begins in the state where you use the in operator.

• If you use the in operator in a state action, then that state is the starting
point.

• If you use the in operator in a transition label, then the parent of the
source state is the starting point.

2 The in operator searches at that level of the hierarchy for a path to a state
that matches the desired state. If the operator finds a match, it adds that
state to the list of possible matches.

3 The operator moves up to the next highest level of the hierarchy. At that
level, the operator searches for a path to a state that matches the desired
state. If the operator finds a match, it adds that state to the list of possible
matches.

4 The in operator repeats the previous step until it reaches the chart level.

5 At the chart level, the operator searches for a path to a state that matches
the desired state. If the operator finds a match, it adds that state to the
list of possible matches. Then, the search ends.

6 After the search ends, one of the following occurs:

• If a unique search result is found, the in operator checks if that state is
active and returns a value of 0 or 1.

• If the operator finds no matches or multiple matches for the desired
state, an error message appears.

State Resolution for Identically Named Substates
For identically named substates in parallel superstates, the scope of the in
operator remains local with respect to its chart-level superstate. When the
in operator checks activity of a substate, it does not automatically detect an
identically named substate that resides in a parallel superstate.

This example shows how the in operator works in a chart with identically
named substates.

10-98

Check State Activity

• Superstates A and B have identical substates A1 and A2.

• The condition in(A1.Y) guards the transition from P to Q in the states
A.A2 and B.A2.

• For the state A.A2, the condition in(A1.Y) refers to the state A.A1.Y.

• For the state B.A2, the condition in(A1.Y) refers to the state B.A1.Y.

For the transition condition of A.A2, the in operator performs these search
actions:

Step Action of the in Operator Finds a Match?

1 Picks A.A2 as the starting point and
searches for the state A.A2.A1.Y

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.A1.Y

Yes

3 Moves up to the chart level and
searches for the state A1.Y

No

10-99

10 Use Actions in Charts

The search ends, with the single state A.A1.Y found. The in operator checks
if that state is active and returns a value of 0 or 1.

Localizing the scope of the in operator produces a unique search result. For
example, the in operator of A.A2 does not detect the state B.A1.Y, because the
search algorithm localizes the scope of the operator. Similarly, the in operator
of B.A2 detects only the state B.A1.Y and does not detect the state A.A1.Y.

Best Practices for Checking State Activity

Use a Specific Search Path
Be specific when defining the path of the state whose activity you want to
check. See the examples that follow for details.

Example of No States Matching the Argument of the in Operator.

In the state A.B, the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.C.D. The in operator
performs these search actions:

10-100

Check State Activity

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.C.D

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.C.D

No

3 Moves up to the chart level and
searches for the state C.D

No

The search ends, and an error appears because no match exists.

To eliminate the error, use a more specific path to check state activity:
in(Other.C.D).

Example of the Wrong State Matching the Argument of the in
Operator.

In the state A.B, the during action invokes the in operator. Assume that
you want to check the activity of the state A.B.Other.Q.R. The in operator
performs these search actions:

10-101

10 Use Actions in Charts

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.Q.R

No

2 Moves up to the next level of the
hierarchy and searches for the state
A.Q.R

No

3 Moves up to the chart level and
searches for the state Q.R

Yes

The search ends, with the single state Q.R found. The in operator checks if
that state is active and returns a value of 0 or 1.

In this example, the in operator checks the status of the wrong state.
To prevent this error, use a more specific path to check state activity:
in(Other.Q.R).

Use Unique State Names
Use unique names when you name the states in a chart.

Example of Multiple States Matching the Argument of the in
Operator.

10-102

Check State Activity

In the state A.B, the during action invokes the in operator. Assume that you
want to check the activity of the state A.B.P.Q.R. The in operator performs
these search actions:

Step Action of the in Operator Finds a Match?

1 Picks A.B as the starting point and
searches for the state A.B.P.Q.R

Yes

2 Moves up to the next level of the
hierarchy and searches for the state
A.P.Q.R

No

3 Moves up to the chart level and
searches for the state P.Q.R

Yes

The search ends, and an error appears because multiple matches exist.

To eliminate the error, perform one of these corrective actions:

• Rename one of the matching states.

• Use a more specific path to the desired state: in(B.P.Q.R).

• Enclose the outer state P.Q.R in a box or another state, as shown below.

Adding an enclosure prevents the in operator of state A.B from detecting
that outer state.

10-103

10 Use Actions in Charts

Control Function-Call Subsystems Using Bind Actions

In this section...

“What Are Bind Actions?” on page 10-104

“Bind a Function-Call Subsystem to a State” on page 10-104

“Model That Binds a Function-Call Subsystem to a State” on page 10-109

“Behavior of a Bound Function-Call Subsystem” on page 10-112

“Why Avoid Muxed Trigger Events with Binding” on page 10-118

What Are Bind Actions?
Bind actions in a state bind specified data and events to that state. Events
bound to a state can be broadcast only by the actions in that state or its
children. You can also bind a function-call event to a state to enable or
disable the function-call subsystem that the event triggers. The function-call
subsystem enables when the state with the bound event is entered and
disables when that state is exited. Execution of the function-call subsystem is
fully bound to the activity of the state that calls it.

Bind a Function-Call Subsystem to a State
By default, a function-call subsystem is controlled by the chart in which the
associated function call output event is defined. This association means that
the function-call subsystem is enabled when the chart wakes up and remains
active until the chart goes to sleep. To achieve a finer level of control, you can
bind a function-call subsystem to a state within the chart hierarchy by using
a bind action (see “Bind Actions” on page 10-5).

Bind actions can bind function-call output events to a state. When you create
this type of binding, the function-call subsystem that is called by the event
is also bound to the state. In this situation, the function-call subsystem is
enabled when the state is entered and disabled when the state is exited.

When you bind a function-call subsystem to a state, you can fine-tune the
behavior of the subsystem when it is enabled and disabled, as described in
the following sections:

10-104

Control Function-Call Subsystems Using Bind Actions

• “Handle Outputs When the Subsystem is Disabled” on page 10-105

• “Control Behavior of States When the Subsystem is Enabled” on page
10-107

Handle Outputs When the Subsystem is Disabled
Although function-call subsystems do not execute while disabled, their output
signals are available to other blocks in the model. If a function-call subsystem
is bound to a state, you can hold its outputs at their values from the previous
time step or reset the outputs to their initial values when the subsystem is
disabled. Follow these steps:

10-105

10 Use Actions in Charts

1 Double-click the outport block of the subsystem to open the Block
Parameters dialog box.

2 Select an option for Output when disabled:

10-106

Control Function-Call Subsystems Using Bind Actions

Select: To:

held Maintain most recent output value

reset Reset output to its initial value

3 Click OK to record the settings.

Note Setting Output when disabled is meaningful only when the
function-call subsystem is bound to a state, as described in “Bind a
Function-Call Subsystem to a State” on page 10-104.

Control Behavior of States When the Subsystem is Enabled
If a function-call subsystem is bound to a state, you can hold the subsystem
state variables at their values from the previous time step or reset the state
variables to their initial conditions when the subsystem executes. In this way,
the binding state gains full control of state variables for the function-call
subsystem. Follow these steps:

10-107

10 Use Actions in Charts

1 Double-click the trigger port of the subsystem to open the Block Parameters
dialog box.

2 Select an option for States when enabling:

10-108

Control Function-Call Subsystems Using Bind Actions

Select: To:

held Maintain most recent values of the states of the
subsystem that contains the trigger port

reset Revert to the initial conditions of the states of the
subsystem that contains this trigger port

inherit Inherit this setting from the function-call initiator’s
parent subsystem. If the parent of the initiator is the
model root, the inherited setting is held. If the trigger
has multiple initiators, the parents of all initiators
must have the same setting: either all held or all
reset.

3 Click OK to record the settings.

Note Setting States when enabling is meaningful only when the
function-call subsystem is bound to a state, as described in “Bind a
Function-Call Subsystem to a State” on page 10-104.

Model That Binds a Function-Call Subsystem to a
State
The following model triggers a function-call subsystem with a trigger event E
that binds to state A of a chart:

This model specifies a fixed-step solver with a fixed-step size of 1 in the
Solver pane of the Model Configuration Parameters dialog box.

10-109

10 Use Actions in Charts

The chart contains two states, A and B, and connecting transitions, along
with some actions:

Event E binds to state A with the action bind:E. Event E is defined for
the chart with a scope of Output to Simulink and a trigger type of
function-call.

The function-call subsystem contains a trigger port block, an input port, an
output port, and a simple block diagram. The block diagram increments a
counter by 1 at each time step, using a Unit Delay block:

10-110

Control Function-Call Subsystems Using Bind Actions

The Block Parameters dialog box for the trigger port appears as follows.

The States when enabling parameter uses the setting reset. This setting
resets the state values for the function-call subsystem to zero when it is
enabled.

10-111

10 Use Actions in Charts

The Sample time type parameter uses the setting triggered. This setting
sets the function-call subsystem to execute only when it is triggered by a
calling event while it is enabled.

Setting Sample time type to periodic enables the Sample time field
below it, which defaults to 1. These settings force the function-call subsystem
to execute for each time step specified in the Sample time field while it is
enabled. To accomplish this, the state that binds the calling event for the
function-call subsystem must send an event for the time step coinciding with
the specified sampling rate in the Sample time field. States can send events
with entry or during actions at the simulation sample rate.

• For fixed-step sampling, the Sample time value must be an integer
multiple of the fixed-step size.

• For variable-step sampling, the Sample time value has no limitations.

Behavior of a Bound Function-Call Subsystem
To see how a state controls a bound function-call subsystem, begin simulating
the model in “Model That Binds a Function-Call Subsystem to a State” on
page 10-109. The following steps describe the output of the subsystem.

1 In the chart, the default transition to state A occurs.

2 When state A becomes active, it executes its bind and entry actions. The
binding action, bind:E, binds event E to state A. This action enables the
function-call subsystem and resets its state variables to 0.

10-112

Control Function-Call Subsystems Using Bind Actions

State A also executes its entry action, en:E, which sends an event E to
trigger the function-call subsystem and execute its block diagram. The
block diagram increments a count by 1 each time using a Unit Delay block.
Because the previous content of the Unit Delay block is 0 after the reset,
the initial output is 0 and the current value of 1 is held for the next call to
the subsystem.

3 The next update event from the model tests state A for an outgoing
transition.

10-113

10 Use Actions in Charts

The temporal operation on the transition to state B, after(10, tick),
allows the transition to be taken only after ten update events are received.
For the second update, the during action of state A, du:E, executes, which
sends an event to trigger the function-call subsystem. The held content of
the Unit Delay block, 1, outputs to the scope.

The subsystem also adds 1 to the held value to produce the value 2, which
the Unit Delay block holds for the next triggered execution.

10-114

Control Function-Call Subsystems Using Bind Actions

4 The next eight update events increment the subsystem output by 1 at
each time step.

10-115

10 Use Actions in Charts

5 On the 11th update event, the transition to state B occurs and state B
becomes active.

Because the binding to state A is no longer active, the function-call
subsystem is disabled, and its output drops to 0.

10-116

Control Function-Call Subsystems Using Bind Actions

6 When the next sampling event occurs, the transition from state B to state A
occurs.

Again, the binding action, bind: E, enables the function-call subsystem
and resets its output to 0.

10-117

10 Use Actions in Charts

7 The next 10 update events produce the following output.

Why Avoid Muxed Trigger Events with Binding
The example in “Behavior of a Bound Function-Call Subsystem” on page
10-112 shows how binding events gives control of a function-call subsystem
to a single state in a chart. This control does not work when you allow other
events to trigger the function-call subsystem through a mux. For example,
the following model defines two function-call events to trigger a function-call
subsystem using a Mux block:

10-118

Control Function-Call Subsystems Using Bind Actions

In the chart, E1 binds to state A, but E2 does not. State B sends the triggering
event E2 in its entry action:

10-119

10 Use Actions in Charts

When you simulate this model, you get the following output:

Broadcasting E2 in state B changes the output, which no longer resets.

Note Binding is not recommended when you provide multiple trigger events
to a function-call subsystem through a mux. Muxed trigger events can
interfere with event binding and cause undefined behavior.

10-120

11

MATLAB Syntax Support
for States and Transitions

• “Modify the Action Language for a Chart” on page 11-2

• “Action Language Auto Correction” on page 11-6

• “Differences Between MATLAB and C as Action Language Syntax” on
page 11-8

• “Model Event-Driven System” on page 11-11

11 MATLAB Syntax Support for States and Transitions

Modify the Action Language for a Chart

In this section...

“Change the default action language” on page 11-2

“C to MATLAB syntax conversion” on page 11-3

“Rules for using MATLAB as the action language” on page 11-3

Charts have an action language property that defines the syntax for state and
transition actions. MATLAB is the default action language syntax for new
Stateflow charts. These charts have a MATLAB icon in the lower-left corner.

Charts can also use C as the action language syntax. These charts have a C
icon in the lower-left corner.

You can change the action language of a chart in the Action Language
box of the chart Properties window.

For more information, see “Differences Between MATLAB and C as Action
Language Syntax” on page 11-8.

Change the default action language
To change the default action language of new charts, use these commands.

Command Result

sfpref('ActionLanguage','MATLAB')All new charts created have
MATLAB as the action language,
unless otherwise specified in sfnew.

sfpref('ActionLanguage','C') All new charts created have C as the
action language, unless otherwise
specified in sfnew.

11-2

Modify the Action Language for a Chart

For more information, see sfnew.

C to MATLAB syntax conversion
For nonempty charts, after you change the action language property from C
to MATLAB, a notification appears at the top of the chart. The notification
provides the option to convert some of the C syntax to MATLAB syntax. In
the notification, click the link to have Stateflow convert syntax in the chart. C
syntax constructs that are converted include:

• Zero-based indexing

• Binary and bit-wise operations

• C style comments

• Explicit casting for constant assignments

If the chart contains C constructs that cannot be converted to MATLAB, you
see a list of warnings. You choose whether or not to continue with the syntax
conversion. C constructs not converted to MATLAB include:

• Explicit type casts with cast and type

• Operators such as &, * and :=

• Custom data

• Access to workspace variables using ml operator

• Functions not supported in code generation

• Hexadecimal and single precision notation

• Context-sensitive constants

Rules for using MATLAB as the action language

Use unique names for data in a chart
Using the same name for data at different levels of the chart hierarchy causes
a compile-time error.

11-3

11 MATLAB Syntax Support for States and Transitions

Use unique names for functions in a chart

Using the same name for functions at different levels of the chart hierarchy
causes a compile-time error.

Include a type prefix for identifiers of enumerated values

The identifier TrafficColors.Red is valid, but Red is not.

Use the MATLAB format for comments

Use % to specify comments in states and transitions for consistency with
MATLAB. For example, the following comment is valid:

% This is a valid comment in the style of MATLAB

C style comments, such as // and /* */, are auto-corrected to use %.

Use one-based indexing for vectors and matrices

One-based indexing is consistent with MATLAB syntax.

Use parentheses instead of brackets to index into vectors and
matrices

This statement is valid:

a(2,5) = 0;

This statement is not valid:

a[2][5] = 0;

Do not use control flow logic in condition actions and transition
actions

If you try to use control flow logic in condition actions or transition actions,
you get an error. Use of an if, switch, for, or while statement does not work.

11-4

Modify the Action Language for a Chart

Do not use transition actions in graphical functions

Transition labels in graphical functions do not support transition actions.

Enclose transition actions with braces

The following transition label contains a valid transition action:

E [x > 0] / {x = x+1;}

The following transition label:

E [x > 0] / x = x+1;

is incorrect, but is auto-corrected to the valid syntax.

Do not declare global or persistent variables in state actions

The keywords global and persistent are not supported in state actions.

To generate code from your model, use MATLAB language features
supported for code generation

Otherwise, use coder.extrinsic to call unsupported functions, which gives
the functionality that you want for simulation, but not in the generated
code. For a list of supported features and functions, see “MATLAB Language
Features Supported for C/C++ Code Generation” and “Functions and Objects
Supported for C and C++ Code Generation — Alphabetical List”.

Assign an initial value to local and output data

When using MATLAB as the action language, data read without an initial
value causes an error.

11-5

11 MATLAB Syntax Support for States and Transitions

Action Language Auto Correction
Stateflow charts that use MATLAB as the action language will automatically
correct the following syntax in the state transition diagrams.

• Adds brackets [], if missing, to statements that it recognizes as transition
conditions.

• Adds braces{}, if missing, to statements that it recognizes as transition
actions.

• Converts the following C syntax to MATLAB syntax:

- Increment and decrement operations, such as a++ and a . For example,
a++ is changed to a=a+1.

- Assignment operations, such as a+=expr, a =expr, a*=expr, and
a/=expr. For example, a+=b is changed to a=a+b.

- Evaluation operations, such as a!=expr and !a. For example, a!=b is
changed to a~=b.

- Inserts explicit casts for any literal constant assignment. For example, if
y is defined as type single, then y=1 is changed to y=single(1).

• Adds the type entry: to state actions that do not have a specified type.

For example, the following state action:

automatically corrects to this:

11-6

Action Language Auto Correction

11-7

11 MATLAB Syntax Support for States and Transitions

Differences Between MATLAB and C as Action Language
Syntax

Functionality MATLAB as the
Action Language

C as the Action
Language

MATLAB syntax in
states and transitions

Supported Not supported

Automatic inference
of scope, size, type,
and complexity for
unresolved input,
output, and local data

Supported Not supported

Control flow logic in
state labels

Supported Not supported

Dot notation for
specifying states,
local data, and local
events inside MATLAB
functions

Supported Not supported

C constructs, such as:

• Increment and
decrement
operations a++ and
a--

• Assignment
operations a+=expr,
a =expr, a*=expr,
and a/=expr

• Evaluation
operationsa !=
expr and !a

Automatic correction
for operators to
MATLAB syntax.
For example, a++ is
automatically corrected
to a=a+1.

Supported

Array indexing One-based indexing Zero-based indexing

11-8

Differences Between MATLAB and C as Action Language Syntax

Functionality MATLAB as the
Action Language

C as the Action
Language

Fixed-point constructs:

• Assignment operator
:=

• Context-sensitive
constants, such as 3C

Not supported Supported

Use of custom code
variables in states and
transitions

Not supported Supported

Use of custom code
functions in states and
transitions

Supported Supported

Identifiers for
enumerated values
without a type prefix

Not supported Supported

Interpretation of state
actions without a label
as entry actions

Automatic correction Supported

Format of transition
actions

Automatic correction Not required to enclose
a transition action with
braces {}

Format of transition
conditions

Automatic correction Required to enclose a
transition condition
with brackets []

Type cast operations Use MATLAB form Use type operator

Explicit cast required
in some situations

y = uint8(0) y = 0

Structure parameters Both tunable and
nontunable

Tunable only

11-9

11 MATLAB Syntax Support for States and Transitions

Functionality MATLAB as the
Action Language

C as the Action
Language

Initial value
specification for
outputs and local data

Not available in data
properties

Implicit 0

Specification of First
index, Units, and
Save final value to
base workspace for
data of any scope

Not available Available

Intermediate data
type for arithmetic
operations

Follows MATLAB
typing rules

Follows C typing rules

Typing rules for
addition

Data of type double
added to data of any
other type results in
data of the non-double
type.

Data of type double
added to data of any
other type results in
data of type double.

Use of global fimath
object

Supported Not supported

Simulation time for the
chart

Use the function
getSimulationTime()

Represented by the
symbol t

Ordering of parallel
states

Explicit ordering Explicit or implicit
ordering

11-10

Model Event-Driven System

Model Event-Driven System

In this section...

“Typical Approaches to Chart Programming” on page 11-11

“Design Requirements” on page 11-11

“Identify System Attributes” on page 11-12

“Build the Model Yourself or Use the Supplied Model” on page 11-13

“Add a Stateflow Chart to the Feeder Model” on page 11-13

“Add States to Represent Operating Modes” on page 11-16

“Implement State Actions” on page 11-17

“Specify Transition Conditions” on page 11-20

“Define Data for Your System” on page 11-23

“Verify the System Representation” on page 11-25

“Alternative Approach: Event-Based Chart” on page 11-27

“Feeder Chart Activated by Input Events” on page 11-27

Typical Approaches to Chart Programming
There are two general approaches to programming a chart:

• Identify the operating modes of your system.

• Identify the system interface, such as events to which your system reacts.

This tutorial uses the first approach— that is, start by identifying the
operating modes of the system to program the chart.

Design Requirements
This example shows how to build a Stateflow chart using MATLAB as the
action language. The model represents a machine on an assembly line that
feeds raw material to other parts of the line. This feeder behaves as follows:

11-11

11 MATLAB Syntax Support for States and Transitions

• At system initialization, check that the three sensor values are normal.

A positive value means the sensor is working correctly. A zero means that
the sensor is not working.

• If all sensor values are normal, transition from "system initialization" to
"on".

• If the feeder does not leave initialization mode after 5 seconds, force the
feeder into the failure state.

• After the system turns on, it starts counting the number of parts fed.

• At each time step, if any sensor reading is 2 or greater, the part has moved
to the next station.

• If the alarm signal sounds, force the system into the failure state.

An alarm signal can occur when an operator opens one of the safety doors
on the feeder or a downstream problem occurs on the assembly line, which
causes all upstream feeders to stop.

• If the all-clear signal sounds, resume normal operation and reset the
number of parts fed to zero.

• The feeder LED changes color to match the system operating mode—
orange for "system initialization", green for "on", and red for "failure state".

Identify System Attributes
Based on the description of feeder behavior, you can identify the key system
attributes.

Attribute Characteristic

Operating modes • System initialization, to perform system checks
before turning on the machine

• On, for normal operation

• System failure, for a recoverable machine failure
flagged by an alarm

Transitions • System initialization to On

• System initialization to Failure state

• On to Failure state

11-12

Model Event-Driven System

Attribute Characteristic

• Failure state to System initialization

Parallel Modes No operating modes run in parallel. Only one mode
can be active at any time.

Default Mode System initialization

Inputs • Three sensor readings to detect if a part has moved
to a downstream assembly station

• An alarm signal that can take one of two values: 1
for on and 0 for off

Outputs • Number of parts that have been detected as fed to
a downstream assembly station

• Color of the LED on the feeder

Build the Model Yourself or Use the Supplied Model
In this exercise, you add a Stateflow chart to a Simulink model that contains
sensor and alarm input signals to the feeder.

Follow the exercises below to implement the model yourself. Otherwise, to
open the supplied model, at the MATLAB command prompt enter:

addpath(fullfile(docroot,'toolbox','stateflow','examples'))
ex_feeder

Add a Stateflow Chart to the Feeder Model

1 Open the partially build model by executing the following at the MATLAB
command prompt:

addpath(fullfile(docroot,'toolbox','stateflow','examples'))
ex_feeder_exercise

2 Save the model in your working folder.

11-13

11 MATLAB Syntax Support for States and Transitions

3 Double-click the SensorSignals block to see the three sensor signals
represented by pulse generator blocks.

The sensors signal indicates when the assembly part is ready to move to
the next station.

4 Double-click the AlarmSignal block to see the step blocks that represent
the alarm signal.

When the ALARM signal is active, the machine turns off.

5 Run the model to see the output of the sensor and alarm signals in the
Scope block.

11-14

Model Event-Driven System

11-15

11 MATLAB Syntax Support for States and Transitions

The upper axis shows the sensor signals. Only two sensor signals appear
because two of the sensors have the same signal. The lower axis shows
the alarm signal which turns the feeder off between the simulation time
of 45 to 80 seconds.

6 Open the Stateflow Library by executing sflib at the MATLAB command
prompt.

7 Select Chart and drag it into your model.

Tip To create a new model with an empty Stateflow chart which uses
MATLAB as the action language, use the command,sfnew.

8 Delete the connections from the SensorSignals subsystem to the scope and
from the AlarmSignal subsystem to the scope.

9 Rename the label Chart located under the Stateflow chart to Feeder. The
model should now look like this:

Add States to Represent Operating Modes
Based on the system attributes previously described, there are three operating
modes:

• System initialization

11-16

Model Event-Driven System

• On

• Failure state

To add states for modeling the behavior of these operating modes:

1 Double-click the Feeder Chart to begin adding states.

Note The MATLAB icon in the lower left corner of the chart indicates that
you are using a Stateflow chart with MATLAB syntax.

2 Click the State Tool icon to bring a state into the chart.

3 Click the upper left corner of the state and type the name,
InitializeSystem.

4 Repeat steps 2 and 3 to add two more states named On and FailState.

Implement State Actions

Decide the Type of State Action
States perform actions at different phases of their execution cycle from the
time they become active to the time they become inactive. Three basic state
actions are:

11-17

11 MATLAB Syntax Support for States and Transitions

Type of
Action

When Executed How Often Executed
While State Is Active

Entry When the state is entered
(becomes active)

Once

During While the state is active
and no valid transition to
another state is available

At every time step

Exit Before a transition is taken
to another state

Once

For example, you can use entry actions to initialize data, during actions to
update data, and exit actions to configure data for the next transition. For
more information about other types of state actions, see “Syntax for States
and Transitions”.)

1 Press return after the InitializeSystem state name and add this text to
define the state entry action:

entry:
Light = ORANGE;

An orange LED indicates entry into the InitializeSystem state.

Syntax for an entry action

The syntax for entry actions is:

entry: one or more actions;

2 Add the following code after the FailState state name to define the entry
action:

entry:
Light = RED;

A red LED indicates entry in the FailState.

3 Add the following code after the On state name to define the entry action:

11-18

Model Event-Driven System

entry:
Light = GREEN;
partsFed = 0;

A green LED indicates entry in the On state. The number of parts fed is
initialized to 0 each time we enter the On state

4 Add the following code to the On state after the entry action to check if there
is a strong sensor signal and increment the parts fed to the next station:

during:
if(any(sensors >= 2))
partsFed = partsFed + 1;

end

The On state checks the sensor signal to determine if a part is ready to be
fed to the next assembly station. If the sensor signal is strong (the number
of sensors that are on is greater than or equal to 2), then the chart counts
the part as having moved on to the next station.

Syntax for during actions

The syntax for during actions is:

during: one or more actions;

The chart should now look like this figure.

11-19

11 MATLAB Syntax Support for States and Transitions

Specify Transition Conditions
Transition conditions specify when to move from one operating mode to
another. When the condition is true, the chart takes the transition to the next
state, otherwise, the current state remains active. For more information, see
“Transitions” on page 2-15.

Based on the description of feeder behavior, specify the rules for transitions
between states:

1 Connect a default transition to the InitializeSystem state to indicate
the chart entry point.

11-20

Model Event-Driven System

“Default Transitions” on page 2-30 specify where to begin the simulation.

2 Draw a transition from the InitializeSystem state to the On state:

a Move the mouse over the lower edge of the InitializeSystem state
until the pointer shape changes to crosshairs.

b Click and drag the mouse to the upper edge of the On state. You then see
a transition from the InitializeSystem state to the On state.

c Double-click the transition to add this condition:

[all(sensors>0)]

This transition condition verifies if all of the sensors have values greater
than zero.

3 Repeat these steps to create these remaining transition conditions.

Transition Condition

On to FailState [Alarm == 1]

FailState to InitializeSystem [Alarm == 0]

4 Draw another transition from InitializeSystem to FailState. On this
transition, type the following to create the transition event:

after(5,sec)

If the sensors have not turned on after 5 seconds, this syntax specifies a
transition from InitializeSystem to FailState.

Note The syntax on this transition is an event rather than a transition
condition. For details, refer to“Control Chart Execution Using Temporal
Logic” on page 10-61.

The chart now looks like this figure.

11-21

11 MATLAB Syntax Support for States and Transitions

Note The outgoing transitions from InitializeSystem have a small label 1
and 2 to indicate the order in which transition segments are evaluated. If the
numbers from the figure do not match your model, right click the transition
and then change it by clicking on Execution Order. See “Evaluation Order
for Outgoing Transitions” on page 3-54 for details.

11-22

Model Event-Driven System

Define Data for Your System

Verify the Chart Data Properties
Start the simulation of your model. Errors about unresolved symbols appear,
along with the Symbol Wizard.

The Symbol Wizard does not automatically add any data to your chart. It
identifies the unresolved data and infers the class and scope of that data using
the inference rules of MATLAB expressions in Stateflow actions. In the chart:

• Data that is read from but not written to is inferred as input data.
However, if the name of the data is in all uppercase letters, the Symbol
Wizard infers the data as a parameter

11-23

11 MATLAB Syntax Support for States and Transitions

• Data that is written to but not read from is inferred as output data.

• Data that is read from and written to is inferred as local data.

The Symbol Wizard infers the scope of the input data in your chart. However,
you must fix the data scope for the partsFed Output. Follow these steps:

1 For the partsFed data: in the Data Scope column, select Output from
the list

The Symbol Wizard now looks like this figure.

2 To add the data that the Symbol Wizard suggests, click OK.

3 Add initial values for the parameters. At the MATLAB command prompt,
enter:

11-24

Model Event-Driven System

RED = 0;

4 Similarly, at the MATLAB command prompt, add the following initial
values for the remaining parameters:

Parameter Value

RED 0

ORANGE 1

GREEN 2

5 Return to the model and connect the inputs and outputs to their respective
ports.

Verify the System Representation

1 Start the simulation.

Double-click the Scope block to verify that the model captures the expected
feeder behavior.

11-25

11 MATLAB Syntax Support for States and Transitions

11-26

Model Event-Driven System

The upper axis shows the LED signal which varies between orange (1),
green (2), and red (0) to indicate the current operating mode. The lower axis
shows the number of parts fed to the next assembly station, which increases
incrementally until the alarm signal turns the machine off and then resets.

Alternative Approach: Event-Based Chart
Another approach to programming the chart is to start by identifying parts of
the system interface, such as events to which your system reacts.

In the previous example, when you use input data to represent an event, the
chart wakes up periodically and verifies whether the conditions on transitions
are valid. In this case, if ALARM == 1, then the transition to the failure
state happens at the next time step. However, creating a Stateflow chart
which reacts to input events allows you to react to the alarm signal when
the event is triggered.

For details on when to use an event-based chart, see “How Events Work in
Stateflow Charts” on page 9-2.

Identify System Attributes for Event-Driven Systems
In the event-based approach, the system attributes to consider first are the
events, inputs, and outputs.

In the following table, consider the characteristics of the event-driven Feeder
Model that are different from the system based on transition conditions.

Attributes Characteristics

Events Two asynchronous events: an alarm signal and an
all-clear signal

Inputs Three sensor readings to detect if a part has moved
to a downstream assembly station

Feeder Chart Activated by Input Events
In this example, the Feeder model reacts to input events using a triggered
chart. To open this model, at the MATLAB command prompt enter:

11-27

11 MATLAB Syntax Support for States and Transitions

addpath(fullfile(docroot,'toolbox','stateflow','examples'))
ex_feeder_triggered

The chart now has only one input port on the left and an event triggered input
on the top. For more information on how to create a Stateflow chart activated
by events, see “Activate a Stateflow Chart Using Input Events” on page 9-12

When the ALARM signal triggers the chart, the chart responds to the trigger in
that time step. If the current state is On when the alarm is triggered, then the
current state transitions to FailState.

11-28

Model Event-Driven System

The scope output for the Event-triggered chart is in the following figure.

11-29

11 MATLAB Syntax Support for States and Transitions

The upper axis shows the LED signal which varies between red (0), orange
(1), and green (2) to indicate the current operating mode. The lower axis

11-30

Model Event-Driven System

shows the number of parts fed to the next assembly station, which increases
incrementally until the alarm signal turns the machine off and then resets.
However, the event-based simulation feeds more parts to the next assembly
station due to clock and solver differences.

11-31

11 MATLAB Syntax Support for States and Transitions

11-32

12

Tabular Expression of
Modal Logic

• “What Is a State Transition Table?” on page 12-2

• “Differences Between State Transition Tables and Charts” on page 12-5

• “Anatomy of a State Transition Table” on page 12-6

• “Create State Transition Table and Specify Properties” on page 12-8

• “Generate Diagrams from State Transition Tables” on page 12-10

• “Highlight Flow of Logic” on page 12-11

• “When to Use Automatically Generated Diagrams” on page 12-14

• “State Transition Table Editor Operations” on page 12-15

• “Rules for Using State Transition Tables” on page 12-18

• “State Transition Table Diagnostics” on page 12-19

• “Traceability of State Transition Tables” on page 12-20

• “Model Bang-Bang Controller with State Transition Table” on page 12-24

12 Tabular Expression of Modal Logic

What Is a State Transition Table?
A state transition table is an alternative way of expressing sequential modal
logic. Instead of drawing states and transitions graphically in a Stateflow
chart, you express the modal logic in tabular format.

Benefits of using state transition tables include:

• Ease of modeling train-like state machines, where the modal logic involves
transitions from one state to its neighbor

• Concise, compact format for a state machine

• Reduced maintenance of graphical objects

When you add or remove states from a chart, you have to rearrange states,
transitions, and junctions. When you add or remove states from a state
transition table, you do not have to rearrange any graphical objects.

State transition tables support MATLAB action language. For more
information about this action language, see .

12-2

What Is a State Transition Table?

The following state transition table contains the modal logic for maintaining
the temperature of a boiler between two set points:

12-3

12 Tabular Expression of Modal Logic

If you create a Stateflow chart to represent the same modal logic, the chart
looks something like this:

12-4

Differences Between State Transition Tables and Charts

Differences Between State Transition Tables and Charts
State transition tables support a subset of the most commonly used elements
in Stateflow charts. Elements that state transition tables do not support
include:

• Supertransitions

• Parallel (AND) decomposition

• Local events

• Flow charts

• Use of chart-level functions (graphical, truth table, MATLAB, and
Simulink)

12-5

12 Tabular Expression of Modal Logic

Anatomy of a State Transition Table
A state transition table contains the following components:

Each transition column contains the following state-to-state transition
information:

12-6

Anatomy of a State Transition Table

• Condition

• Condition action

• Destination state

12-7

12 Tabular Expression of Modal Logic

Create State Transition Table and Specify Properties

In this section...

“How to Create a New State Transition Table” on page 12-8

“Properties for State Transition Tables” on page 12-8

How to Create a New State Transition Table
At the MATLAB command prompt, enter:

sfnew('-STT')

From the Simulink Library Browser:

1 Select the Stateflow library.

2 Drag a state transition table into your model.

Properties for State Transition Tables
To access properties, in the state transition table editor, select
Table > Properties.

12-8

Create State Transition Table and Specify Properties

These properties are the same as for MATLAB charts. For a description of
each property, see “Specify Chart Properties” on page 21-5.

12-9

12 Tabular Expression of Modal Logic

Generate Diagrams from State Transition Tables
Stateflow software automatically generates a read-only state transition
diagram from the state transition table you create. As you enter changes
to a state transition table, Stateflow incrementally updates the diagram as
well. To see the most up-to-date version of the underlying diagram, select
Table > View State Diagram.

12-10

Highlight Flow of Logic

Highlight Flow of Logic
To visualize a flow of logic, you can highlight one transition cell per row in
your state transition table. For example, you might want to highlight the
primary flow of logic from one state to another or the flow that represents an
error condition.

The highlighting persists across MATLAB sessions and appears in the
autogenerated state transition diagram as well as the state transition table.

To highlight transition cells:

1 In the transition table editor, right-click the transition cell and select
Mark as primary transition.

The transition cell appears with a red border.

2 Highlight additional cells, one per row, to complete the flow.

For example:

12-11

12 Tabular Expression of Modal Logic

3 To view the flow in the autogenerated state diagram, select Table > View
State Diagram.

12-12

Highlight Flow of Logic

The transitions that represent the flow appear highlighted in the diagram.

12-13

12 Tabular Expression of Modal Logic

When to Use Automatically Generated Diagrams
Use the auto-generated diagram when you want to:

• View the animated flow of logic. See “Animate Stateflow Charts” on page
28-6.

• Debug your design. See “Debugging”.

• Fine-tune your design by using the validation and verification tools
accessible from the chart Analysis menu.

12-14

State Transition Table Editor Operations

State Transition Table Editor Operations

In this section...

“Insert Rows and Columns” on page 12-15

“Move Rows and Cells” on page 12-16

“Copy Rows and Transition Cells” on page 12-16

“Set Default State” on page 12-17

“Add History Junction” on page 12-17

“Print State Transition Tables” on page 12-17

“Select and Deselect Table Elements” on page 12-17

“Undo and Redo Edit Operations” on page 12-17

Insert Rows and Columns
To insert a row:

1 Select an existing state and click the Insert Row tool

2 Choose one of these options:

Option Description

State Row Inserts a state at the same level of
hierarchy.

Child State Row Inserts a state as a child of the
selected state.

Default Transition Path Row Inserts a row for specifying
conditional default transition
paths.

Inner Transition Path Row Inserts a row for specifying inner
transitions from the selected parent
state to its child states.

To insert a column:

12-15

12 Tabular Expression of Modal Logic

1 Click the Insert a new transition column tool

A new else-if column appears to the right of the last column.

Move Rows and Cells
To move a row, click the state cell and drag the row to a new location. As you
drag the row, you see a visual indicator of where in the hierarchy the state
will appear in its new position:

Indicator Description

Inserts state at the same level of hierarchy as the
destination state.

Inserts state as a child of the destination state.

To move a transition cell, click anywhere in the cell and drag the condition,
action, and destination cells as a unit to a new location. The transition cell
you displace moves one cell to the right, creating a new column if one doesn’t
exist. The state transition table prevents you from moving cells to an invalid
destination and alerts you to the problem.

Copy Rows and Transition Cells
To copy a row:

1 Right-click in the space to the left of the state in the row you want to copy
and select Copy.

2 Right-click in the space to the left of the state in the destination row and
select Paste.

The row appears above the destination row.

To copy a transition cell:

1 Right-click a cell and select Copy.

12-16

State Transition Table Editor Operations

2 Right-click a destination cell of the same type and select Paste.

The new content overwrites the existing content at the destination. The
state transition table prevents you from copying content to an invalid
destination.

Set Default State
Right-click the state and select Set to default.

Add History Junction
You can add history junctions to states that have children. Right-click the
state and select Add history junction.

Print State Transition Tables

Prints a copy of the state transition table.

Select and Deselect Table Elements

To... Perform this action...

Select a cell for editing Click the cell

Exit edit mode in a cell Press Esc or click another table, cell,
row, or column

Undo and Redo Edit Operations

Click the Undo button or press Ctrl+Z (Command+Z) to
undo the effects of the preceding operation.

Click the Redo button or press Ctrl+Y (Command+Y) to
redo the most recently undone operation.

You can undo and redo up to 10 operations.

12-17

12 Tabular Expression of Modal Logic

Rules for Using State Transition Tables
• Use MATLAB instead of C as action language syntax.

For more information, see “Differences Between MATLAB and C as Action
Language Syntax” on page 11-8.

• If you specify an action in a transition cell, it must be a condition action.

• State transition tables must have at least one state row and one transition
column.

12-18

State Transition Table Diagnostics

State Transition Table Diagnostics
You can run diagnostic checks on a state transition table. In the state

transition table editor, click this button .

The diagnostics tool statically parses the table to find errors such as:

• States with no incoming transitions

• Transition cells with conditions or actions, but no destination

• Action text in a condition cell

• States that are unreachable from the default transition

• Default transition row without unconditional transition

• Inner transition row execution order mismatches. The inner transition row
for a state must specify destination states from left to right in the same
order as the corresponding states appear in the table, from top to bottom.

Each error is reported with a hyperlink to the corresponding object causing
the error. These checks are also performed during simulation.

See “Diagnostics in State Transition Tables” for an example on using the
diagnostics tool for state transition tables.

12-19

12 Tabular Expression of Modal Logic

Traceability of State Transition Tables
This example shows how to navigate bidirectionally between objects in your
state transition table and the generated C/C++ and HDL code for traceability.

1 At the MATLAB prompt, type sf_cdplayer_STT. This model is already
configured for traceability. For more information on these configurations,
see “Traceability of Stateflow Objects in Generated Code” on page 27-65.

2 Open the Model Configuration Parameters dialog box.

3 In the Code Generation pane, click Generate Code in the lower-right
corner.

This step generates source code and header files for the sf_cdplayer_STT
model. After the code generation process is complete, the code generation
report appears automatically.

4 Click the sf_cdplayer_STT.c hyperlink in the report.

5 Scroll down through the code to see the traceability comments. The line
numbers shown can differ from the numbers that appear in your code
generation report.

12-20

Traceability of State Transition Tables

6 Click the <S2>:58 hyperlink in this traceability comment:

/* Entry Internal 'ON': '<S2>:58' */

The corresponding state'ON' appears highlighted in the state transition
table.

12-21

12 Tabular Expression of Modal Logic

7 Right-click the highlighted state and select View state object. The state
'ON' also appears highlighted in the underlying state transition diagram.

12-22

Traceability of State Transition Tables

8 You can also trace a state or transition from the state transition table to
the generated code. Right click on the state Standby and select C/C++
Code > Navigate to C/C++ Code.

The entry code for the state Standby is highlighted in the generated code.

12-23

12 Tabular Expression of Modal Logic

Model Bang-Bang Controller with State Transition Table

In this section...

“Why Use State Transition Tables?” on page 12-24

“Design Requirements” on page 12-25

“Identify System Attributes” on page 12-25

“Build the Controller or Use the Supplied Model” on page 12-26

“Create a New State Transition Table” on page 12-26

“Add States and Hierarchy” on page 12-28

“Specify State Actions” on page 12-30

“Specify Transition Conditions and Actions” on page 12-33

“Define Data” on page 12-36

“Connect the Transition Table and Run the Model” on page 12-38

“View the Graphical Representation” on page 12-39

Why Use State Transition Tables?
A state transition table is an alternative way of expressing modal logic.
Instead of drawing states and transitions graphically in a Stateflow chart,
you express the modal logic in tabular format. State transition tables use
MATLAB as the action language.

Benefits of using state transition tables include:

• Ease of modeling train-like state machines, where the modal logic involves
transitions from one state to its neighbor

• Concise, compact format for a state machine

• Reduced maintenance of graphical objects

When you add or remove states from a chart, you have to rearrange states,
transitions, and junctions. When you add or remove states from a state
transition table, you do not have to rearrange any graphical objects.

12-24

Model Bang-Bang Controller with State Transition Table

Design Requirements
This example shows how to model a bang-bang controller for temperature
regulation of a boiler, using a state transition table. The controller must turn
the boiler on and off to meet the following design requirements:

• High temperature cannot exceed 25 degrees Celsius.

• Low temperature cannot fall below 23 degrees Celsius.

• Steady-state operation requires a warm-up period of 10 seconds.

• When the alarm signal sounds, the boiler must shut down immediately.

• When the all-clear signal sounds, the boiler can turn on again.

Identify System Attributes
You can identify the operating modes and data requirements for the
bang-bang controller based on its design requirements.

Operating Modes
The high-level operating modes for the boiler are:

• Normal operation, when no alarm signal sounds.

• Alarm state, during an alarm signal.

During normal operation, the boiler can be in one of three states:

• Off, when the temperature is above 25 degrees Celsius.

• Warm-up, during the first 10 seconds of being on.

• On, steady-state after 10 seconds of warm-up, when the temperature is
below 23 degrees Celsius.

Data Requirements
The bang-bang controller requires the following data.

12-25

12 Tabular Expression of Modal Logic

Scope Description Variable Name

Input High temperature set
point

reference_high

Input Low temperature set
point

reference_low

Input Alarm indicator ALARM

Input All-clear indicator CLEAR

Input Current temperature of
the boiler

temp

Local Indicator that the boiler
completed warm-up

doneWarmup

Output Command to set the
boiler mode: off,
warm-up, or on

boiler_cmd

Build the Controller or Use the Supplied Model
To build the bang-bang controller model yourself using a state transition
table, work through the exercises, starting with “Create a New State
Transition Table” on page 12-26. Otherwise, open the supplied model. At the
MATLAB prompt, enter these commands:

addpath (fullfile(docroot,'toolbox','stateflow','examples'))
ex_stt_boiler

Create a New State Transition Table
You use a state transition table to represent the bang-bang controller.
Compared to a graphical state transition diagram, the state transition table
is a compact way to represent modal logic that involves transitions between
neighboring states. State transition tables use MATLAB syntax.

1 Open the partially built boiler plant model by entering these commands:

addpath (fullfile(docroot,'toolbox','stateflow','examples'))
ex_stt_boiler_exercise

12-26

Model Bang-Bang Controller with State Transition Table

This model contains all required Simulink blocks, except for the bang-bang
controller.

2 Delete the five output ports and the single input port.

3 Open the Library Browser by selecting View > Library Browser.

4 In the left pane of the Library Browser, select the Stateflow library, then
drag a State Transition Table block from the right pane into your boiler
model.

Your model should look something like this model.

12-27

12 Tabular Expression of Modal Logic

5 Close the Library Browser.

Now you are ready to add states and hierarchy to the state transition table.

Add States and Hierarchy
To represent the operating modes of the boiler, add states and hierarchy
to the state transition table.

1 Open the state transition table.

In the first cell, the gray text provides hints on how to specify conditions,
actions, and destinations for transitions, using MATLAB syntax.

If you want to remove these hints, select Table > Disable Cell Hints.

2 Represent the high-level operating modes, normal and alarm:

12-28

Model Bang-Bang Controller with State Transition Table

a Double-click state1 and rename it Normal.

b Double-click state2 and rename it Alarm.

3 Represent the three states of normal operation as substates of Normal:

a Right-click the Normal state, select Insert Row > Child State Row,
and name the new state Off.

b Repeat step a two more times to create the child states Warmup and On,
in that order.

By default, when there is ambiguity, the top exclusive (OR) state at every
level of hierarchy becomes active first. For this reason, the Normal and
Off states appear with default transitions. This configuration meets the
design requirements for this model.

How do I set a default state?

Right-click the state and select Set to default.

Your state transition table should look like this table.

12-29

12 Tabular Expression of Modal Logic

Now you are ready to specify actions for each state.

Specify State Actions
To describe the behavior that occurs in each state, specify state actions in the
table. In this exercise, you initialize modes of operation as the boiler enters

12-30

Model Bang-Bang Controller with State Transition Table

normal and alarm states, using the variables boiler_cmd and doneWarmup
(described in “Data Requirements” on page 12-25).

1 In the following states, click after the state name, press Enter, and type
the specified entry actions.

In State: Type: Resulting Behavior

Off
entry:
boiler_cmd = 0;
doneWarmup = false;

Turns off the boiler
and indicates that the
boiler has not warmed
up.

Warmup
entry:
boiler_cmd = 2;

Starts warming up the
boiler.

On
entry:
boiler_cmd = 1;

Turns on the boiler.

Alarm
entry:
boiler_cmd = 0;

Turns off the boiler.

2 Save the state transition table.

Your state transition table should look like this table.

12-31

12 Tabular Expression of Modal Logic

Now you are ready to specify the conditions and actions for transitioning
from one state to another state.

12-32

Model Bang-Bang Controller with State Transition Table

Specify Transition Conditions and Actions
To indicate when to change from one operating mode to another, specify
transition conditions and actions in the table. In this exercise, you construct
statements using variables described in “Data Requirements” on page 12-25.

1 In the Normal state row, enter:

if

[ALARM]

Alarm

During simulation:

a When first entered, the chart activates the Normal state.

b At each time step, normal operation cycles through the Off, Warmup, and
On states until the ALARM condition is true.

c When the ALARM condition is true, the boiler transitions to the Alarm
state and shuts down immediately.

2 In the Off state row, enter:

if

[temp <= reference_low]

Warmup

During simulation, when the current temperature of the boiler drops below
23 degrees Celsius, the boiler starts to warm up.

3 In the Warmup state row, enter:

12-33

12 Tabular Expression of Modal Logic

if else-if

[doneWarmup] [after(10, sec)]

{doneWarmup = true;}

On On

During simulation, the boiler warms up for 10 seconds and then transitions
to the On state.

4 In the On state row, enter:

if

[temp >= reference_high]

Off

During simulation, when the current temperature of the boiler rises above
25 degrees Celsius, the boiler shuts off.

5 In the Alarm state row, enter:

if

[CLEAR]

Normal

During simulation, when the all-clear condition is true, the boiler returns
to normal mode.

6 Save the state transition table.

Your state transition table should look like this table.

12-34

Model Bang-Bang Controller with State Transition Table

Now you are ready to add data definitions using the Symbol Wizard.

12-35

12 Tabular Expression of Modal Logic

Define Data
State transition tables use MATLAB syntax and honor the language
requirements for C/C++ code generation. One of these requirements is that
you define the size, type, and complexity of all MATLAB variables so that
their properties can be determined at compile time. Even though you have
not yet explicitly defined the data in your state transition table, you can use
the Symbol Wizard. During simulation, the Symbol Wizard alerts you to
unresolved symbols, infers their properties, and adds the missing data to
your table.

1 In the Simulink model editor menu, select Simulation > Run.

Two dialog boxes appear:

• The Diagnostic Viewer indicates that you have unresolved symbols in
the state transition table.

• The Symbol Wizard attempts to resolve the missing data. The wizard
correctly infers the scope of all data except for the inputs ALARM and
CLEAR.

12-36

Model Bang-Bang Controller with State Transition Table

2 In the Symbol Wizard, correct the scopes of ALARM and CLEAR by selecting
Input from their Scope drop-down lists.

3 When the Model Explorer opens, verify that the Symbol Wizard added all
required data definitions correctly.

Some of the inputs are assigned to the wrong ports.

4 In the Contents pane of the Model Explorer, reassign input ports as follows:

Assign: To Port:

reference_low 2

reference_high 1

temp 5

12-37

12 Tabular Expression of Modal Logic

Assign: To Port:

ALARM 3

CLEAR 4

5 Save the state transition table.

6 Close the Diagnostic Viewer and the Model Explorer.

In the Simulink model, the inputs and outputs that you just defined appear in
the State Transition Table block. Now you are ready to connect these inputs
and outputs to the Simulink signals and run the model.

Connect the Transition Table and Run the Model

1 In the Simulink model, connect the state transition table to the Simulink
inputs and outputs:

2 Save the model.

3 Start the simulation by selecting Simulation > Run.

12-38

Model Bang-Bang Controller with State Transition Table

The following output appears in the Scope block.

View the Graphical Representation
Stateflow automatically generates a read-only graphical representation of the
state transition table you created. You might want to view the graphical state
transition diagram to use animation and interactive debugging. Animation
lets you visually verify that your chart behaves as expected. Interactive
debugging lets you set breakpoints, control execution, and view data values
directly from the state diagram.

12-39

12 Tabular Expression of Modal Logic

1 In the state transition table, select Table > View State Diagram.

The top-level state transition diagram looks like this:

The Normal state appears as a subchart.

2 Double-click the Normal state to view the states and transitions it contains.

12-40

13

Make States Reusable with
Atomic Subcharts

• “What Is an Atomic Subchart?” on page 13-2

• “When to Use Atomic Subcharts” on page 13-4

• “Benefits of Using Atomic Subcharts” on page 13-5

• “Restrictions for Converting to Atomic Subcharts” on page 13-11

• “Convert to and from Atomic Subcharts” on page 13-14

• “Map Variables for Atomic Subcharts” on page 13-19

• “Generate Reusable Code for Unit Testing” on page 13-36

• “Rules for Using Atomic Subcharts” on page 13-39

• “Reuse a State Multiple Times in a Chart” on page 13-43

• “Reduce the Compilation Time of a Chart” on page 13-53

• “Divide a Chart into Separate Units” on page 13-55

• “Generate Reusable Code for Unit Testing” on page 13-58

13 Make States Reusable with Atomic Subcharts

What Is an Atomic Subchart?
In a Stateflow chart, an atomic subchart is a graphical object that helps you
reuse the same state or subchart across multiple charts and models. Atomic
subcharts allow:

• Ease of team development for people working on different parts of the
same chart

• Faster simulation after making small changes to a chart with many states
or levels of hierarchy

• Manual inspection of generated code for a specific state or subchart in
a chart

• Ability to animate and debug multiple charts side by side

States, subcharts, and atomic subcharts have these key similarities and
differences:

Capability State Subchart Atomic
Subchart

Can behave as a
standalone chart

No No Yes

Can generate
reusable code

No No Yes

Supports
access to event
broadcasts
outside the scope
of that object

Yes Yes No

Supports access
to data at any
level of the
hierarchy

Yes Yes No

13-2

What Is an Atomic Subchart?

Atomic subcharts and atomic subsystems (see Atomic Subsystem in the
Simulink documentation) have these key similarities and differences:

Capability Atomic Subchart Atomic Subsystem

Supports generation of
reusable code

Yes Yes

Supports usage as a
library link

Yes Yes

Requires
parameterizing of data
when used as a library
link

Yes No

Supports explicit
specification of sample
time

No Yes

The following examples show how to use atomic subcharts for modeling
typical applications:

Example Application

sf_atomic_sensor_pair A redundant sensor pair

sf_elevator An elevator system with two
identical lifts

13-3

13 Make States Reusable with Atomic Subcharts

When to Use Atomic Subcharts
Consider using atomic subcharts when one or more of these scenarios apply:

Scenario Reason for Using
Atomic Subcharts

Reference Tutorial

You want to reuse
the same state or
subchart many times
across different charts
or models to facilitate
large-scale modeling.

You can store an
atomic subchart in a
library to enable reuse
across different charts
and models. When
you change an atomic
subchart in a library,
the change propagates
to all links.

“Comparison of
Modeling Methods”
on page 13-5

“Reuse a State
Multiple Times in a
Chart” on page 13-43

You want to use
simulation to test your
changes, one by one,
without recompiling
the entire chart.

When you modify
an atomic subchart,
recompilation occurs
for only that object
and not the entire
chart.

“Comparison of
Simulation Methods”
on page 13-6

“Reduce the
Compilation Time
of a Chart” on page
13-53

You want to break a
chart into standalone
parts because multiple
people are working on
different parts of the
chart.

Because atomic
subcharts behave as
standalone objects,
people can work
on different parts
of a chart without
affecting any work
that someone else is
doing.

“Comparison of
Editing Methods”
on page 13-7

“Divide a Chart into
Separate Units” on
page 13-55

You want to inspect
Simulink Coder
generated code
manually for a specific
part of a chart.

You can specify that
code for an atomic
subchart appears in a
separate file for unit
testing.

“Comparison of Code
Generation Methods”
on page 13-7

“Generate Reusable
Code for Unit Testing”
on page 13-58

13-4

Benefits of Using Atomic Subcharts

Benefits of Using Atomic Subcharts

In this section...

“Comparison of Modeling Methods” on page 13-5

“Comparison of Simulation Methods” on page 13-6

“Comparison of Editing Methods” on page 13-7

“Comparison of Code Generation Methods” on page 13-7

Comparison of Modeling Methods
The following sections compare two ways of modeling similar states in charts.

Model Without Atomic Subcharts
You create a separate instance of each state in your chart.

In this chart, the only difference between the two states are the names of
variables.

13-5

13 Make States Reusable with Atomic Subcharts

Model With Atomic Subcharts
You create a single state and convert it to an atomic subchart, which you
store in a new library. From that library, you can copy and paste the atomic
subchart for use in any chart and update the mapping of inputs, outputs,
local data, or parameters as needed.

This modeling method minimizes maintenance of similar states. When
you modify the atomic subchart in the library, your changes propagate
automatically to the links in all charts and models.

For more information, see “Reuse a State Multiple Times in a Chart” on
page 13-43.

Comparison of Simulation Methods
The following sections compare two ways of simulating a chart.

Simulation Without Atomic Subcharts
You make a small change to one part of a chart that contains many states or
several levels of hierarchy. When you start simulation to test that change,
recompilation occurs for the entire chart.

Because recompiling the entire chart takes a long time, you make several
changes before testing. However, if you find an error, you must step through
all your changes to identify what causes the error.

13-6

Benefits of Using Atomic Subcharts

Simulation With Atomic Subcharts
You make a small change to an atomic subchart in a chart that contains many
states or several levels of hierarchy. When you start simulation to test that
change, recompilation occurs only for the atomic subchart.

Incremental builds for simulation decrease the time required to recompile the
chart. This reduction enables you to test each change, one by one, instead of
waiting to test multiple changes. By testing each change individually, you
can quickly identify a change that causes an error.

For more information, see “Reduce the Compilation Time of a Chart” on
page 13-53.

Comparison of Editing Methods
The following sections compare two ways of editing a chart.

Edit Without Atomic Subcharts
You edit one part of a chart, while someone else edits another part of the same
chart. At submission time, you merge your changes with someone else’s edits.

Edit With Atomic Subcharts
You store one part of a chart as an atomic subchart in a library. You edit that
subchart separately, while someone else edits the main chart. At submission
time, no merge is necessary because the changes exist in separate models.

For more information, see “Divide a Chart into Separate Units” on page 13-55.

Comparison of Code Generation Methods
The following sections compare two ways of generating code.

Code Generation Without Atomic Subcharts
You generate code for the entire model in one file and look through that entire
file to find code for a specific part of the chart.

13-7

13 Make States Reusable with Atomic Subcharts

Code Generation With Atomic Subcharts
You specify code generation parameters so that code for an atomic subchart
appears in a separate file.

13-8

Benefits of Using Atomic Subcharts

13-9

13 Make States Reusable with Atomic Subcharts

This method of code generation enables unit testing for a specific part of a
chart. You can avoid searching through unrelated code and focus only on
the part that interests you.

For more information, see “Generate Reusable Code for Unit Testing” on
page 13-58.

13-10

Restrictions for Converting to Atomic Subcharts

Restrictions for Converting to Atomic Subcharts

In this section...

“Rationale for Restrictions” on page 13-11

“Access to Data, Graphical Functions, and Events” on page 13-11

“Use of Event Broadcasts” on page 13-12

“Access to Local Data with a Nonzero First Index” on page 13-12

“Use of Machine-Parented Data” on page 13-12

“Use of Strong Data Typing with Simulink Inputs and Outputs” on page
13-12

“Use of Supertransitions” on page 13-13

“Masked Library Chart” on page 13-13

Rationale for Restrictions
Atomic subcharts facilitate the reuse of states and subcharts as standalone
objects. The restrictions in the following sections help you get the benefits
described in “Benefits of Using Atomic Subcharts” on page 13-5.

Access to Data, Graphical Functions, and Events
To convert a state or subchart to an atomic subchart, access to objects not
parented by the state or subchart must be one of the following:

• Chart-level data

• Chart-level graphical functions

• Input events

If the state or subchart accesses a chart-level graphical function, the chart
must export that function. For more information, see “Export Functions for
Reuse in Other Charts” on page 7-37.

13-11

13 Make States Reusable with Atomic Subcharts

Use of Event Broadcasts
The state or subchart that you want to convert to an atomic subchart cannot
refer to:

• Local events that are outside the scope of that state or subchart

• Output events

However, the state or subchart you want to convert can refer to input events.

Access to Local Data with a Nonzero First Index
The state or subchart that you want to convert to an atomic subchart cannot
access local data where the First index property is nonzero. For the
conversion process to work, the First index property of the local data must
be zero, which is the default value.

Use of Machine-Parented Data
The state or subchart that you want to convert to an atomic subchart
cannot reside in a chart that uses machine-parented data with the following
properties:

• Imported or exported

• Is 2-D or higher, or uses a fixed-point type

Machine-parented data with these properties prevent reuse of generated
code and other code optimizations.

Use of Strong Data Typing with Simulink Inputs and
Outputs
To convert a state or subchart to an atomic subchart, your chart must use
strong data typing with Simulink inputs and outputs. To specify strong
data typing:

1 Open the Chart properties dialog box.

2 Select Use Strong Data Typing with Simulink I/O.

13-12

Restrictions for Converting to Atomic Subcharts

3 Click OK to close the dialog box.

Use of Supertransitions
The state or subchart that you want to convert to an atomic subchart cannot
have any supertransitions crossing the boundary.

Masked Library Chart
You cannot use a masked library chart containing mask parameters as an
atomic subchart.

13-13

13 Make States Reusable with Atomic Subcharts

Convert to and from Atomic Subcharts

In this section...

“Convert a State or Subchart to an Atomic Subchart” on page 13-14

“Convert an Atomic Subchart to a State or Subchart” on page 13-17

“Restrictions for Converting an Atomic Subchart to a State or Subchart” on
page 13-18

Convert a State or Subchart to an Atomic Subchart
To convert a state or subchart to an atomic subchart, right-click the object in
your chart and select Group & Subchart > Atomic Subchart.

After you convert a state or subchart to an atomic subchart, local data appears
as data store memory in the atomic subchart.

Scope of Data Before Conversion Scope of Data After Conversion

Input Input

Output Output

Local Data store memory

Parameter Parameter

Constant Constant

An atomic subchart looks opaque like a regular subchart but includes the
label (Atomic) in the upper-left corner. If you use a linked atomic subchart
from a library, the label (Link) appears in the upper-left corner.

13-14

Convert to and from Atomic Subcharts

For example, the following model contains a chart, Air Controller, that uses
an atomic subchart:

13-15

13 Make States Reusable with Atomic Subcharts

In the Air Controller chart, PowerOn is an atomic subchart, but PowerOff
is a regular subchart:

13-16

Convert to and from Atomic Subcharts

Convert an Atomic Subchart to a State or Subchart

When an Atomic Subchart Is a Library Link
To convert a linked atomic subchart back to a state or subchart:

1 Right-click the atomic subchart and select Library Link > Disable Link.

2 Follow the steps in “When an Atomic Subchart Is Not a Library Link” on
page 13-17.

When an Atomic Subchart Is Not a Library Link

To convert an atomic subchart
back to...

Follow these steps...

A state
1 Right-click the atomic subchart in
your chart and clear the Group &
Subchart > Atomic Subchart
check box.

2 Right-click the object again
and clear the Group &
Subchart > Subchart check
box.

You might need to rearrange
graphical objects in your chart
after performing this step.

A regular subchart
1 Right-click the atomic subchart in
your chart and clear the Group &
Subchart > Atomic Subchart
check box.

13-17

13 Make States Reusable with Atomic Subcharts

Restrictions for Converting an Atomic Subchart to a
State or Subchart
In the following cases, converting an atomic subchart to a state or subchart
does not work:

• Your atomic subchart uses a MATLAB function and contains a nontrivial
mapping of variables. A mapping is nontrivial when the variable in
the subchart does not map to another variable of the same name in the
container chart.

• A parameter in the atomic subchart maps to something other than a single
variable. For example, the following mappings for a parameter named
data1 prevent conversion of an atomic subchart to a state or subchart:

- data2 + 3

- data2.3

- data2(3)

- 3

For more information, see “Map Variables for Atomic Subcharts” on page
13-19.

13-18

Map Variables for Atomic Subcharts

Map Variables for Atomic Subcharts

In this section...

“Why Map Variables for Atomic Subcharts?” on page 13-19

“How to Map Variables in an Atomic Subchart” on page 13-19

“Map Input and Output Data for an Atomic Subchart” on page 13-20

“Map Data Store Memory for an Atomic Subchart” on page 13-24

“Map Parameter Data for an Atomic Subchart” on page 13-28

“Map Input Events for an Atomic Subchart” on page 13-32

Why Map Variables for Atomic Subcharts?
Variables in an atomic subchart do not always map directly to variables in the
main chart. To ensure that each variable in your atomic subchart maps to the
correct variable in the main chart, you edit the mapping (or parameterize the
link). For details, see:

• “Map Input and Output Data for an Atomic Subchart” on page 13-20

• “Map Data Store Memory for an Atomic Subchart” on page 13-24

• “Map Parameter Data for an Atomic Subchart” on page 13-28

• “Map Input Events for an Atomic Subchart” on page 13-32

How to Map Variables in an Atomic Subchart
Depending on the scope of data or events in an atomic subchart, you update
different sections on theMappings tab of the State properties dialog box.

For... Go to... And...

Input data Input Mapping

Output data Output Mapping

Specify the chart
input or output data
that corresponds to
each atomic subchart
symbol.

13-19

13 Make States Reusable with Atomic Subcharts

For... Go to... And...

Data store memory Data Store Memory
Mapping

Specify the data
store memory or
chart-level local data
that corresponds to
each atomic subchart
symbol.

Parameter data Parameter Mapping Enter an expression for
evaluation in the mask
workspace of the main
chart.

Input event Input Event Mapping Specify the chart input
event that corresponds
to each atomic subchart
symbol.

When you map a data store memory in an atomic subchart to a chart-level
local data of enumerated type, you have two options for specifying the initial
value of the data store memory:

• Set the Initial value field for the chart-level local data in the Data
properties dialog box.

• Leave the Initial value field empty so that the default value of the
enumerated type applies.

Map Input and Output Data for an Atomic Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

13-20

Map Variables for Atomic Subcharts

Your chart contains two linked atomic subcharts from the same library:

Both atomic subcharts contain the following objects:

13-21

13 Make States Reusable with Atomic Subcharts

If you simulate the model, the output for y2 is zero:

Because atomic subchart B uses u1 and y1 instead of u2 and y2, you must
edit the mapping:

1 Right-click subchart B and select Properties.

13-22

Map Variables for Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

13-23

13 Make States Reusable with Atomic Subcharts

4 Under Output Mapping, specify the main chart symbol for y1 to be y2.

5 Click OK.

When you run the model again, you get the following results:

Map Data Store Memory for an Atomic Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

13-24

Map Variables for Atomic Subcharts

Your chart contains a linked atomic subchart from a library:

The linked atomic subchart contains the following objects:

If you simulate the model, you get an error because the data store memory,
dsm, does not map to any variable in the main chart. To fix the mapping
for dsm:

1 Right-click subchart A and select Properties.

13-25

13 Make States Reusable with Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

13-26

Map Variables for Atomic Subcharts

3 Under Data Store Memory Mapping, specify the main chart symbol for
dsm to be local_for_atomic_subchart.

Tip You can specify either data store memory or chart-level local data
from the main chart. For chart-level local data, the First index property
must be zero.

4 Click OK.

When you run the model now, you get the following results:

13-27

13 Make States Reusable with Atomic Subcharts

Map Parameter Data for an Atomic Subchart
Suppose that you have a model with two Sine Wave blocks that supply input
signals to a chart:

Your chart contains a linked atomic subchart from a library:

The linked atomic subchart contains the following objects:

13-28

Map Variables for Atomic Subcharts

If you simulate the model, you get an error because the parameter T is
undefined. To fix this error, specify an expression for T to evaluate in the
mask workspace of the main chart:

1 Right-click subchart A and select Properties.

13-29

13 Make States Reusable with Atomic Subcharts

2 Click the Mappings tab in the dialog box that appears.

13-30

Map Variables for Atomic Subcharts

4 Click OK.

When you run the model now, you get the following results:

13-31

13 Make States Reusable with Atomic Subcharts

Map Input Events for an Atomic Subchart
The sf_yoyomodel contains a Mux block that supplies input events to a chart:

13-32

Map Variables for Atomic Subcharts

The chart contains two superstates: Active and Inactive. The Active state
uses input events to guard transitions between different substates.

To convert the Active state to an atomic subchart, follow these steps:

1 Right-click the Active state and select Group & Subchart > Atomic
Subchart.

2 Specify the mapping of input events for the atomic subchart.

a Right-click the atomic subchart and select Properties.

13-33

13 Make States Reusable with Atomic Subcharts

b Click the Mappings tab in the dialog box that appears.

13-34

Map Variables for Atomic Subcharts

c Under Input Event Mapping, note that each atomic subchart symbol
maps to the correct input event in the main chart.

The default mappings also follow the rules of using input events in
atomic subcharts. For more information, see “Rules for Using Atomic
Subcharts” on page 13-39

d Click OK.

Note In this example, the mappings are trivial because each input event in
the atomic subchart maps to an input event of the same name in the main
chart. For an example of how to use nontrivial mapping of input events, see
the sf_elevator model. A mapping is nontrivial when the variable in the
atomic subchart maps to a variable with a different name in the main chart.

At the MATLAB command prompt, enter:

sf_elevator

In the Elevator System chart, the two linked atomic subcharts use nontrivial
mapping of input events.

13-35

13 Make States Reusable with Atomic Subcharts

Generate Reusable Code for Unit Testing

In this section...

“How to Generate Reusable Code for Linked Atomic Subcharts” on page
13-36

“How to Generate Reusable Code for Unlinked Atomic Subcharts” on page
13-37

How to Generate Reusable Code for Linked Atomic
Subcharts
To specify code generation parameters for linked atomic subcharts from the
same library:

1 Open the library model that contains your atomic subchart.

2 Unlock the library.

3 Right-click the library chart and select Block Parameters.

4 In the dialog box, specify the following parameters:

a On the Main tab, select Treat as atomic unit.

b On the Code Generation tab, set Function packaging to Reusable
function.

c Set File name options to User specified.

d For File name, enter the name of the file with no extension.

e Click OK to apply the changes.

5 (OPTIONAL) Customize the generated function names for atomic
subcharts:

a Open the Model Configuration Parameters dialog box.

b On the Code Generation pane, set System target file to ert.tlc.

c Navigate to the Code Generation > Symbols pane.

13-36

Generate Reusable Code for Unit Testing

d For Subsystem methods, specify the format of the function names
using a combination of the following tokens:

• $R — root model name

• $F — type of interface function for the atomic subchart

• $N — block name

• $H — subsystem index

• $M — mangle string

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for
linked atomic subcharts from the same library.

How to Generate Reusable Code for Unlinked Atomic
Subcharts
To specify code generation parameters for an unlinked atomic subchart:

1 In your chart, right-click the atomic subchart and select Properties.

2 In the dialog box, specify the following parameters:

a Set Code generation function packaging to Reusable function.

b Set Code generation file name options to User specified.

c For Code generation file name, enter the name of the file with no
extension.

d Click OK to apply the changes.

3 (OPTIONAL) Customize the generated function names for atomic
subcharts:

a Open the Model Configuration Parameters dialog box.

b On the Code Generation pane, set System target file to ert.tlc.

c Navigate to the Code Generation > Symbols pane.

d For Subsystem methods, specify the format of the function names
using a combination of the following tokens:

13-37

13 Make States Reusable with Atomic Subcharts

• $R — root model name

• $F — type of interface function for the atomic subchart

• $N — block name

• $H — subsystem index

• $M — mangle string

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for the
atomic subchart. For more information, see “Generate Reusable Code for
Unit Testing” on page 13-58.

13-38

Rules for Using Atomic Subcharts

Rules for Using Atomic Subcharts
Define data in an atomic subchart explicitly

Be sure to define data that appears in an atomic subchart explicitly in the
main chart. For instructions on how to define data in a chart, see “How to
Add Data Using the Model Explorer” on page 8-3.

Map variables of linked atomic subcharts

When you use linked atomic subcharts, map the variables so that data in
the subchart correspond to the correct data in the main chart. For more
information, see “Map Variables for Atomic Subcharts” on page 13-19.

Match size, type, and complexity of variables in linked atomic
subcharts

Verify that the size, type, and complexity of variables in a subchart match
the settings of the corresponding variables in the main chart. For more
information, see “Map Variables for Atomic Subcharts” on page 13-19.

Export chart-level functions if called from an atomic subchart

If your atomic subchart contains a function call to a chart-level function,
export that function. In the Chart properties dialog box, select Export
Chart Level Functions (Make Global). For more information, see “Export
Functions for Reuse in Other Charts” on page 7-37.

Do not mix edge-triggered and function-call input events in the same
atomic subchart

Input events in an atomic subchart must all use edge-triggered type, or
they must all use function-call type. This restriction is consistent with the
behavior for the container chart. For more information, see “Best Practices for
Using Events in Stateflow Charts” on page 9-46.

13-39

13 Make States Reusable with Atomic Subcharts

Do not map multiple input events in an atomic subchart to the same
input event in the container chart

Each input event in an atomic subchart must map to a unique input event
in the container chart. You can verify unique mappings of input events by
opening the properties dialog box for the atomic subchart and checking the
Input Event Mapping section of the Mappings tab.

Match the trigger type when mapping input events

Each input event in an atomic subchart must map to an input event of the
same trigger type in the container chart.

Do not use atomic subcharts in continuous-time Stateflow charts

Continuous-time charts do not support atomic subcharts.

Do not use Moore charts as atomic subcharts

Moore charts do not have the same simulation behavior as Classic Stateflow
charts with the same constructs.

Do not use outgoing transitions when an atomic subchart uses
top-level local events

You cannot use outgoing transitions from an atomic subchart that uses local
events at the top level of the subchart. Using this configuration causes a
simulation error.

Avoid using execute-at-initialization with atomic subcharts

You get a warning when the following conditions are true:

• The chart property Execute (enter) Chart At Initialization is enabled.

• The default transition path of the chart reaches an atomic subchart.

If an entry action inside the atomic subchart requires access to a chart
input or data store memory, you might get inaccurate results. To avoid this

13-40

Rules for Using Atomic Subcharts

warning, you can disable Execute (enter) Chart At Initialization or
redirect the default transition path away from the atomic subchart.

For more information about execute-at-initialization behavior, see “Execution
of a Chart at Initialization” on page 3-49.

Avoid using the names of subsystem parameters in atomic subcharts

If a parameter in an atomic subchart matches the name of a Simulink
built-in subsystem parameter, the only mapping allowed for that parameter
is Inherited. Specifying any other parameter mapping in the Mappings
tab of the properties dialog box causes an error. You can, however, change
the parameter value at the MATLAB prompt so that all instances of that
parameter have the same value.

To get a list of Simulink subsystem parameters, enter:

param_list = sort(fieldnames(get_param('built-in/subsystem', 'ObjectParameters')));

Restrict use of machine-parented data

If your chart contains atomic subcharts, do not use machine-parented data
with the following properties:

• Imported or exported

• Is 2-D or higher, or uses fixed-point type

Machine-parented data with these properties prevent reuse of generated
code and other code optimizations.

Use Dataset format for signal logging in atomic subcharts

If you use ModelDataLogs format to log signal data of an atomic subchart, an
error occurs. To avoid this error, you can use one of the following workarounds:

• Disable signal logging for the atomic subchart.

On the Logging tab of the properties dialog box for the atomic subchart,
clear the Log signal data check box. This change disables logging of

13-41

13 Make States Reusable with Atomic Subcharts

atomic subchart activity, but does not affect logging of any signals inside
the atomic subchart.

• Change the signal logging format for your model from ModelDataLogs to
Dataset.

On the Data Import/Export pane of the Model Configuration Parameters
dialog box, set Signal logging format to Dataset. This change affects the
logging format for your entire model.

For more information about signal logging in Stateflow charts, see “Basic
Approach to Logging States and Local Data” on page 28-76.

Do not change the first index of local data to a nonzero value

When a data store memory in an atomic subchart maps to chart-level local
data, the First index property of the local data must remain zero. If you
change First index to a nonzero value, an error occurs when you try to
update the diagram.

Use consistent settings for super-step semantics

When you use linked atomic subcharts, verify that your settings for super-step
semantics match the settings in the main chart. For more information, see
“Execution of a Chart with Super Step Semantics” on page 3-40.

13-42

Reuse a State Multiple Times in a Chart

Reuse a State Multiple Times in a Chart

In this section...

“Goal of the Tutorial” on page 13-43

“Edit a Model to Use Atomic Subcharts” on page 13-45

“Run the New Model” on page 13-51

“Propagate a Change in the Library Chart” on page 13-51

Goal of the Tutorial
Assume that you have the following model:

The top Sine Wave block uses a frequency of 1 radian per second, and the
bottom Sine Wave block uses a frequency of 2 radians per second. The blocks
use the same amplitude (1) and phase shift (0).

13-43

13 Make States Reusable with Atomic Subcharts

In the chart, each state uses saturator logic to convert the input sine wave to
an output square wave of the same frequency. The states perform the same
actions and differ only in the names of input and output data:

13-44

Reuse a State Multiple Times in a Chart

When you run the model, you get the following results:

Suppose that you want to reuse the contents of state A in the chart. You
can convert that state to an atomic subchart and then use multiple linked
instances of that subchart in your chart.

Edit a Model to Use Atomic Subcharts
The sections that follow describe how to replace states in your chart with
atomic subcharts. This procedure enables reuse of the same object in your
model while retaining the same simulation results.

Step Task Reference

1 Change one of the states into an
atomic subchart.

“Convert a State to an Atomic
Subchart” on page 13-46

2 Create a library that contains
this atomic subchart.

“Create a Library for the Atomic
Subchart” on page 13-46

13-45

13 Make States Reusable with Atomic Subcharts

Step Task Reference

3 Replace the states in your chart
with linked atomic subcharts.

“Replace States with Linked
Atomic Subcharts” on page 13-47

4 Edit the mapping of input
and output variables where
necessary.

“Edit the Mapping of Input and
Output Variables” on page 13-48

Convert a State to an Atomic Subchart
To convert state A to an atomic subchart, right-click the state and select
Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart:

Create a Library for the Atomic Subchart
To enable reuse of the atomic subchart you created in “Convert a State to an
Atomic Subchart” on page 13-46, store the atomic subchart in a library:

13-46

Reuse a State Multiple Times in a Chart

1 Create a new library model.

2 Copy the atomic subchart and paste in your library.

The atomic subchart appears as a standalone chart with an input and
an output. This standalone property enables you to reuse the contents of
the atomic subchart.

3 Save your library model.

Replace States with Linked Atomic Subcharts
To replace the states in your chart with linked atomic subcharts:

1 Delete both states from the chart.

2 Copy the atomic subchart in your library and paste in your chart twice.

13-47

13 Make States Reusable with Atomic Subcharts

3 Rename the second instance as B.

Each linked atomic subchart appears opaque and contains the label Link
in the upper-left corner.

Edit the Mapping of Input and Output Variables
If you simulate the model now, the output for y2 is zero:

13-48

Reuse a State Multiple Times in a Chart

You also see warnings about unused data. These warnings appear because
atomic subchart B uses u1 and y1 instead of u2 and y2. To fix these warnings,
you must edit the mapping of input and output variables:

1 Open the properties dialog box for B.

13-49

13 Make States Reusable with Atomic Subcharts

2 Click the Mappings tab.

13-50

Reuse a State Multiple Times in a Chart

The input variable in your atomic subchart now maps to the correct input
variable in the main chart.

4 Under Output Mapping, select y2 from the drop-down list.

The output variable in your atomic subchart now maps to the correct
output variable in the main chart.

5 Click OK.

Run the New Model
When you simulate the new model, the results match those of the original
design.

Propagate a Change in the Library Chart
Suppose that you edit the transition from Pos to Neg in the library chart:

13-51

13 Make States Reusable with Atomic Subcharts

This change propagates to all linked atomic subcharts in your main chart.
You do not have to update each state individually.

13-52

Reduce the Compilation Time of a Chart

Reduce the Compilation Time of a Chart

In this section...

“Goal of the Tutorial” on page 13-53

“Edit a Model to Use Atomic Subcharts” on page 13-54

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

13-53

13 Make States Reusable with Atomic Subcharts

Suppose that you want to reduce the compilation time of the chart for
simulation. You can convert state A to an atomic subchart. Then you can
make changes, one by one, to state A and see how each change affects
simulation results. Making one change requires recompilation of only the
atomic subchart and not the entire chart.

Edit a Model to Use Atomic Subcharts

1 Right-click state A and select Group & Subchart > Atomic Subchart.

2 Double-click the atomic subchart.

The contents of the subchart appear in a separate window.

3 Start simulation.

Side-by-side animation for the main chart and the atomic subchart occurs.

4 In the atomic subchart, change the state action for Pos to y1 = 2.

5 Restart simulation.

Recompilation occurs only for the atomic subchart and not the entire chart.

13-54

Divide a Chart into Separate Units

Divide a Chart into Separate Units

In this section...

“Goal of the Tutorial” on page 13-55

“Edit a Model to Use Atomic Subcharts” on page 13-56

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

13-55

13 Make States Reusable with Atomic Subcharts

Suppose that you want to edit state A separately, while someone else is
editing state B. You can convert state A to an atomic subchart for storage
in a library model. After replacing state A with a linked atomic subchart,
you can make changes separately in the library. These changes propagate
automatically to the chart that contains the linked atomic subchart.

Edit a Model to Use Atomic Subcharts

1 Right-click state A and select Group & Subchart > Atomic Subchart.

2 Create a new library model.

3 Copy the atomic subchart and paste in your library.

4 Save your library model.

5 In your main chart, delete state A.

13-56

Divide a Chart into Separate Units

6 Copy the atomic subchart in your library and paste in your main chart.

You can now edit state A separately from state B without any merge issues.

13-57

13 Make States Reusable with Atomic Subcharts

Generate Reusable Code for Unit Testing

In this section...

“Goal of the Tutorial” on page 13-58

“Convert a State to an Atomic Subchart” on page 13-60

“Specify Code Generation Parameters” on page 13-60

“Generate Code for Only the Atomic Subchart” on page 13-61

Goal of the Tutorial
Assume that you have the following model, and the chart has two states:

13-58

Generate Reusable Code for Unit Testing

Suppose that you want to generate reusable code so that you can perform unit
testing on state A. You can convert that part of the chart to an atomic subchart
and then specify a separate file to store the Simulink Coder generated code.

13-59

13 Make States Reusable with Atomic Subcharts

Convert a State to an Atomic Subchart
To convert state A to an atomic subchart, right-click the state and select
Group & Subchart > Atomic Subchart. State A changes to an atomic
subchart:

Specify Code Generation Parameters

Set Up a Standalone C File for the Atomic Subchart

1 Open the properties dialog box for A.

2 Set Code generation function packaging to Reusable function.

3 Set Code generation file name options to User specified.

4 For Code generation file name, enter saturator as the name of the file.

5 Click OK.

13-60

Generate Reusable Code for Unit Testing

Set Up the Code Generation Report

1 Open the Model Configuration Parameters dialog box.

2 In the Code Generation pane, set System target file to ert.tlc.

3 In the Code Generation > Report pane, select Create code generation
report.

This step automatically selects Open report automatically and
Code-to-model.

4 Select Model-to-code.

5 Click Apply.

Customize the Generated Function Names

1 In the Model Configuration Parameters dialog box, go to the Code
Generation > Symbols pane.

2 Set Subsystem methods to the format string RNMF, where:

• $R is the root model name.

• $N is the block name.

• $M is the mangle string.

• $F is the type of interface function for the atomic subchart.

For more information, see “Subsystem methods” in the Simulink Coder
documentation.

3 Click Apply.

Generate Code for Only the Atomic Subchart
To generate code for your model, click Build on the Code Generation pane
of the Model Configuration Parameters dialog box. In the code generation
report that appears, you see a separate file that contains the generated code
for the atomic subchart.

13-61

13 Make States Reusable with Atomic Subcharts

To inspect the code for saturator.c, click the hyperlink in the report to see
the following code:

13-62

Generate Reusable Code for Unit Testing

13-63

13 Make States Reusable with Atomic Subcharts

Line 28 shows that the during function generated for the atomic subchart has
the name ex_reuse_states_A_during. This name follows the format string
RNMF specified for Subsystem methods:

• $R is the root model name, ex_reuse_states.

• $N is the block name, A.

• $M is the mangle string, which is empty.

• $F is the type of interface function for the atomic subchart, during.

Note The line numbers shown can differ from the numbers that appear in
your code generation report.

13-64

14

Save and Restore
Simulations with SimState

• “What Is a SimState?” on page 14-2

• “Benefits of Using a Snapshot of the Simulation State” on page 14-4

• “Divide a Long Simulation into Segments” on page 14-5

• “Test a Unique Chart Configuration” on page 14-10

• “Test a Chart with Fault Detection and Redundant Logic” on page 14-21

• “Methods for Interacting with the SimState of a Chart” on page 14-36

• “Rules for Using the SimState of a Chart” on page 14-39

• “Best Practices for Using the SimState of a Chart” on page 14-42

14 Save and Restore Simulations with SimState

What Is a SimState?
A SimState is the snapshot of the state of a model at a specific time during
simulation. For a Stateflow chart, a SimState includes the following
information:

• Activity of chart states

• Values of chart local data

• Values of chart output data

• Values of persistent data in MATLAB functions and Truth Table blocks

A SimState lists chart objects in hierarchical order:

• Graphical objects grouped by type (box, function, or state) and in
alphabetical order within each group

• Chart data grouped by scope (block output or local) and in alphabetical
order within each group

For example, the following SimState illustrates the hierarchical structure
of chart objects.

c =

Block: "shift_logic" (handle) (active)
Path: sf_car/shift_logic

Contains:

+ gear_state "State (AND)" (active)
+ selection_state "State (AND)" (active)

gear "State output data" gearType [1, 1]
down_th "Local scope data" double [1, 1]
up_th "Local scope data" double [1, 1]

The tree structure maps graphical and nongraphical objects to their
respective locations in the chart hierarchy. If name conflicts exist, one or
more underscores appear at the end of a name so that all objects have unique
identifiers in the SimState hierarchy.

14-2

What Is a SimState?

Note Stateless flow charts have an empty SimState, because they do not
contain states or persistent data.

For information about using a SimState for other blocks in a Simulink model,
see “Save and Restore Simulation State as SimState”.

14-3

14 Save and Restore Simulations with SimState

Benefits of Using a Snapshot of the Simulation State

In this section...

“Division of a Long Simulation into Segments” on page 14-4

“Test of a Chart Response to Different Settings” on page 14-4

Division of a Long Simulation into Segments
You can save the complete simulation state of a model at any time during a
long simulation. Then you can load that simulation state and run specific
segments of that simulation without starting from time t = 0, which saves
time.

For directions, see “Divide a Long Simulation into Segments” on page 14-5.

Test of a Chart Response to Different Settings
You can load and modify the simulation state of a chart to test the response
to different settings. You can change the value of chart local or output data
midway through a simulation or change state activity and then test how a
chart responds.

Loading and modifying the simulation state provides these benefits:

• Enables testing of a hard-to-reach chart configuration by loading a specific
simulation state, which promotes thorough testing

• Enables testing of the same chart configuration with different settings,
which promotes reuse of a simulation state

For directions, see:

• “Test a Unique Chart Configuration” on page 14-10

• “Test a Chart with Fault Detection and Redundant Logic” on page 14-21

14-4

Divide a Long Simulation into Segments

Divide a Long Simulation into Segments

In this section...

“Goal of the Tutorial” on page 14-5

“Define the SimState” on page 14-6

“Load the SimState” on page 14-8

“Simulate the Specific Segment” on page 14-9

Goal of the Tutorial
Suppose that you want to simulate the sf_boiler model without starting
from t = 0.

This model simulates for 1400 seconds, but the output that interests you
occurs sometime between t = 400 and 600. You can simulate the model, save
the SimState at time t = 400, and then load that SimState for simulation
between t = 400 and 600.

14-5

14 Save and Restore Simulations with SimState

Step Task Reference

1 Define the SimState for your
chart.

“Define the SimState” on page
14-6

2 Load the SimState for your chart. “Load the SimState” on page 14-8

3 Simulate the specific segment. “Simulate the Specific Segment”
on page 14-9

Define the SimState

1 Open the model.

Type sf_boiler at the command prompt.

2 Enable saving of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as sf_boiler_ctx01.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('sf_boiler','SaveFinalState','on', ...
'FinalStateName', ['sf_boiler_ctx01'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param.

3 Define the start and stop times for this simulation segment.

14-6

Divide a Long Simulation into Segments

a In the Model Configuration Parameters dialog box, go to the Solver
pane.

b For Start time, enter 0.

c For Stop time, enter 400.

d Click OK.

Programmatic equivalent

You can programmatically set the start and stop times:

set_param('sf_boiler','StartTime','0', ...
'StopTime','400');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 400 in the variable sf_boiler_ctx01 in the MATLAB base workspace.

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('sf_boiler','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

14-7

14 Save and Restore Simulations with SimState

Load the SimState

1 Enable loading of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

c Enter the variable that contains the SimState of your chart:
sf_boiler_ctx01.

d Click Apply.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('sf_boiler','LoadInitialState','on', ...
'InitialState', ['sf_boiler_ctx01']);

2 Define the new stop time for this simulation segment.

a In the Model Configuration Parameters dialog box, go to the Solver
pane.

b For Stop time, enter 600.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

Programmatic equivalent

You can programmatically set the new stop time:

set_param('sf_boiler','StopTime','600');

14-8

Divide a Long Simulation into Segments

Simulate the Specific Segment
When you simulate the model, the following output appears in the Scope block.

14-9

14 Save and Restore Simulations with SimState

Test a Unique Chart Configuration

In this section...

“Goal of the Tutorial” on page 14-10

“Define the SimState” on page 14-11

“Load the SimState and Modify Values” on page 14-14

“Test the Modified SimState” on page 14-19

Goal of the Tutorial
Suppose that you want to test the response of the old_sf_car model to a
sudden change in value for gear.

This model simulates for 30 seconds, but you want to see what happens when
the value of gear changes at t = 10. You can simulate the model, save the

14-10

Test a Unique Chart Configuration

SimState at t = 10, load and modify the SimState, and then simulate again
between t = 10 and 20.

Step Task Reference

1 Define the SimState for your
chart.

“Define the SimState” on page
14-11

2 Load the SimState and modify
values.

“Load the SimState and Modify
Values” on page 14-14

3 Test the modified SimState by
running the model.

“Test the Modified SimState” on
page 14-19

Define the SimState

1 Open the model.

Type old_sf_car at the command prompt.

2 Enable saving of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as old_sf_car_ctx01.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('old_sf_car','SaveFinalState','on', ...
'FinalStateName', ['old_sf_car_ctx01'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param.

14-11

14 Save and Restore Simulations with SimState

3 Define the start and stop times for this simulation segment.

a In the Model Configuration Parameters dialog box, go to the Solver
pane.

b For Start time, enter 0.

c For Stop time, enter 10.

d Click OK.

Programmatic equivalent

You can programmatically set the start and stop times:

set_param('old_sf_car','StartTime','0', ...
'StopTime','10');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 10 in the variable old_sf_car_ctx01 in the MATLAB base workspace.

14-12

Test a Unique Chart Configuration

At t = 10, the engine is operating at a steady-state value of 2500 RPM.

14-13

14 Save and Restore Simulations with SimState

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('old_sf_car','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

Load the SimState and Modify Values

1 Enable loading of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

c Enter the variable that contains the SimState of your chart:
old_sf_car_ctx01.

d Click OK.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('old_sf_car','LoadInitialState','on', ...
'InitialState', ['old_sf_car_ctx01']);

2 Define an object handle for the SimState values of the shift_logic chart.

At the command prompt, type:

14-14

Test a Unique Chart Configuration

blockpath = 'old_sf_car/shift_logic';
c = old_sf_car_ctx01.getBlockSimState(blockpath);

Tip If the chart appears highlighted in the model window, you can specify
the block path using gcb:

c = old_sf_car_ctx01.getBlockSimState(gcb);

What does the getBlockSimState method do?

The getBlockSimState method:

• Makes a copy of the SimState of your chart, which is stored in the final
state data of the model.

• Provides a root-level handle or reference to the copy of the SimState,
which is a hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart
object.

Note Because the entire tree consists of object handles, the following
assignment statements do not work:

• stateCopy = c.state

• dataCopy = c.data

• simstateCopy = c

These assignments create copies of the object handles, not SimState values.
The only way to copy SimState values is to use the clone method. For
details, see “Methods for Interacting with the SimState of a Chart” on page
14-36 and “Rules for Using the SimState of a Chart” on page 14-39.

3 Look at the contents of the SimState.

c =

14-15

14 Save and Restore Simulations with SimState

Block: "shift_logic" (handle) (active)
Path: old_sf_car/shift_logic

Contains:

+ gear_state "State (AND)" (active)
+ selection_state "State (AND)" (active)

gear "Block output data" double [1, 1]

The SimState of your chart contains a list of states and data in hierarchical
order.

4 Highlight the states that are active in your chart at t = 10.

At the command prompt, type:

c.highlightActiveStates;

14-16

Test a Unique Chart Configuration

In the chart, all active states appear highlighted.

To highlight active states automatically at the end of a simulation, enable
chart animation and select Maintain Highlighting in the debugger. For
details, see “Animate Stateflow Charts” on page 28-6.

Tip To check if a single state is active, you can use the isActive method.
For example, type:

c.gear_state.fourth.isActive

This command returns true (1) when a state is active and false (0)
otherwise. For information on other methods, see “Methods for Interacting
with the SimState of a Chart” on page 14-36.

14-17

14 Save and Restore Simulations with SimState

5 Change the active substate of selection_state to downshifting.

Use this command:

c.selection_state.downshifting.setActive;

The newly active substate appears highlighted in the chart.

6 Change the value of output data gear.

14-18

Test a Unique Chart Configuration

When you type c.gear at the command prompt, you see a list of data
properties similar to this:

>> c.gear

ans =

Description: 'Block output data'
DataType: 'double'

Size: '[1, 1]'
Range: [1x1 struct]

InitialValue: [1x0 double]
Value: 4

You can change the value of gear from 4 to 1 by typing

c.gear.Value = 1;

However, you cannot change the data type or size of gear. Also, you cannot
specify a new value that falls outside the range set by the Minimum and
Maximum parameters. For details, see “Rules for Modifying Data Values”
on page 14-39 .

7 Save the modified SimState.

Use this command:

old_sf_car_ctx01 = old_sf_car_ctx01.setBlockSimState(blockpath, c);

Test the Modified SimState

1 Define the new stop time for the simulation segment to test.

a In the Model Configuration Parameters dialog box, go to the Solver
pane.

b For Stop time, enter 20.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

14-19

14 Save and Restore Simulations with SimState

Programmatic equivalent

You can programmatically set the stop time:

set_param('old_sf_car','StopTime','20');

2 Start simulation.

The engine reacts as follows:

14-20

Test a Chart with Fault Detection and Redundant Logic

Test a Chart with Fault Detection and Redundant Logic

In this section...

“Goal of the Tutorial” on page 14-21

“Define the SimState” on page 14-24

“Modify SimState Values for One Actuator Failure” on page 14-26

“Test the SimState for One Failure” on page 14-31

“Modify SimState Values for Two Actuator Failures” on page 14-34

“Test the SimState for Two Failures” on page 14-34

Goal of the Tutorial
Suppose that you want to test the response of the sf_aircraft model to one
or more actuator failures in an elevator system. (For details of how this model
works, see the description for Modeling Fault Management Control Logic in
an Aircraft Elevator Control System.)

14-21

14 Save and Restore Simulations with SimState

The Mode Logic chart monitors the status of actuators for two elevators. Each
elevator has an outer (primary) actuator and an inner (secondary) actuator.
In normal operation, the outer actuators are active and the inner actuators
are on standby.

14-22

Test a Chart with Fault Detection and Redundant Logic

When the four actuators are working correctly, the left and right elevators
reach steady-state positions in 3 seconds.

Suppose that you want to see what happens at t = 3 when at least one actuator
fails. You can simulate the model, save the SimState at t = 3, load and modify
the SimState, and then simulate again between t = 3 and 10.

14-23

14 Save and Restore Simulations with SimState

Step Task Reference

1 Define the SimState for your
chart.

“Define the SimState” on page
14-24

2 Load the SimState and modify
values for one actuator failure.

“Modify SimState Values for One
Actuator Failure” on page 14-26

3 Test the modified SimState by
running the model.

“Test the SimState for One
Failure” on page 14-31

4 Modify SimState values for two
actuator failures.

“Modify SimState Values for Two
Actuator Failures” on page 14-34

5 Test the modified SimState by
running the model again.

“Test the SimState for Two
Failures” on page 14-34

Define the SimState

1 Open the model.

Type sf_aircraft at the command prompt.

2 Enable saving of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Final states check box.

c Enter a name, such as xFinal.

You can choose any alphanumeric string for the name.

d Select the Save complete SimState in final state check box.

e Click Apply.

14-24

Test a Chart with Fault Detection and Redundant Logic

Programmatic equivalent

You can programmatically enable saving of a SimState:

set_param('sf_aircraft','SaveFinalState','on', ...
'FinalStateName', ['xFinal'], ...
'SaveCompleteFinalSimState','on');

For details about setting model parameters, see set_param.

3 Define the stop time for this simulation segment.

a In the Model Configuration Parameters dialog box, go to the Solver
pane.

b For Stop time, enter 3.

c Click OK.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','3');

4 Start simulation.

When you simulate the model, you save the complete simulation state at t
= 3 in the variable xFinal in the MATLAB base workspace.

5 Disable saving of a SimState.

This step prevents you from overwriting the SimState you saved in the
previous step.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Clear the Save complete SimState in final state check box.

c Clear the Final states check box.

d Click OK.

14-25

14 Save and Restore Simulations with SimState

Programmatic equivalent

You can programmatically disable saving of a SimState:

set_param('sf_aircraft','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

Modify SimState Values for One Actuator Failure

1 Enable loading of a SimState.

a Open the Model Configuration Parameters dialog box and go to the Data
Import/Export pane.

b Select the Initial state check box.

c Enter the variable that contains the SimState of your chart: xFinal.

d Click OK.

Programmatic equivalent

You can programmatically enable loading of a SimState:

set_param('sf_aircraft','LoadInitialState','on', ...
'InitialState', ['xFinal']);

2 Define an object handle for the SimState values of the Mode Logic chart.

At the command prompt, type:

blockpath = 'sf_aircraft/Mode Logic';
c = xFinal.getBlockSimState(blockpath);

Tip If the chart appears highlighted in the model window, you can specify
the block path using gcb:

c = xFinal.getBlockSimState(gcb);

14-26

Test a Chart with Fault Detection and Redundant Logic

What does the getBlockSimState method do?

The getBlockSimState method:

• Makes a copy of the SimState of your chart, which is stored in the final
state data of the model.

• Provides a root-level handle or reference to the copy of the SimState,
which is a hierarchical tree of graphical and nongraphical chart objects.

Each node in this tree is also a handle to a state, data, or other chart
object.

Note Because the entire tree consists of object handles, the following
assignment statements do not work:

• stateCopy = c.state

• dataCopy = c.data

• simstateCopy = c

These assignments create copies of the object handles, not SimState values.
The only way to copy SimState values is to use the clone method. For
details, see “Methods for Interacting with the SimState of a Chart” on page
14-36 and “Rules for Using the SimState of a Chart” on page 14-39.

3 Look at the contents of the SimState.

c =

Block: "Mode Logic" (handle) (active)
Path: sf_aircraft/Mode Logic

Contains:

+ Actuators "State (OR)" (active)
+ LI_act "Function"
+ LO_act "Function"
+ L_switch "Function"
+ RI_act "Function"

14-27

14 Save and Restore Simulations with SimState

+ RO_act "Function"
+ R_switch "Function"
+ LI_mode "State output data" sf_aircraft_ModeType [1,1]
+ LO_mode "State output data" sf_aircraft_ModeType [1,1]
+ RI_mode "State output data" sf_aircraft_ModeType [1,1]
+ RO_mode "State output data" sf_aircraft_ModeType [1,1]

The SimState of your chart contains a list of states, functions, and data
in hierarchical order.

4 Highlight the states that are active in your chart at t = 3.

At the command prompt, type:

c.highlightActiveStates;

14-28

Test a Chart with Fault Detection and Redundant Logic

Active states appear highlighted. By default, the two outer actuators are
active and the two inner actuators are on standby.

To highlight active states automatically at the end of a simulation, enable
chart animation and select Maintain Highlighting in the debugger. For
details, see “Animate Stateflow Charts” on page 28-6.

14-29

14 Save and Restore Simulations with SimState

Tip To check if a single state is active, you can use the isActive method.
For example, type:

c.Actuators.LI.L1.Standby.isActive

This command returns true (1) when a state is active and false (0)
otherwise. For information on other methods, see “Methods for Interacting
with the SimState of a Chart” on page 14-36.

5 Change the state activity in the chart to reflect one actuator failure.

Assume that the left outer (LO) actuator fails. To change the state, use
this command:

c.Actuators.LO.Isolated.setActive;

14-30

Test a Chart with Fault Detection and Redundant Logic

The newly active substate appears highlighted in the chart.

The setActive method ensures that the chart exits and enters the
appropriate states to maintain state consistency. However, the method
does not perform entry actions for the newly active substate. Similarly, the
method does not perform exit actions for the previously active substate.

6 Save the modified SimState by using this command:

xFinal = xFinal.setBlockSimState(blockpath, c);

Test the SimState for One Failure

1 Define the new stop time for the simulation segment to test.

14-31

14 Save and Restore Simulations with SimState

a Go to the Solver pane of the Model Configuration Parameters dialog box.

b For Stop time, enter 10.

c Click OK.

You do not need to enter a new start time because the simulation continues
from where it left off.

Programmatic equivalent

You can programmatically set the stop time:

set_param('sf_aircraft','StopTime','10');

2 Start simulation.

Chart animation shows that the other three actuators react appropriately
to the failure of the left outer (LO) actuator.

14-32

Test a Chart with Fault Detection and Redundant Logic

This actuator... Switches from... Because...

Left inner (LI) Standby to active The left elevator must
compensate for the left outer
(LO) actuator failure.

Right inner (RI) Standby to active The same hydraulic line
connects to both inner
actuators.

Right outer (RO) Active to standby Only one actuator per elevator
can be active.

14-33

14 Save and Restore Simulations with SimState

Both elevators continue to maintain steady-state positions.

Modify SimState Values for Two Actuator Failures

1 Change the state activity in the chart to reflect two actuator failures.

Assume that the left inner (LI) actuator also fails. To change the state,
use this command:

c.Actuators.LI.Isolated.setActive;

2 Save the modified SimState by using this command:

xFinal = xFinal.setBlockSimState(blockpath, c);

Test the SimState for Two Failures

1 In the Model Configuration Parameters dialog box, verify that the stop
time is 10.

2 Restart simulation.

14-34

Test a Chart with Fault Detection and Redundant Logic

Because of failures in both actuators, the left elevator stops working. The
right elevator maintains a steady-state position.

If you modify the SimState of your chart to test the response of the right
elevator to actuator failures, you get similar results.

14-35

14 Save and Restore Simulations with SimState

Methods for Interacting with the SimState of a Chart
You can use the following methods to interact with the SimState of a chart.
Assume that ch is a handle to the SimState of your chart, which you obtain
using the getBlockSimState method.

Type of
Object

Method Description Example

All chart
objects

open For graphical
objects,
highlights the
object in the
Stateflow Editor.

For
nongraphical
objects,
highlights the
object in the
Model Explorer.

Note For
persistent data
in MATLAB
functions, this
method opens
the function
editor and
highlights the
persistent data
at the exact line
in the script.

ch.data.open

Chart checkStateConsistency Verifies that all
states in a chart
are consistent.

ch.checkStateConsistency

14-36

Methods for Interacting with the SimState of a Chart

Type of
Object

Method Description Example

• If a state is
inactive, no
substates are
active.

• If a state
with parallel
decomposition
is active, all
substates are
active.

• If a state
with exclusive
decomposition
is active, only
one substate
is active.

Chart clone Copies the entire
chart simulation
state to a new
variable.

newSimState = ch.clone

Chart highlightActiveStates Highlights all
active states in
the Stateflow
Editor.

ch.highlightActiveStates

Chart isStateConsistent Returns true (1)
if all states pass
a consistency
check and false
(0) otherwise.

ch.isStateConsistent

Chart removeHighlighting Removes all
highlighting in
the Stateflow
Editor.

ch.removeHighlighting

14-37

14 Save and Restore Simulations with SimState

Type of
Object

Method Description Example

State isActive Returns true
(1) if a state is
active and false
(0) otherwise.

ch.state.isActive

State

Must
be an
exclusive
leaf
state

setActive Sets a state to be
active.

This method
ensures that no
other exclusive
states at that
level are active.

ch.state.substate.setActive

State

Must
have a
history
junction
and
exclusive
substates

getPrevActiveChild Returns the
previously active
substate.

ch.state.getPrevActiveChild

State

Must be
inactive;
must
have a
history
junction
and
exclusive
substates

setPrevActiveChild Sets the
previously active
substate.

ch.state.setPrevActiveChild('B')

Note The argument must be the
name of a substate (in quotes), or
the full SimState path to a substate
(without quotes).

14-38

Rules for Using the SimState of a Chart

Rules for Using the SimState of a Chart

In this section...

“Limitations on Values You Can Modify” on page 14-39

“Rules for Modifying Data Values” on page 14-39

“Rules for Modifying State Activity” on page 14-40

“Restriction on Continuous-Time Charts” on page 14-40

“No Partial Loading of a SimState” on page 14-41

“Restriction on Copying SimState Values” on page 14-41

“SimState Limitations That Apply to All Blocks in a Model” on page 14-41

Limitations on Values You Can Modify
A SimState does not include information about these elements:

• Machine-parented data

• Persistent data in custom C code

• Persistent data in external MATLAB code

Therefore, you cannot modify the values of those elements.

Rules for Modifying Data Values
These rules apply when you modify data values:

• You cannot change the data type or size. Scalar data must remain
scalar. Vector and matrix data must keep the same dimensions. The only
exception to this rule is Stateflow data of ml type (see “ml Data Type” on
page 10-46 for details).

• For enumerated data types, you can choose only enumerated values from
the type definition. For other data types, new values must fall within the
range that you specify in theMinimum andMaximum parameters.

• Use one-based indexing to define rows and columns of a matrix.

14-39

14 Save and Restore Simulations with SimState

Suppose that you want to change the value of an element in a 21-by-12
matrix. To modify the element in the first row and second column, type:

c.state_name.data_name.Value(1,2) = newValue;

Rules for Modifying State Activity
These rules apply when you use the setActive method on an exclusive (OR)
leaf state:

• State-parented local data does not reinitialize.

• The newly active state does not execute any entry actions. Similarly, the
previously active state does not execute any exit actions.

If you want these state actions to occur, you must execute them separately.
For example, if your state actions assign values to data, you must assign
the values explicitly.

• The setActive method tries to maintain state consistency by:

- Updating state activity for parent, grandparent, and sibling states

- Resetting temporal counters for newly active states

- Updating values of state output data (read-only)

- Enabling or disabling function-call subsystems and Simulink functions
that bind to states

• The highlightActiveStates method also executes when these conditions
are true:

- The model is open.

- The chart is visible.

- The highlightActiveStates method has executed at least once, but not
the removeHighlighting method.

Restriction on Continuous-Time Charts
After you load a SimState for a continuous-time chart, you can restart
simulation from a nonzero time. However, you cannot modify the state
activity or any data values, because the SimState for a continuous-time
chart is read-only. For more information, see “Summary of Rules for
Continuous-Time Modeling” on page 18-24.

14-40

Rules for Using the SimState of a Chart

No Partial Loading of a SimState
When you load a SimState, the complete simulation state is available as a
variable in the MATLAB base workspace. You cannot perform partial loading
of a SimState for a subset of chart objects.

Restriction on Copying SimState Values
Use the clone method to copy an entire SimState to a new variable (see
“Methods for Interacting with the SimState of a Chart” on page 14-36). You
cannot copy a subset of SimState values, because the clone method works
only at the chart level.

Suppose that you obtain a handle to the SimState of your chart using these
commands:

blockpath = 'model/chart';
c = xFinal.getBlockSimState(blockpath);

Assignment statements such as stateCopy = c.state, dataCopy = c.data,
and simstateCopy = c do not work. These assignments create copies of
object handles, not SimState values.

SimState Limitations That Apply to All Blocks in a
Model
For a list of SimState limitations that apply to all blocks in a Simulink model,
see “Limitations of the SimState”.

14-41

14 Save and Restore Simulations with SimState

Best Practices for Using the SimState of a Chart

In this section...

“Use MAT-Files to Save a SimState for Future Use” on page 14-42

“Use Scripts to Save SimState Commands for Future Use” on page 14-42

Use MAT-Files to Save a SimState for Future Use
To save a SimState from the MATLAB base workspace, save the variable
with final state data in a MAT-file.

For example, type at the command prompt:

save('sf_car_ctx01.mat', 'sf_car_ctx01')

For more information, see save in the MATLAB documentation.

Use Scripts to Save SimState Commands for Future
Use
To save a list of SimState commands for future use, copy them from a
procedure and paste them in a MATLAB script.

14-42

Best Practices for Using the SimState of a Chart

For example, to reuse the commands in “Divide a Long Simulation
into Segments” on page 14-5, you can store them in a script named
sf_boiler_simstate_commands.m:

% Load the model.
sf_boiler;

% Set parameters to save the SimState at the desired time.
set_param('sf_boiler','SaveFinalState','on','FinalStateName',...
['sf_boiler_ctx01'],'SaveCompleteFinalSimState','on');

% Specify the start and stop times for the simulation segment.
set_param('sf_boiler','StartTime','0','StopTime','400');

% Simulate the model.
sim('sf_boiler');

% Disable saving of the SimState to avoid overwriting.
set_param('sf_boiler','SaveCompleteFinalSimState','off', ...
'SaveFinalState','off');

% Load the SimState.
set_param('sf_boiler', 'LoadInitialState', 'on', ...
'InitialState', ['sf_boiler_ctx01']);

% Specify the new stop time for the simulation segment.
set_param('sf_boiler','StopTime','600');

% Simulate the model.
sim('sf_boiler');

14-43

14 Save and Restore Simulations with SimState

14-44

15

Vectors and Matrices in C
Charts

• “How Vectors and Matrices Work in C Charts” on page 15-2

• “Define Vectors and Matrices” on page 15-4

• “Scalar Expansion for Converting Scalars to Nonscalars” on page 15-6

• “Assign and Access Vector and Matrix Values” on page 15-8

• “Operations For Vectors and Matrices in C Charts” on page 15-11

• “Rules for Vectors and Matrices in C Charts” on page 15-13

• “Best Practices for Vectors and Matrices in C Charts” on page 15-14

• “Find Pattern in Data Transmission Using Vectors” on page 15-17

• “Calculate Motion Using Matrices” on page 15-19

15 Vectors and Matrices in C Charts

How Vectors and Matrices Work in C Charts

In this section...

“When to Use Vectors and Matrices” on page 15-2

“Where You Can Use Vectors and Matrices” on page 15-2

When to Use Vectors and Matrices
Use vectors and matrices when you want to:

• Process multidimensional input and output signals

• Combine separate scalar data into one signal

For examples, see “Find Pattern in Data Transmission Using Vectors” on page
15-17 and “Calculate Motion Using Matrices” on page 15-19.

Where You Can Use Vectors and Matrices
You can define vectors and matrices at these levels of the Stateflow hierarchy:

• Charts

• Subcharts

• States

• Functions

You can use vectors and matrices to define:

• Input data

• Output data

• Local data

• Function inputs

• Function outputs

You can also use vectors and matrices as arguments for:

15-2

How Vectors and Matrices Work in C Charts

• State actions

• Transition actions

• MATLAB functions

• Truth table functions

• Graphical functions

• Simulink functions

• Change detection operators

For more information, see “Operations For Vectors and Matrices in C Charts”
on page 15-11 and “Rules for Vectors and Matrices in C Charts” on page 15-13.

15-3

15 Vectors and Matrices in C Charts

Define Vectors and Matrices

In this section...

“Define a Vector” on page 15-4

“Define a Matrix” on page 15-5

Define a Vector
Define a vector in a C chart as follows:

1 Add data to your chart as described in “Add Data” on page 8-2.

2 In the General pane of the Data properties dialog box, enter the
dimensions of the vector in the Size field.

For example, enter [4 1] to specify a 4-by-1 vector.

3 Specify the name, base type, and other properties for the new data.

Note Vectors cannot have the base type ml. See “Rules for Vectors and
Matrices in C Charts” on page 15-13.

4 Set initial values for the vector.

• If initial values of all elements are the same, enter a real number in
the Initial value field. This value applies to all elements of a vector
of any size.

• If initial values differ, enter real numbers in the Initial value field.
For example, you can enter:

[1; 3; 5; 7]

Tip If you want to initialize all elements of a vector to 0, do nothing. When
no values are explicitly defined, all elements initialize to 0.

15-4

Define Vectors and Matrices

5 Click Apply.

Define a Matrix
Define a matrix in a C chart as follows:

1 Add data to your chart as described in “Add Data” on page 8-2.

2 In the General pane of the Data properties dialog box, enter the
dimensions of the matrix in the Size field.

For example, enter [3 3] to specify a 3-by-3 matrix.

3 Specify the name, base type, and other properties for the new data.

Note Matrices cannot have the base type ml. See “Rules for Vectors and
Matrices in C Charts” on page 15-13.

4 Set initial values for the matrix.

• If initial values of all elements are the same, enter a real number in
the Initial value field. This value applies to all elements of a matrix
of any size.

• If initial values differ, enter real numbers in the Initial value field.
For example, you can enter:

[1 2 3; 4 5 6; 7 8 9]

Tip If you want to initialize all elements of a matrix to 0, do nothing. When
no values are explicitly defined, all elements initialize to 0.

5 Click Apply.

15-5

15 Vectors and Matrices in C Charts

Scalar Expansion for Converting Scalars to Nonscalars

In this section...

“What Is Scalar Expansion?” on page 15-6

“How Scalar Expansion Works for Functions” on page 15-6

What Is Scalar Expansion?
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. For example, scalar expansion can
convert a value of 1 to a vector or matrix where all the elements are 1.

How Scalar Expansion Works for Functions
Suppose that you have a function signature yy = example(uu), where the
formal arguments yy and uu are scalars. Assume that you have a function
call y = example(u). The rules of scalar expansion for function calls with a
single output follow.

If the output y is a... And the input u is a... Then...

Scalar Scalar No scalar expansion
occurs.

Vector or matrix Scalar Scalar expansion occurs
for example(u) to
match the dimensions
of y.

Vector or matrix Vector or matrix Scalar expansion
occurs so that y[i]
= example(u[i]).

Scalar Vector or matrix An error message alerts
you to a size mismatch.

For functions with multiple outputs, the same rules apply except for the case
where the outputs and inputs of the function call are all vectors or matrices.
In this case, scalar expansion does not occur, and an error message alerts
you to a size mismatch.

15-6

Scalar Expansion for Converting Scalars to Nonscalars

The rules of scalar expansion apply to all functions that you use in C charts:

• MATLAB functions

• Graphical functions

• Simulink functions

• Truth table functions

15-7

15 Vectors and Matrices in C Charts

Assign and Access Vector and Matrix Values

In this section...

“Notation for Vectors and Matrices” on page 15-8

“Assign and Access Values of Vectors” on page 15-9

“Assign and Access Values of Matrices” on page 15-9

“Assign Values of a Vector or Matrix Using Scalar Expansion” on page 15-10

Notation for Vectors and Matrices
Index notation for vectors and matrices in a C chart differs from the notation
you use in a MATLAB script. You use zero-based indexing for each dimension
of a vector or matrix in a chart that uses C as the action language. However,
you use one-based indexing in a MATLAB script.

To refer to... In a C chart, use... In a MATLAB script,
use...

The first element of a
vector test

test[0] test(1)

The ith element of a
vector test

test[i-1] test(i)

The element in row
4 and column 5 of a
matrix test

test[3][4] test(4,5)

The element in row
i and column j of a
matrix test

test[i-1][j-1] test(i,j)

15-8

Assign and Access Vector and Matrix Values

Assign and Access Values of Vectors
The following examples show how to assign the value of an element in a
vector in a C chart.

If you enter... You assign the value... To...

test[0] = 10; 10 The first element

test[i] = 77; 77 The (i+1)th element

The following examples show how to access the value of an element in a
vector in a C chart.

If you enter... You access the value of...

old = test[1]; The second element of a vector test

new = test[i+5]; The (i+6)th element of a vector test

Assign and Access Values of Matrices
The following examples show how to assign the value of an element in a
matrix in a C chart.

If you enter... You assign the value... To the element in...

test[0][8] = 10; 10 Row 1, column 9

test[i][j] = 77; 77 Row i+1, column j+1

The following examples show how to access the value of an element in a
matrix in a C chart.

If you enter... You access the value of...

old = test[1][8]; The matrix test in row 2, column 9

new = test[i][j]; The matrix test in row i+1, column j+1

15-9

15 Vectors and Matrices in C Charts

Assign Values of a Vector or Matrix Using Scalar
Expansion
You can use scalar expansion in a C chart to set all elements of a vector or
matrix to the same value. This method works for a vector or matrix of any size.

This action sets all elements of a vector to 10.

test_vector = 10;

This action sets all elements of a matrix to 20.

test_matrix = 20;

Note You cannot use scalar expansion on a vector or matrix in the MATLAB
base workspace. If you try to use scalar expansion, the vector or matrix in the
base workspace converts to a scalar.

15-10

Operations For Vectors and Matrices in C Charts

Operations For Vectors and Matrices in C Charts

In this section...

“Binary Operations” on page 15-11

“Unary Operations and Actions” on page 15-11

“Assignment Operations” on page 15-12

Binary Operations
You can perform element-wise binary operations on vector and matrix
operands of equal dimensions in the following order of precedence (1 =
highest, 3 = lowest). For operations with equal precedence, they evaluate in
order from left to right.

Example Precedence Description

a * b 1 Multiplication

a / b 1 Division

a + b 2 Addition

a - b 2 Subtraction

a == b 3 Comparison, equality

a != b 3 Comparison, inequality

The multiplication and division operators in a C chart perform element-wise
operations, not standard matrix multiplication and division. For more
information, see “Perform Matrix Multiplication and Division Using MATLAB
Functions” on page 15-14.

Unary Operations and Actions
You can perform element-wise unary operations and actions on vector and
matrix operands.

15-11

15 Vectors and Matrices in C Charts

Example Description

~a Unary minus

!a Logical NOT

a++ Increments all elements of the vector or matrix by 1

a-- Decrements all elements of the vector or matrix by 1

Assignment Operations
You can perform element-wise assignment operations on vector and matrix
operands.

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

15-12

Rules for Vectors and Matrices in C Charts

Rules for Vectors and Matrices in C Charts
These rules apply when you use vectors and matrices in C charts.

Use only operands of equal dimensions for element-wise operations

If you try to perform element-wise operations on vectors or matrices with
unequal dimensions, a size mismatch error appears when you simulate your
model. See “Operations For Vectors and Matrices in C Charts” on page 15-11.

Do not define vectors and matrices with ml base type

If you define a vector or matrix with ml base type, an error message appears
when you try to simulate your model. This base type supports only scalar data.

For more information about this type, see “ml Data Type” on page 10-46.

Use only real numbers to set initial values of vectors and matrices

When you set the initial value for an element of a vector or matrix, use a real
number. If you use a complex number, an error message appears when you
try to simulate your model.

Note You can set values of vectors and matrices to complex numbers after
initialization.

Do not use vectors and matrices with temporal logic operators

You cannot use a vector or matrix as an argument for temporal logic operators,
because time is a scalar quantity.

15-13

15 Vectors and Matrices in C Charts

Best Practices for Vectors and Matrices in C Charts

In this section...

“Perform Matrix Multiplication and Division Using MATLAB Functions” on
page 15-14

“Index a Vector Using the temporalCount Operator” on page 15-15

Perform Matrix Multiplication and Division Using
MATLAB Functions
In a C chart, the multiplication and division operators perform element-wise
multiplication and division. Use a MATLAB function to perform standard
matrix multiplication and division.

For example, suppose that you want to perform standard matrix operations
on two square matrices during simulation. Follow these steps:

1 In your chart, add a MATLAB function with the following signature:

[y1, y2, y3] = my_matrix_ops(u1, u2)

2 Double-click the function box to open the editor.

3 In the editor, enter the code below.

function [y1, y2, y3] = my_matrix_ops(u1, u2)
%#codegen

y1 = u1 * u2; % matrix multiplication
y2 = u1 \ u2; % matrix division from the right
y3 = u1 / u2; % matrix division from the left

This function computes three values:

• y1 is the product of two input matrices u1 and u2.

• y2 is the matrix that solves the equation u1 * y2 = u2.

• y3 is the matrix that solves the equation y3 * u1 = u2.

4 Set properties for the input and output data.

15-14

Best Practices for Vectors and Matrices in C Charts

a Open the Model Explorer.

b In the Model Hierarchy pane, navigate to the level of the MATLAB
function.

c In the Contents pane, set properties for each data object.

Note To initialize a matrix, see “Define a Matrix” on page 15-5.

Index a Vector Using the temporalCount Operator
When you index a vector, you can use the temporalCount operator to avoid
using an extra variable for the index counter. This indexing method works for
vectors that contain real or complex data.

For example, suppose that you want to collect input data in a buffer during
simulation. Follow these steps:

1 Add this state to your C chart.

The state Collect_Data stores data in the vector y, which is of size 10. The
entry action assigns the value of input data u to the first element of y.
The during action assigns the next nine values of input data to successive
elements of the vector y until you store ten elements.

2 Add the input data u to the chart.

a In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Input From Simulink.

b In the Data properties dialog box, enter u in the Name field.

15-15

15 Vectors and Matrices in C Charts

c Click OK.

3 Add the output data y to the chart.

a In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Output To Simulink.

b In the Data properties dialog box, enter y in the Name field.

c Enter 10 in the Size field.

d Click OK.

Note You do not need to set initial values for this output vector. By
default, all elements initialize to 0.

For information about the temporalCount operator, see “Control Chart
Execution Using Temporal Logic” on page 10-61.

15-16

Find Pattern in Data Transmission Using Vectors

Find Pattern in Data Transmission Using Vectors
The model sf_frame_sync_controller is an example of using a vector in a C
chart to find a fixed pattern in a data transmission.

For details of how the chart works, see “Detect Valid Transmission Data
Using Frame Synchronization” on page 20-19.

15-17

15 Vectors and Matrices in C Charts

Storage of Complex Data in a Vector
The state get_payload stores complex data in the vector frame, which is of
size 221. The entry action assigns the value of (IQ * phasor) to the first
element of frame. The during action assigns the next 220 values of (IQ *
phasor) to successive elements of frame until you store 221 elements. (For
more information, see “Index a Vector Using the temporalCount Operator”
on page 15-15.)

Scalar Expansion of a Vector
In the second outgoing transition of the state look_for_sync, the transition
action frame = 0 resets all elements of the vector frame to 0 via scalar
expansion. (For more information, see “Assign Values of a Vector or Matrix
Using Scalar Expansion” on page 15-10.)

15-18

Calculate Motion Using Matrices

Calculate Motion Using Matrices
The model sf_pool is an example of using matrices in a C chart to simulate
the opening shot on a pool table.

How the Model Works
The model consists of the following blocks.

Model Component Description

Init chart Initializes the position and velocity
of the cue ball.

Pool chart Calculates the two-dimensional
dynamics of each ball on the pool
table.

Plot block Animates the motion of each ball
during the opening shot.

Vel scope Displays the velocity of each ball
during the opening shot.

Clock Provides the instantaneous
simulation time to the Plot block.

15-19

15 Vectors and Matrices in C Charts

Storage of Two-Dimensional Data in Matrices
To simulate the opening shot, the Pool chart stores two-dimensional data
in matrices.

To store values for... The Pool chart uses...

The instantaneous position of each
ball

The 15-by-2 matrix p

The instantaneous velocity of each
ball

The 15-by-2 matrix v

Friction and interaction forces acting
on each ball

The 15-by-2 matrix v_dot

Boolean data on whether any two
balls are in contact

The 15-by-15 matrix
ball_interaction

15-20

Calculate Motion Using Matrices

Calculation of Two-Dimensional Dynamics of Each
Ball
The Pool chart calculates the motion of each ball on the pool table using
MATLAB functions that perform matrix calculations.

15-21

15 Vectors and Matrices in C Charts

MATLAB Function Description

frictionForce Calculates the friction force acting
on each ball.

getBallInteraction Returns a matrix of Boolean data on
whether any two balls are in contact.

hasBallInteractionChanged Returns 1 if ball interactions have
changed and 0 otherwise.

initBalls Initializes the position and velocity
of every ball on the pool table.

interactionForce Calculates the interaction force
acting on each ball.

isAnyBallGoingToStop Returns 1 if any ball has stopped
moving and 0 otherwise.

isAnyBallNewlyPocketed Returns 1 if any ball has been newly
pocketed and 0 otherwise.

isAnyBallOutOfBounds Returns true if any ball is out of
bounds and false otherwise.

nearHole Returns true if a ball is near a pocket
on the pool table and false otherwise.

pocketNewBalls Sets the velocity of a ball to 0 if it
has been pocketed.

resetBallsPosAndVel Resets the position and velocity of
any ball that is out of bounds.

updateStopFlags Keeps track of which balls have
stopped moving.

Run the Model
To run the model, follow these steps:

1 Type sf_pool at the MATLAB command prompt.

2 Start simulation.

15-22

Calculate Motion Using Matrices

3 Click anywhere in the animated pool table to specify the initial position
of the cue ball.

4 Click a different spot to specify the initial velocity of the cue ball.

15-23

15 Vectors and Matrices in C Charts

5 Watch the balls move across the pool table.

15-24

16

Variable-Size Data in
Stateflow Charts

• “What Is Variable-Size Data?” on page 16-2

• “How Charts Implement Variable-Size Data” on page 16-3

• “Enable Support for Variable-Size Data” on page 16-4

• “Declare Variable-Size Inputs and Outputs” on page 16-5

• “Compute Output Based on Size of Input Signal” on page 16-7

• “Rules for Using Variable-Size Data in Stateflow Charts” on page 16-16

16 Variable-Size Data in Stateflow Charts

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

16-2

How Charts Implement Variable-Size Data

How Charts Implement Variable-Size Data
Stateflow charts exchange variable-size data with other charts and blocks in
their models through MATLAB functions, Simulink functions, and MATLAB
truth tables.

You pass variable-size data to these functions as chart-level inputs and
outputs from state actions and transition logic. However, you must perform
all computations with variable-size data inside the functions, not directly in
states or transitions.

For more information about the functions that interact with variable-size,
chart-level inputs and outputs, see:

• “MATLAB Functions in a Chart” on page 25-2

• “What Is a Simulink Function?” on page 26-2

• “MATLAB Truth Tables” on page 24-6

16-3

16 Variable-Size Data in Stateflow Charts

Enable Support for Variable-Size Data
Support for variable-size data is enabled by default. To modify this option
for individual charts:

1 Right-click an open area of the chart and select Properties.

The Chart properties dialog box opens.

2 Select or clear the Support variable-size arrays check box.

After enabling support at the chart level, declare your variable-size inputs
and outputs.

16-4

Declare Variable-Size Inputs and Outputs

Declare Variable-Size Inputs and Outputs
1 In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Input From Simulink or Chart > Add Inputs & Outputs > Data
Output To Simulink.

The Data properties dialog box opens.

2 Select the Variable size check box.

3 Set Scope as Input or Output.

4 Enter size:

Data What to Specify

Input Enter -1 to inherit size from Simulink or specify the explicit
size and upper bound. For example, enter [2 4] to specify
a 2-D matrix where the upper bounds are 2 for the first
dimension and 4 for the second.

Output Specify the explicit size and upper bound.

For example:

16-5

16 Variable-Size Data in Stateflow Charts

16-6

Compute Output Based on Size of Input Signal

Compute Output Based on Size of Input Signal

In this section...

“About the Model” on page 16-7

“Chart: VarSizeSignalSource” on page 16-9

“Chart: size_based_processing” on page 16-11

“Simulate the Model” on page 16-15

About the Model
The model sf_varsize_example shows how MATLAB functions in Stateflow
charts exchange variable-size data with other charts and blocks in the model.
To open the model, type sf_varsize_example at the MATLAB command
prompt.

In this model, one Stateflow chart, VarSizeSignalSource, uses temporal logic
to generate a variable-size signal. A second chart, size_based_processing,
computes the output based on the size of the signal generated by the first
chart:

16-7

16 Variable-Size Data in Stateflow Charts

16-8

Compute Output Based on Size of Input Signal

Chart: VarSizeSignalSource
The VarSizeSignalSource chart works like a source block. It has no input
and one variable-size output y:

For variable-size outputs, you must explicitly specify the size and upper
bound for each dimension. In this case, y is a vector where the first dimension
is assumed to be fixed at size 1 and the second dimension is variable with
an upper bound of 16.

16-9

16 Variable-Size Data in Stateflow Charts

This chart uses temporal logic to transition between three states, each
generating a different size output:

How the Chart Works with the Variable-Size Output
No states or transitions can read from or write to variable-size data.
Therefore, y does not appear in any state actions or transition logic. All
computations involving variable-size data must occur in MATLAB functions
in the chart.

How the MATLAB Function Works with the Variable-Size Output
MATLAB functions access variable-size, chart-level data directly. You
do not pass the data as inputs or outputs to the functions. In this chart,
the generateOutput function adds a different number of elements to the
variable-size output y, based on how the active state calls it. The function
constructs the variable-size vector from a number sequence, then outputs
the transpose of the result:

function generateOutput(len)
%#codegen
assert(len<=16);
y = (1:len)';

16-10

Compute Output Based on Size of Input Signal

MATLAB functions must be able to determine the upper bounds of
variable-size data at compile time. In this case, however, the upper bound is
len, an input for which the model computes the value at run time. To provide
this information, the assert function specifies an explicit upper bound for
len, one that matches the upper bound for chart output y.

If you do not include the assert statement, you get a compilation error:

Computed maximum size is not bounded.
Static memory allocation requires all sizes to be bounded.
The computed size is [1 x :?].

Chart: size_based_processing
The size_based_processing chart computes a variable-size output based
on the value of a variable-size input:

• Input u is the variable-size signal generated by the VarSizeSignalSource
chart:

16-11

16 Variable-Size Data in Stateflow Charts

• Output y is a variable-size signal whose size depends on whether u is a
scalar or vector:

16-12

Compute Output Based on Size of Input Signal

The chart uses three MATLAB functions to evaluate the size of input u
and generate an associated output y:

16-13

16 Variable-Size Data in Stateflow Charts

As in the chart VarSizeSignalSource, variable-size data does not appear
in state actions or transition logic. Instead, states call MATLAB functions
to compute the variable-size output. Transitions call a MATLAB function
in a conditional statement to evaluate the variable-size input.

MATLAB Function: is_scalar_input
This function tests whether chart input u, the signal generated by chart
VarSizeSignalSource, is a scalar or vector value:

function isScalar = is_scalar_input
%#codegen
isScalar = length(u)==1;

MATLAB Function: compute_input
If input u is a vector, this function outputs the sine of each of its values:

function compute_output
%#codegen
y = sin(u);

MATLAB Function: reset_output
If input u is a scalar, this function outputs a value of zero:

function reset_output
%#codegen
y = 0;

16-14

Compute Output Based on Size of Input Signal

Simulate the Model

1 Open the model:

sf_varsize_example

2 Open the chart VarSizeSignalSource, but keep the Simulink display
blocks in view.

3 Start simulation from the chart.

The display blocks periodically show 1, 8, and 16 values from the
variable-size vector.

16-15

16 Variable-Size Data in Stateflow Charts

Rules for Using Variable-Size Data in Stateflow Charts
• Declare variable-size data as chart inputs and outputs only, not as local
data.

See “Declare Variable-Size Inputs and Outputs” on page 16-5.

• Perform all computations with variable-size data in MATLAB functions,
Simulink functions, and truth tables that use MATLAB as the action
language.

• Do not perform computations with variable-size data directly in states or
transitions.

You can pass the data as inputs and outputs to MATLAB and Simulink
functions in your chart from state actions and transition logic. MATLAB
functions can also access the chart-level, variable-size data directly (see
“Compute Output Based on Size of Input Signal” on page 16-7).

16-16

17

Enumerated Data in Charts

• “What Is Enumerated Data?” on page 17-2

• “Benefits of Using Enumerated Data in a Chart” on page 17-3

• “Where to Use Enumerated Data” on page 17-4

• “Elements of an Enumerated Data Type Definition” on page 17-5

• “Define Enumerated Data in a Chart” on page 17-8

• “Ensure That Changes in Data Type Definition Take Effect” on page 17-11

• “Notation for Enumerated Values in C Charts” on page 17-12

• “Enumerated Data Operations for C Charts” on page 17-14

• “View Enumerated Values in a Chart” on page 17-15

• “Rules for Using Enumerated Data in a Chart” on page 17-17

• “Best Practices for Using Enumerated Data in a Chart” on page 17-20

• “Model CD Player Using Enumerated Data” on page 17-22

• “Assign Enumerated Values in a Chart” on page 17-34

17 Enumerated Data in Charts

What Is Enumerated Data?
Enumerated data has a finite set of values. An enumerated data type
consists of values that you allow for that type, or enumerated values. For
integer-based enumerated types, each enumerated value consists of a name
and an underlying numeric value.

For example, the following MATLAB file restricts an integer-based
enumerated data type named BasicColors to three enumerated values.

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end
end

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(0) Red 0

Yellow(1) Yellow 1

Green(2) Green 2

For information on defining an enumerated data type, see “Define
Enumerated Data in a Chart” on page 17-8.

For information on using enumerated data in other blocks of a Simulink
model, see “Use Enumerated Data in Simulink Models” in the Simulink
documentation.

17-2

Benefits of Using Enumerated Data in a Chart

Benefits of Using Enumerated Data in a Chart
Use enumerated data in a Stateflow chart to:

• Model a physical system with a finite number of states

• Restrict data to a finite set of values

• Refer to these values by name

For example, this chart uses enumerated data to refer to a set of colors.

• The chart models a system with two discrete states: Slow and Fast.

• The enumerated data output is restricted to a finite set of values: 0, 1,
and 2.

• You can refer to these values by their enumerated names: Red, Yellow,
and Green.

In large-scale models, use enumerated data for these benefits:

• Enhance readability of data in a chart.

• Avoid defining a long list of constants.

For example, you can group related values into separate data types.

17-3

17 Enumerated Data in Charts

Where to Use Enumerated Data
You can use enumerated data at these levels of the Stateflow hierarchy:

• Chart

• Subchart

• State

You can use enumerated data as arguments for:

• State actions

• Condition and transition actions

• Vector and matrix indexing

• MATLAB functions (see “MATLAB Functions in a Chart” on page 25-2)

• Graphical functions (see “Reuse Logic Patterns Using Graphical Functions”
on page 7-35)

• Simulink functions (see “What Is a Simulink Function?” on page 26-2)

• Truth Table blocks and truth table functions (see “What Is a Truth Table?”
on page 24-2)

You can use enumerated data for simulation and Simulink Coder code
generation. For more information, see “Rules for Using Enumerated Data
in a Chart” on page 17-17.

17-4

Elements of an Enumerated Data Type Definition

Elements of an Enumerated Data Type Definition
The elements of an enumerated data type definition appear as follows:

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end

methods (Static = true)
function retVal = getDefaultValue()

% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated type.
% Used by Simulink when an instance of this class is
% needed but the value is not known (e.g., initializing
% ground values or casting an invalid numeric value to
% an enumerated type). If this method is not defined,
% the first value is used.
retVal = BasicColors.Green;

end

function retVal = getDescription()
% GETDESCRIPTION Optional string to describe data type.
retVal = 'This defines an enumerated type for colors';

end

function retVal = getHeaderFile()
% GETHEADERFILE File where type is defined for generated
% code. If specified, this file is #included as needed
% in the code. Otherwise, the type is written out in
% the generated code.
retVal = 'imported_enum_type.h';

end

function retVal = addClassNameToEnumNames()
% ADDCLASSNAMETOENUMNAMES Specify if class name is added
% as a prefix to enumerated names in the generated code.
% By default we do not add the prefix.

17-5

17 Enumerated Data in Charts

retVal = true;
end

end
end

The data type definition consists of three sections of code.

Section of
Code

Required? Purpose Reference

classdef Yes Gives the name of the enumerated data type “Define an
Enumerated Data
Type in a File” on
page 17-8

enumeration Yes Lists the enumerated values that the data
type allows

“Define an
Enumerated Data
Type in a File” on
page 17-8

methods No Provides methods that customize the data
type:

• getDefaultValue

Specifies a default enumerated value other
than the first one in the list of allowed
values

• getDescription

Gives a description of the data type for
Simulink Coder generated code

• getHeaderFile

Enables importing of custom header files
that contain enumerated type definitions
for Simulink Coder generated code

• addClassNameToEnumNames

Prevents name conflicts with identifiers
in Simulink Coder generated code and
enhances readability

“Use Enumerated
Data in Simulink
Models”

17-6

Elements of an Enumerated Data Type Definition

In the example, the methods section of code customizes the data type as
follows:

• Specifies that the default enumerated value is the last one in the list of
allowed values

• Includes a short description of the data type for Simulink Coder generated
code

• Uses a custom header file to prevent the data type from being written out
in Simulink Coder generated code

• Adds the name of the data type as a prefix to each enumerated name in
Simulink Coder generated code

17-7

17 Enumerated Data in Charts

Define Enumerated Data in a Chart

In this section...

“Tasks for Defining Enumerated Data in a Chart” on page 17-8

“Define an Enumerated Data Type in a File” on page 17-8

“Add Enumerated Data to a Chart” on page 17-9

Tasks for Defining Enumerated Data in a Chart

1 Define an enumerated data type in a file on the MATLAB path.

This data type is a MATLAB class definition.

Note For each enumerated type, you must create a new file.

2 Add data of the enumerated type to a chart.

Define an Enumerated Data Type in a File

1 Create a new file to store the data type definition.

In the MATLAB Command Window, select Home > New > Class.

2 Define enumerated values in an enumeration section.

classdef(Enumeration) EnumTypeName < Simulink.IntEnumType
enumeration

EnumName(N)
...

end
end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. An enumerated type can
define any number of values. Each enumerated value consists of a string

17-8

Define Enumerated Data in a Chart

EnumName and an integer N. Each EnumName must be unique within its type,
but can also appear in other enumerated types.

For example, you can enter the following lines in the MATLAB Editor:

classdef(Enumeration) BasicColors < Simulink.IntEnumType
enumeration

Red(0)
Yellow(1)
Green(2)

end
end

The classdef section defines an integer-based enumerated data type
with the name BasicColors and derives it from the built-in type
Simulink.IntEnumType. The enumeration section is the set of values that
this data type allows. The default value is the first one in the list, unless
you specify otherwise in the next step.

3 (Optional) Customize the data type using a methods section.

For details, see “Elements of an Enumerated Data Type Definition” on page
17-5 or “Customize Simulink Enumeration” in the Simulink documentation.

4 Save this file on the MATLAB path.

The name of your file must match exactly the name of your data type.
For example, the data type BasicColors must reside in a file named
BasicColors.m.

Tip To add a folder to the MATLAB search path, type addpath pathname
at the command prompt.

Add Enumerated Data to a Chart

1 Add data to your chart and select a scope other than Constant.

2 In the General pane of the Data properties dialog box, enter a name and
data type for the enumerated data.

17-9

17 Enumerated Data in Charts

a In the Name field, enter a name.

b In the Type field, select Enum: <class name>.

Note The Complexity field disappears when you select Enum: <class
name> because enumerated data does not support complex values.

c Replace <class name> with the name of the data type that you defined
in a file on the MATLAB path.

For example, you can enter Enum: BasicColors in the Type field. (See
“Define an Enumerated Data Type in a File” on page 17-8.)

d Click Apply.

3 (Optional) Enter an initial value for the enumerated data.

a In the Initial value field, enter a prefixed identifier that refers to an
enumerated value for this data type. (For details, see “Rules for Using
Enumerated Data in a Chart” on page 17-17.)

For example, BasicColors.Red is an identifier that uses prefixed
notation. (See “Prefixed Notation for Enumerated Values” on page
17-13.)

Note If you leave this field empty, the default enumerated value
applies — that is, the first value in the data type definition. To specify
the default value explicitly, see “Elements of an Enumerated Data Type
Definition” on page 17-5 or “Customize Simulink Enumeration” in the
Simulink documentation.

b Click OK.

17-10

Ensure That Changes in Data Type Definition Take Effect

Ensure That Changes in Data Type Definition Take Effect
When you update an enumerated data type definition for an open model,
the changes do not take effect right away. To see the effects of updating a
data type definition:

1 Save the model.

2 Close the model.

3 Delete instances of the data type from the MATLAB base workspace.

Tip To find these instances, type whos at the command prompt.

4 Open the model.

5 Start simulation or generate Simulink Coder code.

17-11

17 Enumerated Data in Charts

Notation for Enumerated Values in C Charts

In this section...

“Nonprefixed Notation for Enumerated Values” on page 17-12

“Prefixed Notation for Enumerated Values” on page 17-13

Nonprefixed Notation for Enumerated Values
To minimize identifier length when referring to enumerated values in C
charts, you can use nonprefixed notation. This notation is a string of the form
Name.Name is the enumerated value name.

If your C chart uses data types that contain identical enumerated names
(such as Colors.Red and Temp.Red), consider using prefixed notation to
prevent name conflicts among identifiers. For details, see “Prefixed Notation
for Enumerated Values” on page 17-13.

Requirements for Using Nonprefixed Notation in C Charts
The requirements for using nonprefixed notation in C charts are:

• The enumerated data type definition must be in a file on the MATLAB
search path.

• One of the following is true:

- Enumerated data of this type exists in the chart. For more information,
see “Define Enumerated Data in a Chart” on page 17-8.

- A full prefixed notation for this enumerated data type is used somewhere
in a state or transition in the chart.

Example of Nonprefixed Notation in C Charts
Suppose that you have an identifier with nonprefixed notation: Red. The
enumerated name Red belongs to the data type TrafficColors.

To meet the requirements for nonprefixed notation:

17-12

Notation for Enumerated Values in C Charts

• Define TrafficColors as an enumerated data type in a file on the
MATLAB search path.

• Verify that one of the following is true:

- Enumerated data of this type exists in the chart.

- A prefixed notation for this enumerated data type, such as
TrafficColors.Yellow or TrafficColors.Green is used somewhere in
a state or transition of the chart.

Prefixed Notation for Enumerated Values
To prevent name conflicts when referring to enumerated values in C charts,
you can use prefixed notation. This notation is a string of the form Type.Name.
Type is an enumerated data type and Name is the enumerated value name.

Suppose that you have three data types (Colors, Temp, and Code) that contain
the enumerated name Red. By using prefixed notation, you can distinguish
Colors.Red from Temp.Red and Code.Red.

Requirement for Using Prefixed Notation in C Charts
The only requirement for using prefixed notation in C charts is that the
enumerated data type definition is in a file on the MATLAB search path.

Example of Prefixed Notation in C Charts
Suppose that you have an identifier with prefixed notation:
TrafficColors.Red. The enumerated name Red belongs to the data type
TrafficColors.

You can meet the requirement for prefixed notation by defining
TrafficColors as an enumerated data type in a file on the MATLAB search
path.

17-13

17 Enumerated Data in Charts

Enumerated Data Operations for C Charts
These operations work with enumerated operands.

Example Description

a = exp Assignment of exp, which must evaluate to an enumerated
value

a == b Comparison, equality

a != b Comparison, inequality

17-14

View Enumerated Values in a Chart

View Enumerated Values in a Chart

In this section...

“View Values of Enumerated Data During Simulation” on page 17-15

“View Values of Enumerated Data After Simulation” on page 17-15

View Values of Enumerated Data During Simulation
To view the values of enumerated data during simulation:

1 Open the Stateflow Debugger.

2 In the Stateflow Debugger, select breakpoints.

3 Click Start to simulate the model.

4 During simulation, select Browse Data.

In the Stateflow Debugger, the values of enumerated data appear by name.
(For more information, see “Watch Data in the Stateflow Debugger” on
page 28-57.)

View Values of Enumerated Data After Simulation
To view the values of enumerated data after simulation:

1 Open the Model Explorer.

2 In theModel Hierarchy pane, select a chart with enumerated data.

3 In the Contents pane, right-click an enumerated data and select
Properties.

The Data properties dialog box appears.

4 In the Description pane, select Save final value to base workspace.

5 Click OK to close the Data properties dialog box.

17-15

17 Enumerated Data in Charts

6 Repeat steps 2 through 5 if you want to save the final value of another
enumerated data.

7 Simulate the model.

8 After simulation ends, view enumerated data in the base workspace.

In the MATLAB Command Window, the final values of enumerated data
appear by underlying numeric value.

17-16

Rules for Using Enumerated Data in a Chart

Rules for Using Enumerated Data in a Chart
These rules apply when you use enumerated data in a chart.

Use the name of the enumerated data type as the name of the
MATLAB file that contains the type definition

This rule enables resolution of enumerated data types for Simulink models.

Use a unique name for an enumerated data type

The name of an enumerated data type cannot match the name of another
data type or a variable in the MATLAB base workspace. Otherwise, a name
conflict occurs.

Do not define enumerated data at the machine level of the hierarchy

Machine-parented data is not supported for enumerated types.

Do not use enumerated data for inputs and outputs of exported
functions

This rule applies to graphical functions, truth table functions, and Simulink
functions.

Do not assign enumerated values to constant data

Because enumerated values are constants, assigning these values to constant
data is redundant and unnecessary. If you try to assign enumerated values
to constant data, an error appears.

Ensure unique name resolution for nonprefixed identifiers

If you use nonprefixed identifiers to refer to enumerated values in a
chart, ensure unique name resolution in each case. For requirements, see
“Nonprefixed Notation for Enumerated Values” on page 17-12.

17-17

17 Enumerated Data in Charts

Assign to enumerated data only expressions that evaluate to
enumerated values

Examples of valid assignments to enumerated data include:

• y = BasicColors(3)

• y = BasicColors.Red

Use a prefixed identifier to set the initial value of enumerated data

If you choose to set an initial value for enumerated data, you must use a
prefixed identifier in the Initial value field of the Data properties dialog box
or the Model Explorer. For example, BasicColors.Red is a valid identifier,
but not Red. This rule applies because the initial value must evaluate to a
valid MATLAB expression.

For information about prefixed notation, see “Prefixed Notation for
Enumerated Values” on page 17-13.

Do not use the ml namespace operator to access enumerated data
from the MATLAB base workspace

This operator does not support enumerated data.

Do not enter minimum or maximum values for enumerated data

How the Minimum and Maximum fields appear in the Data properties
dialog box depends on which option you use to define enumerated data.

Type Field Option Appearance of the Minimum
and Maximum Fields

Enum: <class name> Not available

<data type expression> or
Inherit from Simulink

Available

Leave theMinimum andMaximum fields empty for enumerated data. The
chart ignores any values that you enter in these fields.

17-18

Rules for Using Enumerated Data in a Chart

Include custom header information for enumerated types in the
Model Configuration Parameters dialog box

If data in your chart uses an enumerated type with a custom header file,
include the header information in the Simulation Target > Custom Code
pane of the Model Configuration Parameters dialog box. In the Header file
section, add the following statement:

#include "<custom_header_file_for_enum>.h"

Suppose that you have three enumerated types in your model that use
custom header files: imported_enum_type1.h, imported_enum_type2.h,
and imported_enum_type3.h. If you use the three enumerated types for
different data in your chart, you can include the header information by using
one of these methods:

• Add the following statements in theHeader file section of the Simulation
Target > Custom Code pane in the Model Configuration Parameters
dialog box:

#include "imported_enum_type1.h"
#include "imported_enum_type2.h"
#include "imported_enum_type3.h"

• Create a separate header file, such as required_types.h, that consolidates
the list of custom header files:

#include "imported_enum_type1.h"
#include "imported_enum_type2.h"
#include "imported_enum_type3.h"

Then, add the following statement in the Header file section of the
Simulation Target > Custom Code pane in the Model Configuration
Parameters dialog box:

#include "required_types.h"

17-19

17 Enumerated Data in Charts

Best Practices for Using Enumerated Data in a Chart
Add prefixes to enumerated names to enhance readability of
generated code

If you add prefixes to enumerated names in the generated code, you enhance
readability and avoid name conflicts with global symbols. For details, see
“Enumerations” in the Simulink Coder documentation.

Use unique identifiers to refer to enumerated values

This guideline prevents name conflicts with other objects in a chart. If an
enumerated value uses the same identifier as a data object in a state or a bus
field in a chart, the chart does not resolve the identifier as an enumerated
value.

For example, the following diagram shows the stages in which a chart tries
to resolve the identifier Colors.Red.

17-20

Best Practices for Using Enumerated Data in a Chart

'
�$������
���������
���������

-����
�#�$�$�
%�����4��(

5�������

���
������
����$�
6�����
��
&��#��

'
�$������
��
������-����

#�$������
�	7��������

4��(

��

8�%�����
�����!���

-����
/4��

'
�$������	�

�����

-����
�$�
������
�$�
!�����4��(

���

���

��

���

�����

!��
�������
������
!��������!���
-����
/4��

��

17-21

17 Enumerated Data in Charts

Model CD Player Using Enumerated Data

In this section...

“Overview of CD Player Model” on page 17-22

“Benefits of Using Enumerated Types in This Model” on page 17-24

“Run the CD Player Model” on page 17-25

“How the UserRequest Chart Works” on page 17-27

“How the CdPlayerModeManager Chart Works” on page 17-28

“How the CdPlayerBehaviorModel Chart Works” on page 17-31

Overview of CD Player Model
This Simulink model implements a basic CD player using enumerated data
in three C charts.

17-22

Model CD Player Using Enumerated Data

17-23

17 Enumerated Data in Charts

Model Component Description Details

UserRequest chart Reads and stores user
inputs

“How the UserRequest
Chart Works” on page
17-27

CdPlayerModeManager
chart

Determines whether
the CD player operates
in CD or radio mode

“How the
CdPlayerModeManager
Chart Works” on page
17-28

CdPlayerBehaviorModel
chart

Describes behavior
of the CD player
mechanism

“How the
CdPlayerBehaviorModel
Chart Works” on page
17-31

Benefits of Using Enumerated Types in This Model
This model uses two enumerated data types: RadioRequestMode and
CdRequestMode.

Enumerated Data Type Enumerated Values

RadioRequestMode • OFF(0)

• CD(1)

• FM(2)

• AM(3)

CdRequestMode • EMPTY(-2)

• DISCINSERT(-1)

• STOP(0)

• PLAY(1)

• REW(3)

• FF(4)

• EJECT(5)

17-24

Model CD Player Using Enumerated Data

By grouping related values into separate data types, you get these benefits:

• Enhance readability of data values in each chart.

• Avoid defining a long list of constants, which reduces the amount of data in
your model.

Run the CD Player Model
Follow these steps to run the model:

1 Type sf_cdplayer at the MATLAB command prompt.

2 Start simulation of the model.

The CD Player Helper GUI appears.

17-25

17 Enumerated Data in Charts

The Display blocks in the model show the default settings of the CD player.

3 In the CD Player Helper GUI, click CD in the Radio Request section.

The Display blocks for enumerated data RR and CurrentRadioMode change
from OFF to CD.

4 In the CD Player Helper GUI, click Insert Disc.

The Display block for enumerated data CdStatus changes from EMPTY to
DISCINSERT to STOP.

5 In the CD Player Helper GUI, click PLAY in the CD Request section.

17-26

Model CD Player Using Enumerated Data

The Display blocks for enumerated data CR, MechCmd, and CdStatus change
from STOP to PLAY.

Note To see other changes in the Display blocks, you can select other
operating modes for the CD player, such as FM or AM radio.

How the UserRequest Chart Works
Key features of the UserRequest chart include:

• Enumerated data

• ml namespace operator (see “ml Namespace Operator” on page 10-41)

This chart reads user inputs from the CD Player Helper GUI and stores the
information as output data.

Output Data Name Data Type Description

RR Enumerated Operating mode of the
radio component

CR Enumerated Operating mode of the
CD component

DiscInsert Boolean Setting for CD insertion

DiscEject Boolean Setting for CD ejection

17-27

17 Enumerated Data in Charts

How the CdPlayerModeManager Chart Works
Key features of the CdPlayerModeManager chart include:

• Enumerated data

• Subcharts (see “Encapsulate Modal Logic Using Subcharts” on page 7-6)

• Change detection (see “Detect Changes in Data Values” on page 10-81)

17-28

Model CD Player Using Enumerated Data

17-29

17 Enumerated Data in Charts

Behavior of the CdPlayerModeManager Chart

1 When the chart wakes up, the ModeManager state is entered.

2 The previously active substate recorded by the history junction becomes
active: Standby or ON.

Note Transitions between the Standby and ON substates occur as follows.

• If the enumerated data RadioReq is OFF, the Standby substate is entered.

• If the enumerated data RadioReq is not OFF, the ON substate is entered.
(For details, see “Control of CD Player Operating Mode” on page 17-30.)

3 If the Boolean data DiscEject is 1 (or true), a transition to the Eject state
occurs, followed by a transition back to the ModeManager state.

4 Steps 2 and 3 repeat until the chart goes to sleep.

Control of CD Player Operating Mode
In the ON substate, three subcharts represent the operating modes of a CD
player: CD, AM radio, and FM radio. Each subchart corresponds to a different
value of enumerated data RadioReq.

Value of Enumerated
Data RadioReq

Active Subchart Purpose of Subchart

CD CDMode Outputs play, rewind,
fast forward, and stop
commands to the
CdPlayerBehaviorModel
chart

AM AMMode Sets the CD player to
AM radio mode

FM FMMode Sets the CD player to
FM radio mode

17-30

Model CD Player Using Enumerated Data

The hasChanged operator detects changes in the value of RadioReq with an
inner transition.

How the CdPlayerBehaviorModel Chart Works
Key features of the CdPlayerBehaviorModel chart include:

• Enumerated data

• Temporal logic (see “Control Chart Execution Using Temporal Logic” on
page 10-61)

17-31

17 Enumerated Data in Charts

17-32

Model CD Player Using Enumerated Data

Behavior of the CdPlayerBehaviorModel Chart

1 When the chart wakes up, the Empty state is entered.

2 If the Boolean data DiscInsert is 1 (or true), a transition to the Inserting
state occurs.

3 After a short time delay, a transition to the DiscPresent state occurs.

4 The DiscPresent state remains active until the data CMD becomes EJECT.

5 If the enumerated data CMD is EJECT, a transition to the Ejecting state
occurs.

6 After a short time delay, a transition to the Empty state occurs.

7 Steps 2 through 6 repeat until the chart goes to sleep.

Update of CD Player Behavior
Whenever a state transition occurs, the enumerated data CdStatus changes
value to reflect the behavior of the CD player.

Active State Value of Enumerated
Data CdStatus

Behavior of CD
Player

Empty EMPTY CD player is empty.

Inserting DISCINSERT CD is being inserted
into the player.

DiscPresent.STOP STOP CD is present and
stopped.

DiscPresent.PLAY PLAY CD is present and
playing.

DiscPresent.REW REW CD is present and
rewinding.

DiscPresent.FF FF CD is present and fast
forwarding.

Ejecting EJECT CD is being ejected
from the player.

17-33

17 Enumerated Data in Charts

Assign Enumerated Values in a Chart

In this section...

“Goal of the Tutorial” on page 17-34

“Build the Chart” on page 17-34

“View Results for Simulation” on page 17-37

“How the Chart Works” on page 17-40

Goal of the Tutorial
The goal of this tutorial is to build a chart that uses enumerated values in
assignment statements.

Build the Chart
To build the chart, follow these steps.

Add States and Transitions to the Chart
You can add states and transitions to the chart as follows.

1 Type sfnew at the command prompt to create a new model with a chart
inside.

17-34

Assign Enumerated Values in a Chart

2 In the chart, add states A and B to the chart.

Note You will define the data color and y in the sections that follow.

3 Add transitions between states A and B.

17-35

17 Enumerated Data in Charts

4 Add a default transition to state A.

Define an Enumerated Data Type for the Chart
To define an enumerated data type for the chart:

1 Create a new file to store the data type definition.

In the MATLAB Command Window, select Home > New > Class.

2 Enter these lines in the MATLAB Editor:

classdef(Enumeration) TrafficColors < Simulink.IntEnumType
enumeration

RED(0)
GREEN(10)

end
end

The classdef section defines an integer-based enumerated data
type named TrafficColors that is derived from the built-in type
Simulink.IntEnumType. The enumeration section is the set of enumerated
values that this data type allows. Each enumerated name is followed by
the underlying numeric value.

3 Save your file as TrafficColors.m in a folder on the MATLAB search path.

The name of your file must match exactly the name of your data type.
Therefore, you must use TrafficColors.m as the name of your file.

17-36

Assign Enumerated Values in a Chart

Tip To add a folder to the MATLAB search path, type addpath pathname
at the command prompt.

Add Enumerated Data to the Chart
To add the enumerated data color to the chart:

1 In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Output To Simulink.

The Data properties dialog box appears.

2 In the General pane, enter color in the Name field.

3 In the Type field, select Enum: <class name>.

4 Replace <class name> with TrafficColors, the name of the data type
that you defined in a file in “Define an Enumerated Data Type for the
Chart” on page 17-36.

5 Click OK.

Add Integer Data to the Chart
To add the integer data y to the chart:

1 In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Output To Simulink.

The Data properties dialog box appears.

2 In the General pane, enter y in the Name field.

3 In the Type field, select uint8.

4 Click OK.

View Results for Simulation
To view results for simulation, follow these steps.

17-37

17 Enumerated Data in Charts

Add Scopes to View Output
You can add two scopes to your model as follows.

1 Open the Simulink Library Browser.

2 In the Simulink/Sinks library, select the Scope block.

3 Add two scopes to your model as shown.

Set the Sample Time for Simulation
You can set a discrete sample time for simulation using a fixed-step solver.
(For details, see “Solvers” in the Simulink documentation.)

1 Open the Model Configuration Parameters dialog box.

2 In the Solver pane, select Fixed-step in the Type field.

3 Select Discrete (no continuous states) in the Solver field.

4 Enter 0.2 in the Fixed-step size (fundamental sample time) field.

5 Click OK.

Simulate the Model
Open the Scope blocks. When you simulate the model, you get the following
results:

17-38

Assign Enumerated Values in a Chart

17-39

17 Enumerated Data in Charts

How the Chart Works
During simulation, the chart works as follows.

Stage 1: Execution of State A

1 After the chart wakes up, state A is entered.

2 State A executes the entry action by assigning the value RED to the
enumerated data color.

3 The data y increments once per time step (every 0.2 seconds) until the
condition [y > 6] is true.

4 The chart takes the transition from state A to state B.

17-40

Assign Enumerated Values in a Chart

Stage 2: Execution of State B

1 After the transition from state A occurs, state B is entered.

2 State B executes the entry action by assigning the value GREEN to the
enumerated data color.

3 The data y decrements once per time step (every 0.2 seconds) until the
condition [y < 3] is true.

4 The chart takes the transition from state B to state A.

Stage 3: Repeat of State Execution
States A and B take turns executing until the simulation ends.

17-41

17 Enumerated Data in Charts

17-42

18

Continuous-Time Systems
in Stateflow Charts

• “About Continuous-Time Modeling” on page 18-2

• “Model Hybrid Systems with Model Logic” on page 18-5

• “Configure a Stateflow Chart to Update in Continuous Time” on page 18-6

• “When to Enable Zero-Crossing Detection” on page 18-9

• “Define Continuous-Time Variables” on page 18-10

• “Model a Bouncing Ball in Continuous Time” on page 18-12

• “Design Considerations for Continuous-Time Modeling in Stateflow Charts”
on page 18-24

18 Continuous-Time Systems in Stateflow® Charts

About Continuous-Time Modeling

In this section...

“What Is Continuous-Time Modeling?” on page 18-2

“When To Use Stateflow Charts for Continuous-Time Modeling” on page
18-3

“Model Continuous-Time Using Zero-Crossing Detection” on page 18-4

What Is Continuous-Time Modeling?
Continuous-time modeling allows you to simulate hybrid systems that use
mode logic — that is, systems that respond to both continuous and discrete
mode changes. A simple example of this type of hybrid system is a bouncing
ball. The ball moves continuously through the air until it hits the ground, at
which point a mode change — or discontinuity — occurs. As a result, the ball
changes direction and velocity due to a sudden loss of energy. A later exercise
shows you how to model a bouncing ball in continuous time using a Stateflow
chart (see “Model a Bouncing Ball in Continuous Time” on page 18-12).

When you configure Stateflow charts for continuous-time simulation, they
interact with the Simulink solver in the same way as other continuous blocks,
as follows:

• Maintain mode in minor time steps.

Stateflow charts do not update mode in minor time steps. The outputs
computed in a minor time step are based on the state of the chart during
the last major time step.

• Compute the state of the chart at each time step and expose the state
derivative to the Simulink solver.

You can define local continuous variables to hold state information.
Stateflow charts automatically provide programmatic access to the
derivatives of state variables. Continuous solvers in Simulink models use
this data to compute the chart’s continuous states at the current time step,
based on values from the previous time steps and the state derivatives.

18-2

About Continuous-Time Modeling

Note For more information on how solvers work, see “Solvers” in the
Simulink User’s Guide.

• Can register zero crossings on state transitions.

Stateflow charts can register a zero-crossings function with a Simulink
model to help determine when a state transition occurs. When the Simulink
solver detects a change of mode, it searches forward from the previous
major time step to detect when the zero crossing — or state transition
— occurred.

Note For more information about how a Simulink model uses
zero-crossing detection to simulate discontinuities in continuous states, see
“Zero-Crossing Detection” in the Simulink User’s Guide.

When To Use Stateflow Charts for Continuous-Time
Modeling
Use Stateflow charts for modeling hybrid systems with modal behavior — that
is, systems that transition from one mode to another in response to physical
events and conditions, where each mode is governed by continuous-time
dynamics.

In Stateflow charts, you can represent mode logic succinctly and intuitively as
a series of states, transitions, and flow charts. You can also easily represent
state information as continuous local variables with automatic access to
time derivatives, as described in “Purpose of Continuous-Time Variables” on
page 18-10.

If your continuous or hybrid system does not contain mode logic, consider
using a Simulink model (see “Model a Continuous System” in the Simulink
documentation).

18-3

18 Continuous-Time Systems in Stateflow® Charts

Model Continuous-Time Using Zero-Crossing
Detection
You can run the following continuous-time models with zero-crossing
detection.

Model Description

sf_abs Rectifier takes a single (scalar)
input and converts it to its absolute
value. Shows how Stateflow charts
register zero-crossing variables
with Simulink models for accurate
detection of mode changes.

sf_bounce Shows how to model the dynamics
of a bouncing ball by defining
continuous-time state variables
and their derivatives in a Stateflow
chart.

To try it yourself, see “Model a
Bouncing Ball in Continuous Time”
on page 18-12.

sf_newtons_cradle Shows how to model elastic collisions
between balls in Newton’s Cradle,
a device that conserves momentum
and energy. Uses vector assignment
to continuous-time state variables.

sf_clutch Implements the Simulink clutch
example model purely in a Stateflow
chart. Represents the modal nature
of the clutch using two states,
Locked and Slipping.

sf_pool Shows how to model continuous
systems that have a large number of
discontinuous events, which rapidly
(and unpredictably) change the
dynamics.

18-4

Model Hybrid Systems with Model Logic

Model Hybrid Systems with Model Logic
Here are the tasks for modeling hybrid systems containing mode logic in
continuous time using Stateflow charts.

Step Task Example in Bouncing Ball
Model

1
Configure the chart to update in
continuous time.

“Task 1: Configure the Bouncing
Ball Chart for Continuous
Updating” on page 18-13

2
Decide whether to detect zero
crossings.

“Task 2: Decide Whether to
Enable Zero-Crossing Detection
for the Bouncing Ball” on page
18-13

3
Define continuous-time
variables.

“Task 3: Define Continuous-Time
Variables for Position and
Velocity” on page 18-13

4
Choose a solver that supports
continuous states (see “Choose a
Solver” in the Simulink User’s
Guide documentation).

“Task 4: Choose a Solver for the
Bouncing Ball Chart” on page
18-15

5
Add system dynamics. “Task 5: Add Dynamics for a

Free-Falling Ball” on page 18-15

6
Expose continuous states to a
Simulink model.

“Task 6: Expose Ball Position
and Velocity to the Simulink
Model” on page 18-17

7
Validate semantics, based
on design considerations for
continuous-time simulation.

“Task 7: Validate Semantics of
Bouncing Ball Chart” on page
18-17

8
Simulate the chart. “Task 8: Simulate Bouncing Ball

Chart” on page 18-17

9
Debug and revise. “Task 9: Check for the Bounce”

on page 18-19

18-5

18 Continuous-Time Systems in Stateflow® Charts

Configure a Stateflow Chart to Update in Continuous Time
Continuous updating is a Stateflow chart property. To set this property:

1 Right-click inside a chart and select Properties from the context menu.

The Chart properties dialog box appears.

2 In this dialog box, set the Update method to Continuous.

When you set the Update method to Continuous, the chart:

• Enables zero-crossing detection

18-6

Configure a Stateflow® Chart to Update in Continuous Time

• Disables super step semantics

3 Decide whether or not to enable zero-crossing detection, based on
considerations described in “When to Enable Zero-Crossing Detection”
on page 18-9.

18-7

18 Continuous-Time Systems in Stateflow® Charts

Note You can choose from different zero-crossing detection algorithms in
the Solver pane of the Model Configuration Parameters dialog box. See
“Zero-Crossing Algorithms” in the Simulink User’s Guide for details.

4 Click OK.

18-8

When to Enable Zero-Crossing Detection

When to Enable Zero-Crossing Detection
Whether or not to enable zero-crossing detection on state transitions can be
a trade-off between accuracy and performance. Generally when detecting
zero crossings, a Simulink model accurately simulates mode changes without
unduly reducing step size. However, for systems that exhibit chattering —
frequent fluctuations between two modes of continuous operation — enabling
zero-crossing detection may impact simulation time. Chattering requires a
Simulink model to check for zero crossings in rapid succession, resulting in
excessively small step sizes which can slow simulation. In these situations,
you can disable zero-crossing detection, choose a different zero-crossing
detection algorithm for your chart, or modify parameters that control
the frequency of zero crossings in your Simulink model. See “Preventing
Excessive Zero Crossings” in the Simulink User’s Guide.

18-9

18 Continuous-Time Systems in Stateflow® Charts

Define Continuous-Time Variables

In this section...

“Purpose of Continuous-Time Variables” on page 18-10

“Implicit Time Derivatives” on page 18-10

“Rules for Using Continuous-Time Variables” on page 18-10

“How to Define Continuous-Time Variables” on page 18-11

“Expose Continuous States to a Simulink Model” on page 18-11

Purpose of Continuous-Time Variables
To compute a continuous state, you must determine its rate of change, or
derivative. You can represent this information using local variables that
update in continuous time. In a Stateflow chart, continuous-time variables are
always double type. You cannot change the type, but you can change the size.

Implicit Time Derivatives
For each continuous variable you define, a Stateflow chart implicitly creates
a variable to represent its time derivative. A chart denotes time derivative
variables as variable_name_dot. For example, the time derivative of
continuous variable x is x_dot. You can write to the time derivative variable
in the during action of a state. The time derivative variable does not appear
in the Model Explorer.

Note You should not explicitly define variables with the suffix _dot in
a chart.

Rules for Using Continuous-Time Variables
Follow these rules when defining and using continuous-time variables:

• Scope can be Local or Output.

• Define continuous-time variables at the chart level or below in the
Stateflow hierarchy.

18-10

Define Continuous-Time Variables

• Expose continuous state by assigning the local variable to a Stateflow
output (see “Expose Continuous States to a Simulink Model” on page 18-11).

How to Define Continuous-Time Variables
To define continuous-time variables, follow these steps:

1 Configure your chart to update in continuous time, as described in
“Configure a Stateflow Chart to Update in Continuous Time” on page 18-6.

2 Add local data to your chart in the Stateflow Editor or Model Explorer.

3 In the properties dialog box for your local data, set Update Method to
Continuous.

In this example, the chart automatically creates the variable mydata_dot
to represent the time derivative of this data.

Note When you set a variable to update in continuous time, you cannot
bind that data to a Simulink signal.

Expose Continuous States to a Simulink Model
In a Stateflow chart, you represent continuous state using local variables,
not inputs or outputs (see “Purpose of Continuous-Time Variables” on page
18-10). To expose the continuous states to a Simulink model, you must
explicitly assign the local variables to Stateflow outputs in the during action
of the state. For examples, see “Model a Bouncing Ball in Continuous Time”
on page 18-12.

18-11

18 Continuous-Time Systems in Stateflow® Charts

Model a Bouncing Ball in Continuous Time

In this section...

“Try It” on page 18-12

“Dynamics of a Bouncing Ball” on page 18-12

“Model the Bouncing Ball” on page 18-13

Try It
The following topics give you step-by-step instructions for modeling a
bouncing ball as a Stateflow chart in continuous time using the workflow
described in “Model Hybrid Systems with Model Logic” on page 18-5.

Dynamics of a Bouncing Ball
The dynamics of a bouncing ball describes the ball as it falls, when it hits the
ground, and when it bounces back up.

You can specify how the ball falls freely under gravity using the following
second-order differential equation:

p g= −

In this equation, p describes the position of the ball as a function of time, and

g m s= 9 81 2. / , which is the acceleration due to gravity.

A Stateflow chart requires that you specify system dynamics as first-order
differential equations. You can describe the dynamics of the free-falling ball
in terms of position p and velocity v using the following first-order differential
equations:

Equation Description

p v=
Derivative of position is velocity

v = −9 81. Derivative of velocity is acceleration

18-12

Model a Bouncing Ball in Continuous Time

The bounce occurs after the ball hits the ground at position p <= 0. At this
point in time, you can model the bounce by updating position and velocity as
follows:

• Reset position to 0.

• Reset velocity to the negative of its value just before the ball hit the ground.

• Multiply the new velocity by a coefficient of distribution (-0.8) that reduces
the speed just after the bounce.

Model the Bouncing Ball
The following steps take you through the workflow for modeling a bouncing
ball in continuous time. To view the completed model, open sf_bounce.

Task 1: Configure the Bouncing Ball Chart for Continuous
Updating

1 Create an empty Stateflow chart and open its properties dialog box.

If you need instructions, see .

2 Set the update method to Continuous.

Task 2: Decide Whether to Enable Zero-Crossing Detection for
the Bouncing Ball
For this example, enable zero-crossing detection (the default) so that the
Simulink model can determine exactly when the ball hits the ground at p <=
0. Otherwise, the Simulink model might not be able to simulate the physics
accurately. For example, the ball might appear to descend below ground.

Task 3: Define Continuous-Time Variables for Position and
Velocity

1 Define two continuous-time variables, p for position and v for velocity. For
each variable, follow these steps:

a In the Stateflow Editor, select Chart > Add Other Elements > Local
Data.

18-13

18 Continuous-Time Systems in Stateflow® Charts

b Enter the name for the local data.

c Set the update method to Continuous.

d Leave all other properties at their default values and click OK.

Note For each continuous local variable that you define, the chart
implicitly creates its time derivative as a variable of the same name
with the suffix _dot. In this example, the chart defines p_dot as the
derivative of position p and v_dot as the derivative of velocity v.

2 Define two outputs, p_out and v_out for exposing continuous state to the
Simulink model. For each variable, follow these steps:

a In the Stateflow Editor, select Chart > Add Inputs & Outputs > Data
Output To Simulink.

b Enter the name for the output data.

c Leave all other properties at their default values and click OK.

Your chart should contain the following data, as viewed in the Model Explorer:

18-14

Model a Bouncing Ball in Continuous Time

Task 4: Choose a Solver for the Bouncing Ball Chart
For this example, you can use ode45 (Dormand-Prince), the default
variable-step solver used by Simulink models with continuous states.

Task 5: Add Dynamics for a Free-Falling Ball

1 Add a state named Falling with a default transition. In the default
transition, set initial position to 10 meters and initial velocity to 15
meters/second.

18-15

18 Continuous-Time Systems in Stateflow® Charts

2 Add a during action to the Falling state that defines the derivatives of
position and velocity, as follows.

The derivative of position is velocity and the derivative of velocity is
acceleration due to gravity (-g).

18-16

Model a Bouncing Ball in Continuous Time

Task 6: Expose Ball Position and Velocity to the Simulink Model
In the during action, assign position to the output p_out and assign velocity
to the output v_out, as follows.

Task 7: Validate Semantics of Bouncing Ball Chart
Check semantics against the requirements defined in “Design Considerations
for Continuous-Time Modeling in Stateflow Charts” on page 18-24.

This chart meets design requirements:

• Assigns values to derivatives p_dot and v_dot in a during action

• Writes to local variables p and v in a transition action

• Initializes local variables on the default transition

• Does not contain events, inner transitions, event-based temporal logic, or
change detection operators

Task 8: Simulate Bouncing Ball Chart

1 Attach each output to a scope.

18-17

18 Continuous-Time Systems in Stateflow® Charts

2 Simulate the chart and view the outputs in the scope.

18-18

Model a Bouncing Ball in Continuous Time

Note that the ball appears to fall below the ground (below position p = 0)
because the chart does not yet include a check for the bounce.

Task 9: Check for the Bounce

1 Add a self-loop transition to state Falling.

18-19

18 Continuous-Time Systems in Stateflow® Charts

Note The chart uses a self-loop transition so it can model the bounce as an
instantaneous mode change — where the ball suddenly reverses direction
— rather than as a finite time collision.

2 Add a condition on the transition that indicates when the ball hits the
ground.

The condition should check for position p <= 0 and velocity v < 0, as follows.

18-20

Model a Bouncing Ball in Continuous Time

Why not just check for p == 0?

Physically, the ball hits the ground when position p is exactly zero.
However, by relaxing the condition, you increase the tolerance within
which the Simulink model can detect when the continuous variable changes
sign (see “How Blocks Work with Zero-Crossing Detection” in the Simulink
User’s Guide documentation).

Why add the second check for v < 0?

The second check helps maintain the efficiency of the Simulink solver by
minimizing the frequency of zero crossings. Without the second check,
the condition becomes true immediately following the state transition,
resulting in two successive zero crossings.

3 When the ball hits the ground, reset position and velocity in a condition
action, as follows.

18-21

18 Continuous-Time Systems in Stateflow® Charts

4 Simulate the chart again. This time, the scope shows the expected bounce
pattern.

18-22

Model a Bouncing Ball in Continuous Time

18-23

18 Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 18-24

“Summary of Rules for Continuous-Time Modeling” on page 18-24

Rationale for Design Considerations
To maintain the integrity — or smoothness— of the results in continuous-time
modeling, you must constrain your charts to a restricted subset of Stateflow
chart semantics. By restricting the semantics, the inputs do not depend on
unpredictable factors — or side effects — such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

18-24

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
functions in state during actions or transition conditions, an error message
appears when you simulate your model.

18-25

18 Continuous-Time Systems in Stateflow® Charts

For more information, see “Where to Use a Simulink Function” on page 26-11.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in state during actions or
transition conditions

This restriction provides smooth outputs in a major time step by preventing a
chart from using values that might no longer be valid in the current minor
time step. Instead, a chart computes outputs from local discrete data, local
continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous time. For example, the
following model generates an error if the chart uses a continuous update
method.

18-26

Design Considerations for Continuous-Time Modeling in Stateflow® Charts

To model the equivalent of an input event, pass the input signal through a Hit
Crossing block as an input to the continuous chart, as in this example.

Do not use inner transitions

When a mode change occurs during continuous-time simulation, the entry
action of the destination state indicates to the Simulink model that a state
transition occurred. If inner transitions are taken, the entry action is never
executed.

Limit use of temporal logic

Do not use event-based temporal logic. Use only absolute-time temporal logic
for continuous-time simulation. See “Operators for Absolute-Time Temporal
Logic” on page 10-68 for details.

Event-based temporal logic has no meaning because there is no concept of a
tick during a continuous-time simulation.

The chart must have at least one substate

In continuous-time simulation, the during action of a state updates the
outputs. A chart with no state produces no output. To simulate the behavior
of a stateless chart in continuous time, create a single state which calls a
graphical function in its during action.

Do not use change detection operators in continuous charts

To implement change detection, Stateflow software buffers variables in a way
that affects the behavior of charts between a minor time step and the next
major time step.

18-27

18 Continuous-Time Systems in Stateflow® Charts

Do not modify any SimState values for continuous-time charts

If you load the SimState for a continuous-time chart, you cannot modify the
activity of states or any values of chart local or output data. Modifying the
SimState of a continuous-time chart is not supported. For more information,
see “Rules for Using the SimState of a Chart” on page 14-39.

18-28

19

Fixed-Point Data in
Stateflow Charts

• “What Is Fixed-Point Data?” on page 19-2

• “How Fixed-Point Data Works in Stateflow Charts” on page 19-6

• “Use Fixed-Point Chart Inputs” on page 19-14

• “Use Fixed-Point Parameters and Local Data” on page 19-19

• “Operations with Fixed-Point Data” on page 19-26

19 Fixed-Point Data in Stateflow® Charts

What Is Fixed-Point Data?

In this section...

“Before You Begin” on page 19-2

“Fixed-Point Numbers” on page 19-2

“Fixed-Point Operations” on page 19-3

Before You Begin
Fixed-point numbers use integers and integer arithmetic to approximate real
numbers. They are an efficient means for performing computations involving
real numbers without requiring floating-point support in underlying system
hardware.

See “Tips for Using Fixed-Point Data” on page 19-10.

Fixed-Point Numbers
Fixed-point numbers use integers and integer arithmetic to represent real
numbers and arithmetic with the following encoding scheme:

V V SQ B= = +
∼

where

• V is a precise real-world value that you want to approximate with a
fixed-point number.

• V
∼
is the approximate real-world value that results from fixed-point

representation.

• Q is an integer that encodes V.
∼
This value is the quantized integer.

Q is the actual stored integer value used in representing the fixed-point
number. If a fixed-point number changes, its quantized integer, Q, changes
but S and B remain unchanged.

19-2

What Is Fixed-Point Data?

• S is a coefficient of Q, or the slope.

• B is an additive correction, or the bias.

Fixed-point numbers encode real quantities (for example, 15.375) using the
stored integer Q. You set the value of Q by solving the equation

V SQ B
∼

= +

for Q and rounding the result to an integer value as follows:

Q = round((V – B)/S)

For example, suppose you want to represent the number 15.375 in a
fixed-point type with the slope S = 0.5 and the bias B = 0.1. This means that

Q = round((15.375 – 0.1)/0.5) = 30

However, because Q is rounded to an integer, you lose some precision in
representing the number 15.375. If you calculate the number that Q actually
represents, you now get a slightly different answer.

V V SQ B= = + = + =
∼

× 0 5 30 0 1 15 1. . .

Using fixed-point numbers to represent real numbers with integers involves
the loss of some precision. However, if you choose S and B correctly, you can
minimize this loss to acceptable levels.

Fixed-Point Operations

Now that you can express fixed-point numbers as V SQ B
∼

= + , you can define
operations between two fixed-point numbers.

The general equation for an operation between fixed-point operands is as
follows:

c = a <op> b

19-3

19 Fixed-Point Data in Stateflow® Charts

where a, b, and c are all fixed-point numbers, and <op> refers to a binary
operation: addition, subtraction, multiplication, or division.

The general form for a fixed-point number x is SxQx + Bx (see “Fixed-Point
Numbers” on page 19-2). Substituting this form for the result and operands
in the preceding equation yields this expression:

(ScQc + Bc) = (SaQa + Ba) <op> (SbQb + Bb)

The values for Sc and Bc are chosen by Stateflow software for each operation
(see “Promotion Rules for Fixed-Point Operations” on page 19-28) and are
based on the values for Sa, Sb, Ba and Bb that you enter for each fixed-point
data (see “Specify Fixed-Point Data” on page 19-7).

Note You can be more precise in choosing the values for Sc and Bc when you
use the := assignment operator (that is, c := a <op> b). See “Assignment (=,
:=) Operations” on page 19-34.

Using the values for Sa, Sb, Sc, Ba, Bb, and Bc, you can solve the preceding
equation for Qc for each binary operation as follows:

• The operation c=a+b implies that

Qc = ((Sa/Sc)Qa + (Sb/Sc)Qb + (Ba + Bb – Bc)/Sc)

• The operation c=a-b implies that

Qc = ((Sa/Sc)Qa – (Sb/Sc)Qb – (Ba – Bb – Bc)/Sc)

• The operation c=a*b implies that

Qc = ((SaSb/Sc)QaQb + (BaSb/Sc)Qa + (BbSa/Sc)Qb + (BaBb – Bc)/Sc)

• The operation c=a/b implies that

Qc = ((SaQa + Ba)/(Sc(SbQb + Bb)) – (Bc/Sc))

19-4

What Is Fixed-Point Data?

The fixed-point approximations of the real number result of the operation c =
a <op> b are given by the preceding solutions for the value Qc. In this way,
all fixed-point operations are performed using only the stored integer Q for
each fixed-point number and integer operation.

19-5

19 Fixed-Point Data in Stateflow® Charts

How Fixed-Point Data Works in Stateflow Charts

In this section...

“How Stateflow Software Defines Fixed-Point Data” on page 19-6

“Specify Fixed-Point Data” on page 19-7

“Rules for Specifying Fixed-Point Word Length” on page 19-8

“Fixed-Point Context-Sensitive Constants” on page 19-9

“Tips for Using Fixed-Point Data” on page 19-10

“Detect Overflow for Fixed-Point Types” on page 19-11

“Share Fixed-Point Data with Simulink Models” on page 19-12

How Stateflow Software Defines Fixed-Point Data
The preceding example in “What Is Fixed-Point Data?” on page 19-2 does
not answer the question of how the values for the slope, S, the quantized
integer, Q, and the bias, B, are implemented as integers. These values are
implemented as follows:

• Stateflow software defines a fixed-point data type from values that you
specify.

You specify values for S, B, and the base integer type for Q. The available
base types for Q are the unsigned integer types uint8, uint16, and
uint32, and the signed integer types int8, int16, and int32. For specific
instructions on how to enter fixed-point data, see “Specify Fixed-Point
Data” on page 19-7.

Notice that if a fixed-point number has a slope S = 1 and a bias B = 0, it
is equivalent to its quantized integer Q, and behaves exactly as its base
integer type.

• Stateflow software implements an integer variable for the Q value of each
fixed-point data in generated code.

This is the only part of a fixed-point number that varies in value. The
quantities S and B are constant and appear only as literal numbers or
expressions in generated code.

19-6

How Fixed-Point Data Works in Stateflow® Charts

• The slope, S, is factored into an integer power of two, E, and a coefficient,
F, such that S = F × 2E and 1 ≤ F < 2.

The powers of 2 are implemented as bit shifts, which are more efficient
than multiply instructions. Setting F = 1 avoids the computationally
expensive multiply instructions for values of F > 1. This binary-point-only
scaling is implemented with bit shifts only and is recommended.

• Operations for fixed-point types are implemented with solutions for the
quantized integer as described in “Fixed-Point Operations” on page 19-3.

To generate efficient code, the fixed-point promotion rules choose values
for Sc and Bc that conveniently cancel out difficult terms in the solutions.
See “Addition (+) and Subtraction (-)” on page 19-32 and “Multiplication
(*) and Division (/)” on page 19-32.

You can use a special assignment operator (:=) and context-sensitive
constants to maintain as much precision as possible in your fixed-point
operations. See “Assignment (=, :=) Operations” on page 19-34 and
“Fixed-Point Context-Sensitive Constants” on page 19-9.

• Any remaining numbers, such as the fractional slope, F, that cannot be
expressed as a pure integer or a power of 2, are converted into fixed-point
numbers.

These remaining numbers can be computationally expensive in
multiplication and division operations. Therefore, using binary-point-only
scaling in which F = 1 and B = 0 is recommended.

• Simulation can detect when the result of a fixed-point operation overflows
the capacity of its fixed-point type. See “Detect Overflow for Fixed-Point
Types” on page 19-11.

Specify Fixed-Point Data
You can specify fixed-point data in a chart as follows:

1 Add data to your chart, as described in “Add Data Using the Stateflow
Editor” on page 8-3.

Doing so adds a default definition of the new data object to the Stateflow
hierarchy, and the Data properties dialog box appears.

19-7

19 Fixed-Point Data in Stateflow® Charts

2 Click the Show data type assistant button to display the Data
Type Assistant.

3 In theMode field of the Data Type Assistant, select Fixed point.

4 Specify the fixed-point data properties as described in “Fixed-Point Data
Properties” on page 8-14.

5 Specify the name, size, and other properties for the new data object as
described in “Set Data Properties” on page 8-5.

Note You can also specify a fixed-point constant indirectly in action
statements by using a fixed-point context-sensitive constant. See “Fixed-Point
Context-Sensitive Constants” on page 19-9.

Rules for Specifying Fixed-Point Word Length

• For chart-level data of the following scopes, word length can be any integer
between 0 and 128.

- Input

- Output

- Parameter

- Data Store Memory

• For other Stateflow data, word length can be any integer between 0 and 32.

• You can explicitly pass chart-level data with word lengths up to 128 bits
as inputs and outputs of the following functions:

- MATLAB functions

- Simulink functions

- Truth table functions that use MATLAB action language

19-8

How Fixed-Point Data Works in Stateflow® Charts

Fixed-Point Context-Sensitive Constants
You can use fixed-point constants without using the Data properties dialog
box or Model Explorer, by using context-sensitive constants. These constants
infer their types from the context in which they occur. They are written like
ordinary constants, but have the suffix C or c. For example, the numbers
4.3C and 123.4c are valid fixed-point context-sensitive constants you can use
in action statements.

These rules apply to context-sensitive constants:

• If any type in the context is a double, then the context-sensitive constant is
cast to type double.

• In an addition or subtraction operation, the type of the context-sensitive
constant is the type of the other operand.

• In a multiplication or division operation with a fixed-point number, they
obtain the best possible precision for a fixed-point result.

The Fixed-Point Designer function fixptbestexp provides this
functionality.

• In a cast, the context is the type to which the constant is being cast.

• As an argument in a function call, the context is the type of the formal
argument. In an assignment, the context is the type of the left-hand
operand.

• You cannot use context-sensitive constants on the left-hand side of an
assignment.

• You cannot use context-sensitive constants as both operands of a binary
operation.

While you can use fixed-point context-sensitive constants in context with
any types (for example, int32 or double), their main use is with fixed-point
numbers. The algorithm that computes the type to assign to a fixed-point
context-sensitive constant depends on these factors:

• The operator

• The data types in the context

• The value of the constant

19-9

19 Fixed-Point Data in Stateflow® Charts

The algorithm computes a type that provides maximum accuracy without
overflow.

Tips for Using Fixed-Point Data
When you use fixed-point numbers, follow these guidelines:

1 Develop and test your application using double- or single-precision
floating-point numbers.

Using double- or single-precision floating-point numbers does not limit
the range or precision of your computations. You need this while you are
building your application.

2 Once your application works well, start substituting fixed-point data for
double-precision data during the simulation phase, as follows:

a Set the integer word size for the simulation environment to the integer
size of the intended target environment.

Stateflow generated code uses this integer size to select result types for
your fixed-point operations. See “Set the Integer Word Size for a Target”
on page 19-30.

b Add the suffix C to literal numeric constants.

This suffix casts a literal numeric constant in the type of its context.
For example, if x is fixed-point data, the expression y = x/3.2C first
converts the numerical constant 3.2 to the fixed-point type of x and
then performs the division with a fixed-point result. See “Fixed-Point
Context-Sensitive Constants” on page 19-9 for more information.

Note If you do not use context-sensitive constants with fixed-point
types, noninteger numeric constants (for example, constants that have a
decimal point) can force fixed-point operations to produce floating-point
results.

3 When you simulate, use overflow detection.

19-10

How Fixed-Point Data Works in Stateflow® Charts

See “Detect Overflow for Fixed-Point Types” on page 19-11 for instructions
on how to set overflow detection in simulation.

4 If you encounter overflow errors in fixed-point data, you can do one of the
following to add range to your data.

• Increase the number of bits in the overflowing fixed-point data.

For example, change the base type for Q from int16 to int32.

• Increase the range of your fixed-point data by increasing the power of
2 value, E.

For example, you can increase E from –2 to –1. This action decreases
the available precision in your fixed-point data.

5 If you encounter problems with model behavior stemming from inadequate
precision in your fixed-point data, you can do one of the following to add
precision to your data:

• Increase the precision of your fixed-point data by decreasing the value
of the power of 2 binary point E.

For example, you can decrease E from –2 to –3. This action decreases
the available range in your fixed-point data.

• If you decrease the value of E, you can prevent overflow by increasing
the number of bits in the base data type for Q.

For example, you can change the base type for Q from int16 to int32.

6 If you cannot avoid overflow for lack of precision, try using the :=
assignment operator in place of the = operator for assigning the results of
multiplication and division operations.

You can use the := operator to increase the range and precision of the
result of fixed-point multiplication and division operations at the expense
of computational efficiency. See “Assignment Operator :=” on page 19-35.

Detect Overflow for Fixed-Point Types
Overflow occurs when the magnitude of a result assigned to a data exceeds
the numeric capacity of that data. You can detect overflow of integer and
fixed-point operations during simulation with these steps:

19-11

19 Fixed-Point Data in Stateflow® Charts

1 In the Stateflow Editor, select Simulation > Model Configuration
Parameters.

2 Go to the Simulation Target pane.

3 Select Enable debugging/animation and Enable overflow detection
(with debugging).

For descriptions of these check boxes, see “Speed Up Simulation” on page
27-16.

4 Click Execute to build the simulation target.

5 Open the Stateflow debugger (see “Open the Stateflow Debugger” on page
28-5.

6 In the debugger, select Data Range.

See “Error Checking in the Debugger” on page 28-34 for a description of
this option.

7 In the debugger, click Start to begin simulating the model.

Simulation stops when an overflow occurs.

Share Fixed-Point Data with Simulink Models
To share fixed-point data with Simulink models, use one of these methods:

• Define identically in both Stateflow charts and Simulink models the data
that you input from or output to Simulink blocks.

The values that you enter for the Stored Integer and Scaling fields in
the shared data’s properties dialog box in a Stateflow chart (see “Specify
Fixed-Point Data” on page 19-7) must match similar fields that you enter
for fixed-point data in a Simulink model. See “Use Fixed-Point Chart
Inputs” on page 19-14 for an example of this method of sharing input data
from a Simulink model using a Gateway In block.

For some Simulink blocks, you can specify the type of input or output data
directly. For example, you can set fixed-point output data directly in the
block dialog box of the Constant block by using the Output data type
parameter.

19-12

How Fixed-Point Data Works in Stateflow® Charts

• Define the data as Input or Output in the Data properties dialog box
in the Stateflow chart and instruct the sending or receiving block in the
Simulink model to inherit its type from the chart data.

Many blocks allow you to set their data types and scaling through
inheritance from the driving block, or through back propagation from the
next block. You can set the data type of a Simulink block to match the data
type of the Stateflow port to which it connects.

For example, you can set the Constant block to inherit its type from
the Stateflow Input to Simulink port that it supplies. To do so, select
Inherit via back propagation for the Output data type parameter in
the block dialog box.

19-13

19 Fixed-Point Data in Stateflow® Charts

Use Fixed-Point Chart Inputs

In this section...

“Run the Fixed-Point "Bang-Bang Control" Model” on page 19-14

“Explore the Fixed-Point "Bang-Bang Control" Model” on page 19-15

Run the Fixed-Point "Bang-Bang Control" Model
Stateflow software includes example models with applications of fixed-point
data. For this example, load the model by typing sf_boiler at the MATLAB
command prompt.

19-14

Use Fixed-Point Chart Inputs

When you simulate the model, you get these results:

Explore the Fixed-Point "Bang-Bang Control" Model
To explore the model, follow these steps:

1 Double-click the Boiler Plant model subsystem block.

The subsystem appears.

19-15

19 Fixed-Point Data in Stateflow® Charts

The Boiler Plant model subsystem simulates the temperature reaction of
the boiler to periods of heating or cooling dictated by the Stateflow block.
Depending on the Boolean value coming from the Controller, a temperature
increment (+1 for heating, –0.1 for cooling) is added to the previous boiler
temperature. The resulting boiler temperature is sent to the digital
thermometer subsystem block.

2 In the Boiler Plant model subsystem, double-click the digital thermometer
subsystem block.

The subsystem appears.

The digital thermometer subsystem produces an 8-bit fixed-point
representation of the input temperature with the blocks described in the
sections that follow.

sensor Block
The sensor block converts input boiler temperature (T) to an intermediate
analog voltage output V with a first-order polynomial that gives this output:

V = 0.05 × T + 0.75

19-16

Use Fixed-Point Chart Inputs

ADC Block
Double-click the ADC block to reveal these contents:

The ADC subsystem digitizes the analog voltage from the sensor block by
multiplying the analog voltage by 256/5, rounding it to its integer floor, and
limiting it to a maximum of 255 (the largest unsigned 8-bit integer value).
Using the value for the output V from the sensor block, the new digital coded
temperature output by the ADC block, Tdigital, is given by this equation:

Tdigital = (256/5) × V = (256 × 0.05/5) × T + (256/5) × 0.75

Linear fixed point conversion Block
The Linear fixed point conversion block informs the rest of the model that
Tdigital is a fixed-point number with a slope value of 5/256/0.05 and an intercept
value of –0.75/0.05. The Stateflow block Bang-Bang Controller receives this
output and interprets it as a fixed-point number through the Stateflow data
temp, which is scoped as Input from Simulink and set as an unsigned 8-bit
fixed-point data with the same values for S and B set in the Linear fixed
point conversion block.

The values for S and B are determined from the general expression for a
fixed-point number:

V = SQ + B

Therefore,

Q = (V – B)/S = (1/S) × V + (–1/S) × B

Since Tdigital is now a fixed-point number, it is now the quantized integer Q of
a fixed-point type. This means that Tdigital = Q of its fixed-point type, which
gives this relation:

19-17

19 Fixed-Point Data in Stateflow® Charts

(1/S) × V + (–1/S) × B = (256 × 0.05/5) × T + (256/5) × 0.75

Since T is the real-world value for the environment temperature, the above
equation implies these relations:

V = T

and

1/S = (256 × 0.05)/5

S = 5/(256 × 0.05) = 0.390625

and

(–1/S) × B = (256/5) × 0.75

B = –(256/5) × 0.75 × 5/(256 × 0.05) = –0.75/0.05 = 15

By setting Tdigital to be a fixed-point data as the output of the Linear fixed point
conversion block and the input of the Stateflow block Bang-Bang Controller,
the Stateflow chart interprets and processes this data automatically in an
8-bit environment with no need for any explicit conversions.

19-18

Use Fixed-Point Parameters and Local Data

Use Fixed-Point Parameters and Local Data

In this section...

“Goal of the Tutorial” on page 19-19

“Build the Fixed-Point Butterworth Filter” on page 19-19

“Define the Model Callback Function” on page 19-20

“Add Other Blocks to the Model” on page 19-21

“Set Model Configuration Parameters” on page 19-23

“Run the Model” on page 19-25

Goal of the Tutorial
In the sections that follow, you build a model that uses fixed-point parameters
and local data in a Stateflow chart. In this model, the chart acts as a low-pass
Butterworth filter:

Building this model requires a Signal Processing Toolbox™ license.

Build the Fixed-Point Butterworth Filter
In this section, you create a stateless flow chart that accepts one input and
provides one output.

1 At the MATLAB prompt, type sfnew to create a new model with an empty
chart.

19-19

19 Fixed-Point Data in Stateflow® Charts

2 In your chart, add a flow chart with a single branch:

The values b0, b1, and a1 are the coefficients of the low-pass Butterworth
filter. For more information about the filter coefficients, see “Define the
Model Callback Function” on page 19-20.

3 Add the following data to your chart:

Data Name Scope Type

x Input Inherit:Same as
Simulink

y Output fixdt(1,16,10)

x_n1 Local fixdt(1,16,12)

y_n1 Local fixdt(1,16,10)

b0 Parameter fixdt(1,16,15)

b1 Parameter fixdt(1,16,15)

a1 Parameter fixdt(1,16,15)

4 Save your model.

Define the Model Callback Function
In this section, you define a preload callback for the model. This callback
function computes the values for b0, b1, and a1 in the chart.

1 Open the Model Properties dialog box by selecting File > Model
Properties > Model Properties in the model window.

2 In the Callbacks tab, select PreLoadFcn.

19-20

Use Fixed-Point Parameters and Local Data

3 Enter the following MATLAB code for the preload function:

Fs = 1000;
Fc = 50;
[B,A] = butter(1,2*pi*Fc/(Fs/2));
b0 = B(1);
b1 = B(2);
a1 = A(2);

In the code:

• The sampling frequency Fs is 1000 Hz.

• The cutoff frequency Fc is 50 Hz.

• The butter function constructs a first-order low-pass Butterworth filter
with a normalized cutoff frequency of (2*pi*Fc/(Fs/2)) radians per
second. The function output B contains the numerator coefficients of
the filter in descending powers of z. The function output A contains the
denominator coefficients of the filter in descending powers of z.

4 Click OK to close the dialog box.

5 Save your model.

Add Other Blocks to the Model
In this section, you add the remaining blocks to the model.

1 Open the Simulink Library Browser.

2 From the Simulink/Sources library, add a Sine Wave block with the
following parameter settings to the model:

Parameter Setting

Sine type Time based

Time Use simulation time

Amplitude 1

Bias 0

Frequency 2*pi*Fc

19-21

19 Fixed-Point Data in Stateflow® Charts

Parameter Setting

Phase 0

Sample time 1/Fs

Interpret vector parameters as
1-D

On

The Sine Wave block provides the signal that you want to filter using the
Stateflow chart. This block outputs a floating-point signal.

3 From the Simulink/Signal Attributes library, add a Data Type Conversion
block with the following parameter settings to the model:

Parameter Setting

Output minimum []

Output maximum []

Output data type fixdt(1,16,14)

Lock output data type
setting against changes by
the fixed-point tools

Off

Input and output to have equal Real World Value (RWV)

Integer rounding mode Floor

Saturate on integer overflow Off

Sample time -1

The Data Type Conversion block converts the floating-point signal from
the Sine Wave block to a fixed-point signal. By converting the signal to a
fixed-point type, the model can simulate using less memory.

4 From the Simulink/Sinks library, add a Scope block to the model.

19-22

Use Fixed-Point Parameters and Local Data

5 Connect and label the blocks as follows:

6 Close the Library Browser and save your model.

Set Model Configuration Parameters
In this section, you specify solver and diagnostic options for simulation.

1 In the Stateflow Editor, select Simulation > Model Configuration
Parameters.

2 In the Solver pane, set the following parameters:

Parameter Setting

Stop time 0.1

Type Fixed-step

Solver discrete (no continuous
states)

Fixed-step size (fundamental
sample time)

1/Fs

Because none of the blocks in your model have a continuous sample time, a
discrete solver is appropriate. For more information, see “Solver Pane” in
the Simulink Graphical User Interface documentation.

19-23

19 Fixed-Point Data in Stateflow® Charts

3 In the Diagnostics > Data Validity pane, set the following parameters:

Parameter Setting

Signals > Signal resolution Explicit and warn implicit

Parameters > Detect precision
loss

none

By setting the diagnostic settings for data validity, you control what types
of warnings or errors appear during simulation. For more information,
see “Diagnostics Pane: Data Validity” in the Simulink Graphical User
Interface documentation.

4 Click OK to close the dialog box.

5 Save and close your model.

19-24

Use Fixed-Point Parameters and Local Data

Run the Model
When you reopen and simulate the model, you see these results in the scope:

The top signal shows the fixed-point version of the sine wave input to
the chart. The bottom signal corresponds to the filtered output from the
chart. The filter removes high-frequency values from the signal but allows
low-frequency values to pass through the chart unchanged.

19-25

19 Fixed-Point Data in Stateflow® Charts

Operations with Fixed-Point Data

In this section...

“Supported Operations with Fixed-Point Operands” on page 19-26

“Promotion Rules for Fixed-Point Operations” on page 19-28

“Assignment (=, :=) Operations” on page 19-34

“Fixed-Point Conversion Operations” on page 19-41

“Automatic Scaling of Stateflow Fixed-Point Data” on page 19-43

Supported Operations with Fixed-Point Operands

Binary Operations
These binary operations work with fixed-point operands in the following order
of precedence (0 = highest, 8 = lowest). For operations with equal precedence,
they evaluate in order from left to right:

Example Precedence Description

a %% b 0 Remainder

a * b 1 Multiplication

a / b 1 Division

a + b 2 Addition

a - b 2 Subtraction

a > b 3 Comparison, greater than

a < b 3 Comparison, less than

a >= b 3 Comparison, greater than or equal to

a <= b 3 Comparison, less than or equal to

a == b 4 Comparison, equality

a ~= b 4 Comparison, inequality

a != b 4 Comparison, inequality

19-26

Operations with Fixed-Point Data

Example Precedence Description

a <> b 4 Comparison, inequality

a & b 5 One of the following:

• Bitwise AND

Enabled when Enable C-bit operations is
selected in the Chart properties dialog box.
See “Specify Chart Properties” on page 21-5.
Operands are cast to integers before the
operation is performed.

• Logical AND

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog box.

a | b 6 One of the following:

• Bitwise OR

Enabled when Enable C-bit operations is
selected in the Chart properties dialog box.
See “Specify Chart Properties” on page 21-5.
Operands are cast to integers before the
operation is performed.

• Logical OR

Enabled when Enable C-bit operations is
cleared in the Chart properties dialog box.

a && b 7 Logical AND

a || b 8 Logical OR

Unary Operations and Actions
These unary operations and actions work with fixed-point operands:

19-27

19 Fixed-Point Data in Stateflow® Charts

Example Description

~a Unary minus

!a Logical NOT

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with fixed-point operands:

Example Description

a = expression Simple assignment

a := expression See “Assignment Operator :=” on page 19-35.

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

a /= expression Equivalent to a = a / expression

a |= expression Equivalent to a = a | expression (bit
operation). See operation a | b in “Binary
Operations” on page 19-26.

a &= expression Equivalent to a = a & expression (bit
operation). See operation a & b in “Binary
Operations” on page 19-26.

Promotion Rules for Fixed-Point Operations
Operations with at least one fixed-point operand require rules for selecting
the type of the intermediate result for that operation. For example, in
the action statement c = a + b, where a or b is a fixed-point number, an
intermediate result type for a + b must first be chosen before the result is
calculated and assigned to c.

19-28

Operations with Fixed-Point Data

The rules for selecting the numeric types used to hold the results of operations
with a fixed-point number are called fixed-point promotion rules. The goal of
these rules is to maintain computational efficiency and usability.

Note You can use the := assignment operator to override the fixed-point
promotion rules and obtain greater accuracy. However, in this case, greater
accuracy can require more computational steps. See “Assignment Operator
:=” on page 19-35.

The following topics describe the process of selecting an intermediate result
type for binary operations with at least one fixed-point operand.

Default Selection of the Number of Bits of the Result Type
A fixed-point number with S = 1 and B = 0 is treated as an integer. In
operations with integers, the C language promotes any integer input with
fewer bits than the type int to the type int and then performs the operation.

The type int is the integer word size for C on a given platform. Result word
size is increased to the integer word size because processors can perform
operations at this size efficiently.

To maintain consistency with the C language, this default rule applies
to assigning the number of bits for the result type of an operation with
fixed-point numbers:

When both operands are fixed-point numbers, the number of bits in the result
type is the maximum number of bits in the input types or the number of bits
in the integer word size for the target machine, whichever is larger.

Note The preceding rule is a default rule for selecting the bit size of the
result for operations with fixed-point numbers. This rule is overruled for
specific operations as described in the sections that follow.

19-29

19 Fixed-Point Data in Stateflow® Charts

Set the Integer Word Size for a Target
The preceding default rule for selecting the bit size of the result for operations
with fixed-point numbers relies on the definition of the integer word size for
your target. You can set the integer word size for the targets that you build in
Simulink models with these steps:

1 In the Stateflow Editor, select Simulation > Model Configuration
Parameters.

2 Select Hardware Implementation in the left navigation panel.

The right panel displays configuration parameters for production hardware
and test hardware.

3 To set integer word size for production hardware, follow these steps:

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

4 To set integer word size for test hardware, follow these steps:

• If no configuration fields appear, clear the None check box.

• In the drop-down menu for the Device type field, select Custom.

• In the int field, enter a word size in bits.

5 Click OK to accept the changes.

When you build any target after making this change, the generated code uses
this integer size to select result types for your fixed-point operations.

Note Set all available integer sizes because they affect code generation. The
integer sizes do not affect the implementation of the fixed-point promotion
rules in generated code.

Unary Promotions
Only the unary minus (-) operation requires a promotion of its result type.
The word size of the result is given by the default procedure for selecting the

19-30

Operations with Fixed-Point Data

bit size of the result type for an operation involving fixed-point data. See
“Default Selection of the Number of Bits of the Result Type” on page 19-29.
The bias, B, of the result type is the negative of the bias of the operand.

Binary Operation Promotion for Integer Operand with
Fixed-Point Operand
Integers as operands in binary operations with fixed-point numbers are
treated as fixed-point numbers of the same word size with slope, S, equal to
1, and a bias, B, equal to 0. The operation now becomes a binary operation
between two fixed-point operands. See “Binary Operation Promotion for Two
Fixed-Point Operands” on page 19-31.

Binary Operation Promotion for Double Operand with
Fixed-Point Operand
When one operand is of type double in a binary operation with a fixed-point
type, the result type is double. In this case, the fixed-point operand is cast to
type double, and the operation is performed.

Binary Operation Promotion for Single Operand with
Fixed-Point Operand
When one operand is of type single in a binary operation with a fixed-point
type, the result type is single. In this case, the fixed-point operand is cast to
type single, and the operation is performed.

Binary Operation Promotion for Two Fixed-Point Operands
Operations with both operands of fixed-point type produce an intermediate
result of fixed-point type. The resulting fixed-point type is chosen through
the application of a set of operator-specific rules. The procedure for producing
an intermediate result type from an operation with operands of different
fixed-point types is summarized in these topics:

• “Addition (+) and Subtraction (-)” on page 19-32

• “Multiplication (*) and Division (/)” on page 19-32

• “Relational Operations (>, <, >=, <=, ==, -=, !=, <>)” on page 19-32

• “Logical Operations (&, |, &&, ||)” on page 19-33

19-31

19 Fixed-Point Data in Stateflow® Charts

Addition (+) and Subtraction (-). The output type for addition and
subtraction is chosen so that the maximum positive range of either input can
be represented in the output while preserving maximum precision. The base
word type of the output follows the rule in “Default Selection of the Number
of Bits of the Result Type” on page 19-29. To simplify calculations and yield
efficient code, the biases of the two inputs are added for an addition operation
and subtracted for a subtraction operation.

Note Mixing signed and unsigned operands can yield unexpected results and
is not recommended.

Multiplication (*) and Division (/). The output type for multiplication
and division is chosen to yield the most efficient code implementation. You
cannot use nonzero biases for multiplication and division in Stateflow charts
(see note).

The slope for the result type of the product of the multiplication of two
fixed-point numbers is the product of the slopes of the operands. Similarly,
the slope of the result type of the quotient of the division of two fixed-point
numbers is the quotient of the slopes. The base word type is chosen to conform
to the rule in “Default Selection of the Number of Bits of the Result Type” on
page 19-29.

Note Because nonzero biases are computationally very expensive, those
biases are not supported for multiplication and division.

Relational Operations (>, <, >=, <=, ==, -=, !=, <>). You can use the
following relational (comparison) operations on all fixed-point types: >, <, >=,
<=, ==, -=, !=, <>. See “Supported Operations with Fixed-Point Operands” on
page 19-26 for an example and description of these operations. Both operands
in a comparison must have equal biases (see note).

Comparing fixed-point values of different types can yield unexpected results
because each operand must convert to a common type for comparison. Because
of rounding or overflow errors during the conversion, values that do not appear
equal might be equal and values that appear to be equal might not be equal.

19-32

Operations with Fixed-Point Data

Note To preserve precision and minimize unexpected results, both operands
in a comparison operation must have equal biases.

For example, compare these two unsigned 8-bit fixed-point numbers, a and b,
in an 8-bit target environment:

Fixed-Point Number a Fixed-Point Number b

Sa = 2
–4 Sb = 2

–2

Ba = 0 Bb = 0

Va = 43.8125 Vb = 43.75

Qa = 701 Qb = 175

By rule, the result type for comparison is 8-bit. Converting b, the least precise
operand, to the type of a, the most precise operand, could result in overflow.
Consequently, a is converted to the type of b. Because the bias values for both
operands are 0, the conversion occurs as follows:

Sb (newQa) = SaQa

newQa = (SaSb) Qa = (2
–4/2–2) 701 = 701/4 = 175

Although they represent different values, a and b are considered equal as
fixed-point numbers.

Logical Operations (&, |, &&, ||). If a is a fixed-point number used in
a logical operation, it is interpreted with the equivalent substitution a !=
0.0C where 0.0C is an expression for zero in the fixed-point type of a (see
“Fixed-Point Context-Sensitive Constants” on page 19-9). For example, if
a is a fixed-point number in the logical operation a && b, this operation is
equivalent to the following:

(a != 0.0C) && b

The preceding operation is not a check to see whether the quantized integer
for a, Qa, is not 0. If the real-world value for a fixed-point number a is 0,

19-33

19 Fixed-Point Data in Stateflow® Charts

this implies that Va = SaQa + Ba = 0.0. Therefore, the expression a != 0, for
fixed-point number a, is equivalent to this expression:

Qa ! = –Ba / Sa

For example, if a fixed-point number, a, has a slope of 2–2, and a bias of 5, the
test a != 0 is equivalent to the test if Qa ! = –20.

Assignment (=, :=) Operations
You can use the assignment operations LHS = RHS and LHS := RHS between a
left-hand side (LHS) and a right-hand side (RHS). See these topics for examples
that contrast the two assignment operations:

• “Assignment Operator =” on page 19-34

• “Assignment Operator :=” on page 19-35

• “When to Use the := Operator Instead of the = Operator” on page 19-35

• “Avoid Overflow Using the := Operator for Addition and Subtraction” on
page 19-35

• “Avoid Overflow Using the := Operator for Multiplication” on page 19-38

• “Improve Precision Using the := Operator for Division” on page 19-39

• “:= Assignment and Context-Sensitive Constants” on page 19-41

Assignment Operator =
An assignment statement of the type LHS = RHS is equivalent to casting the
right-hand side to the type of the left-hand side. You can use any assignment
between fixed-point types and therefore, implicitly, any cast.

A cast converts the stored integer Q from its original fixed-point type while
preserving its value as accurately as possible using the online conversions
(see “Fixed-Point Conversion Operations” on page 19-41). Assignments are
most efficient when both types have the same bias, and slopes that are equal
or both powers of 2.

19-34

Operations with Fixed-Point Data

Assignment Operator :=
Ordinarily, the fixed-point promotion rules determine the result type for an
operation. Using the := assignment operator overrides this behavior by using
the type of the LHS as the result type of the RHS operation.

These rules apply to the := assignment operator:

• The RHS can contain at most one binary operator.

• If the RHS contains anything other than an addition (+), subtraction (-),
multiplication (*), or division (/) operation, or a constant, then the :=
assignment behaves like regular assignment (=).

• Constants on the RHS of an LHS := RHS assignment are converted to
the type of the left-hand side using offline conversion (see “Fixed-Point
Conversion Operations” on page 19-41). Ordinary assignment always casts
the RHS using online conversions.

When to Use the := Operator Instead of the = Operator
Use the := assignment operator instead of the = assignment operator in
these cases:

• Arithmetic operations where you want to avoid overflow

• Multiplication and division operations where you want to retain precision

Caution Using the := assignment operator to produce a more accurate result
can generate code that is less efficient than the code you generate using the
normal fixed-point promotion rules.

Avoid Overflow Using the := Operator for Addition and
Subtraction
This model contains a Stateflow chart with two inputs and eight outputs.

19-35

19 Fixed-Point Data in Stateflow® Charts

The chart contains a graphical function that compares the use of the = and :=
assignment operators.

If you generate code for this model, you see code similar to this.

19-36

Operations with Fixed-Point Data

/* Exported block signals */
int16_T x1; /* '<Root>/Input' */
int16_T x2; /* '<Root>/Input1' */
int32_T y1; /* '<Root>/Chart' */
int32_T y2; /* '<Root>/Chart' */
int32_T z1; /* '<Root>/Chart' */
int32_T z2; /* '<Root>/Chart' */
int16_T y3; /* '<Root>/Chart' */
int16_T y4; /* '<Root>/Chart' */
int16_T z3; /* '<Root>/Chart' */
int16_T z4; /* '<Root>/Chart' */

...

/* Model step function */
void doc_sf_colon_equal_step(void)
{

/* Case "=" - general */
y1 = x1 + x2;
y2 = x1 - x2;
y3 = x1 * x2 >> 3;
y4 = div_s16_floor(x1, x2) << 3U;

/* Case ":=" - better computation of the expression */
z1 = (int32_T)x1 + (int32_T)x2;
z2 = (int32_T)x1 - (int32_T)x2;
z3 = (int16_T)((int32_T)x1 * (int32_T)x2 >> 3);
z4 = (int16_T)(((int32_T)x1 << 3) / (int32_T)x2);

}

The inputs x1 and x2 are signed 16-bit integers with 3 fraction bits. For
addition and subtraction, the outputs are signed 32-bit integers with 3
fraction bits.

Assume that the integer word size for production targets is 16 bits. To learn
how to change the integer word size for a target, see “Set the Integer Word
Size for a Target” on page 19-30.

19-37

19 Fixed-Point Data in Stateflow® Charts

Because the target int size is 16 bits, you can avoid overflow by using the
:= operator instead of the = operator. For example, assume that the inputs
have these values:

• x1 = 215 – 1

• x2 = 1

Operator Addition
Operation

Result Overflow

= Adds the inputs
in 16 bits before
casting the sum
to 32 bits

y1 = –215 Yes

:= Casts the inputs
to 32 bits before
computing the
sum

z1 = +215 No

Similarly, you can avoid overflow for subtraction if you use the := operator
instead of the = operator.

Avoid Overflow Using the := Operator for Multiplication
The following example contrasts the := and = assignment operators for
multiplication. You can use the := operator to avoid overflow in the
multiplication c = a * b, where a and b are two fixed-point operands. The
operands and result for this operation are 16-bit unsigned integers with these
assignments:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2
–4 Sb = 2

–4 Sc = 2
–5

Ba = 0 Bb = 0 Bc = 0

Va = 20.1875 Vb = 15.3125 Vc = ?

Qa = 323 Qb = 245 Qc = ?

19-38

Operations with Fixed-Point Data

where S is the slope, B is the bias, V is the real-world value, and Q is the
quantized integer.

c = a*b. In this case, first calculate an intermediate result for a*b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 19-3. Then cast that result to the type for c.

The calculation of intermediate value occurs as follows:

Q Q Qiv a b= = =323 245 79135×

Because the maximum value of a 16-bit unsigned integer is 216 – 1 = 65535,
the preceding result overflows its word size. An operation that overflows its
type produces an undefined result.

You can capture overflow errors like the preceding example during simulation
with the Debugger window. See “Detect Overflow for Fixed-Point Types” on
page 19-11.

c := a*b. In this case, calculate a*b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 19-3 with the requirement of
zero bias, which occurs as follows:

Q S S S Q Qc a b c a b= = = =− − −((/)) (/)() /2 2 2 323 245 79135 8 98924 4 5× ×

No overflow occurs in this case, and the approximate real-world value is as
follows:

V S Qc c c
∼

×= = = =−2 9892 9892 32 309 1255 / .

This value is very close to the actual result of 309.121.

Improve Precision Using the := Operator for Division
The following example contrasts the := and = assignment operators for
division. You can use the := operator to obtain a more precise result for the
division of two fixed-point operands, a and b, in the statement c := a/b.

19-39

19 Fixed-Point Data in Stateflow® Charts

This example uses the following fixed-point numbers, where S is the slope, B
is the bias, V is the real-world value, and Q is the quantized integer:

Fixed-Point Number
a

Fixed-Point Number
b

Fixed-Point Number
c

Sa = 2
–4 Sb = 2

–3 Sc = 2
–6

Ba = 0 Bb = 0 Bc = 0

Va = 2 Vb = 3 Vc = ?

Qa = 32 Qb = 24 Qc = ?

c = a/b. In this case, first calculate an intermediate result for a/b in the
fixed-point type given by the rules in the section “Fixed-Point Operations” on
page 19-3. Then cast that result to the type for c.

The calculation of intermediate value occurs as follows:

Q Q Qiv a b= = =/ /32 24 1

The intermediate value is then cast to the result type for c as follows:

ScQc = SivQiv

Qc = (Siv / Sc) Qiv

The calculation for slope of the intermediate value for a division operation
occurs as follows:

S S Siv a b= = =− − −/ /2 2 24 3 1

Substitution of this value into the preceding result yields the final result.

Qc = = =− −2 2 2 321 6 5/

In this case, the approximate real-world value is V c
∼

= =32 64 0 5/ . , which is
not a very good approximation of the actual result of 2/3.

19-40

Operations with Fixed-Point Data

c := a/b. In this case, calculate a/b directly in the type of c. Use the solution
for Qc given in “Fixed-Point Operations” on page 19-3 with the simplification
of zero bias, which is as follows:

Q S Q S S Q S S S Q Qc a a c b b a b c a b= = = − − −() /(()) (/()) (/) (/()) (× × ×2 2 24 3 6 332 24 42/) =

In this case, the approximate real-world value is as follows:

V c
∼

= =42 64 0 6563/ .

This value is a much better approximation to the precise result of 2/3.

:= Assignment and Context-Sensitive Constants
In a := assignment operation, the type of the left-hand side (LHS) determines
part of the context used for inferring the type of a right-hand side (RHS)
context-sensitive constant.

These rules apply to RHS context-sensitive constants in assignments with
the := operator:

• If the LHS is a floating-point data (type double or single) , the RHS
context-sensitive constant becomes a floating-point constant.

• For addition and subtraction, the type of the LHS determines the type of the
context-sensitive constant on the RHS.

• For multiplication and division, the type of the context-sensitive constant
is chosen independently of the LHS.

Fixed-Point Conversion Operations
Real numbers are converted into fixed-point data during data initialization
and as part of casting operations in the application. These conversions
compute a quantized integer, Q, from a real number input. Offline conversions
initialize data, and online conversions perform casting operations in the
running application. The topics that follow describe each conversion type and
give examples of the results.

19-41

19 Fixed-Point Data in Stateflow® Charts

Offline Conversions for Initialized Data
Offline conversions are performed during code generation and are designed to
maximize accuracy. These conversions round the resulting quantized integer
to its nearest integer value. If the conversion overflows, the result saturates
the value for Q.

Offline conversions are performed for these operations:

• Initialization of data (both variables and constants) in the Stateflow
hierarchy

• Initialization of constants or variables from the MATLAB workspace

Online Conversions for Casting Operations
Online conversions are performed for casting operations that take place
during execution of the application. Designed to maximize computational
efficiency, they are faster and more efficient than offline conversions, but less
precise. Instead of rounding Q to its nearest integer, online conversions round
to the floor (with the exception of division, which can round to 0, depending
on the C compiler you have). If the conversion overflows the type to which
you convert, the result is undefined.

Offline and Online Conversion Examples
The following examples show the difference in the results of offline and online
conversions of real numbers to a fixed-point type defined by a 16-bit word size,
a slope (S) equal to 2–4, and a bias (B) equal to 0:

Offline Conversion
Online
Conversion

V V/S Q V
∼

Q V
∼

3.45 55.2 55 3.4375 55 3.4375

1.0375 16.6 17 1.0625 16 1

2.06 32.96 33 2.0625 32 2

In the preceding example,

19-42

Operations with Fixed-Point Data

• V is the real-world value represented as a fixed-point value.

• V/S is the floating-point computation for the quantized integer Q.

• Q is the rounded value of V/S.

• V
∼
is the approximate real-world value resulting from Q for each conversion.

Automatic Scaling of Stateflow Fixed-Point Data
Automatic scaling tools can change the settings of Stateflow fixed-point
data. You can prevent automatic scaling by selecting the Lock data type
setting against changes by the fixed-point tools check box in the Data
properties dialog box for fixed-point data (see “Set Data Properties” on page
8-5 for details). Selecting this check box prevents replacement of the current
fixed-point type with a type that the “Fixed-Point Tool” or “Fixed-Point
Advisor” chooses. For methods on autoscaling fixed-point data, see “About
Automatic Data Typing” in the Fixed-Point Designer documentation.

19-43

19 Fixed-Point Data in Stateflow® Charts

19-44

20

Complex Data in C Charts

• “How Complex Data Works in C Charts” on page 20-2

• “Define Complex Data Using the Editor” on page 20-4

• “Complex Data Operations for Charts That Support C Expressions” on
page 20-7

• “Define Complex Data Using Operators” on page 20-9

• “Rules for Using Complex Data in C Charts” on page 20-12

• “Best Practices for Using Complex Data in C Charts” on page 20-15

• “Detect Valid Transmission Data Using Frame Synchronization” on page
20-19

• “Measure Frequency Response Using a Spectrum Analyzer” on page 20-23

20 Complex Data in C Charts

How Complex Data Works in C Charts

In this section...

“What Is Complex Data?” on page 20-2

“When to Use Complex Data” on page 20-2

“Where You Can Use Complex Data” on page 20-2

“How You Can Use Complex Data” on page 20-3

What Is Complex Data?
Complex data is data whose value is a complex number. For example, an
input signal with the value 3 + 5i is complex. See “Complex Signals” in the
Simulink documentation for details.

When to Use Complex Data
Use complex data when you model applications in communication systems
and digital signal processing. For example, you can use this design pattern to
model a frame synchronization algorithm in a communication system:

1 Use Simulink blocks (such as filters) to process complex signals.

2 Use charts to implement mode logic for frame synchronization.

3 Let the charts access complex input and output data so that nested
MATLAB functions can drive the mode logic.

For an example of modeling a frame synchronization algorithm, see “Detect
Valid Transmission Data Using Frame Synchronization” on page 20-19.

Note Continuous-time variables of complex type are not supported. For more
information, see “Define Continuous-Time Variables” on page 18-10.

Where You Can Use Complex Data
You can define complex data at these levels of the Stateflow hierarchy:

20-2

How Complex Data Works in C Charts

• Charts

• Subcharts

• States

• Functions

How You Can Use Complex Data
You can use complex data to define:

• Complex vectors

• Complex matrices

You can also use complex data as arguments for:

• State actions

• Transition actions

• MATLAB functions (see “MATLAB Functions in a Chart” on page 25-2)

• Truth table functions (see “What Is a Truth Table?” on page 24-2)

• Graphical functions (see “Reuse Logic Patterns Using Graphical Functions”
on page 7-35)

• Change detection operators (see “Detect Changes in Data Values” on page
10-81)

Note Exported functions do not support complex data as arguments.

For more information, see “Complex Data Operations for Charts That Support
C Expressions” on page 20-7 and “Rules for Using Complex Data in C Charts”
on page 20-12.

20-3

20 Complex Data in C Charts

Define Complex Data Using the Editor
Define complex data in a chart as follows:

1 In the Stateflow Editor, select one of the following options:

• Chart > Add Inputs & Outputs > Data Input From Simulink

• Chart > Add Inputs & Outputs > Data Output To Simulink

• Chart > Add Other Elements > Local Data

A default definition of the new data object appears in the Stateflow
hierarchy, and the Data properties dialog box appears.

20-4

Define Complex Data Using the Editor

Note Complex data does not support the scope Constant.

2 In the Complexity field of the Data properties dialog box, select On.

20-5

20 Complex Data in C Charts

3 Specify the name, size, base type, and other properties for the new data
object as described in “Set Data Properties” on page 8-5.

Note Complex data does not support the base types ml, struct, and
boolean. See “Built-In Data Types” on page 8-45 for more information.

4 Click OK.

20-6

Complex Data Operations for Charts That Support C Expressions

Complex Data Operations for Charts That Support C
Expressions

In this section...

“Binary Operations” on page 20-7

“Unary Operations and Actions” on page 20-7

“Assignment Operations” on page 20-8

Binary Operations
These binary operations work with complex operands in the following order of
precedence (1 = highest, 3 = lowest). For operations with equal precedence,
they evaluate in order from left to right.

Example Precedence Description

a * b 1 Multiplication

a + b 2 Addition

a - b 2 Subtraction

a == b 3 Comparison, equality

a != b 3 Comparison, inequality

C charts do not support division of complex operands because this operation
requires a numerically stable implementation, especially when the base type
of the complex data is fixed-point.

To perform complex division, use a MATLAB function, which provides a
numerically accurate and stable result. For details, see “Perform Complex
Division with a MATLAB Function” on page 20-16.

Unary Operations and Actions
These unary operations and actions work with complex operands.

20-7

20 Complex Data in C Charts

Example Description

~a Unary minus

!a Logical NOT

a++ Increment

a-- Decrement

Assignment Operations
These assignment operations work with complex operands.

Example Description

a = expression Simple assignment

a += expression Equivalent to a = a + expression

a -= expression Equivalent to a = a - expression

a *= expression Equivalent to a = a * expression

20-8

Define Complex Data Using Operators

Define Complex Data Using Operators

In this section...

“Why Use Operators for Complex Numbers?” on page 20-9

“Define a Complex Number” on page 20-9

“Access Real and Imaginary Parts of a Complex Number” on page 20-10

“Work with Vector Arguments” on page 20-11

Why Use Operators for Complex Numbers?
Use operators to handle complex numbers because a C chart does not support
complex number notation (a + bi), where a and b are real numbers.

Define a Complex Number
To define a complex number based on two real values, use the complex
operator described below.

complex Operator

Syntax.

complex(realExp, imagExp)

where realExp and imagExp are arguments that define the real and
imaginary parts of a complex number, respectively. The two arguments must
be real values or expressions that evaluate to real values, where the numeric
types of both arguments are identical.

Description. The complex operator returns a complex number based on
the input arguments.

Example.

complex(3.24*pi, -9.99)

This expression returns the complex number 10.1788 9.9900i.

20-9

20 Complex Data in C Charts

Access Real and Imaginary Parts of a Complex
Number
To access the real and imaginary parts of a complex number, use the operators
real and imag described below.

real Operator

Syntax.

real(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The real operator returns the value of the real part of a
complex number.

Note If the input argument is a purely imaginary number, the real operator
returns a value of 0.

Example.

real(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 +
4.56i, the real operator returns a value of 8.2300.

imag Operator

Syntax.

imag(compExp)

where compExp is an expression that evaluates to a complex number.

Description. The imag operator returns the value of the imaginary part
of a complex number.

20-10

Define Complex Data Using Operators

Note If the input argument is a real number, the imag operator returns
a value of 0.

Example.

imag(frame(200))

If the expression frame(200) evaluates to the complex number 8.23 +
4.56i, the imag operator returns a value of 4.5600.

Work with Vector Arguments
The operators complex, real, and imag also work with vector arguments.

Example If the input x is... Then the output y is...

y = real(x) An n-dimensional
vector of complex values

An n-dimensional
vector of real values

y = imag(x) An n-dimensional
vector of real values

An n-dimensional
vector of zeros

y =
complex(real(x),
imag(x))

An n-dimensional
vector of complex or
real values

An n-dimensional
vector identical to the
input argument

20-11

20 Complex Data in C Charts

Rules for Using Complex Data in C Charts
These rules apply when you use complex data in C charts.

Do not use complex number notation in actions

C charts do not support complex number notation (a + bi), where a and b
are real numbers. Therefore, you cannot use complex number notation in
state actions, transition conditions and actions, or any statements in C charts.

To define a complex number, use the complex operator described in “Define
Complex Data Using Operators” on page 20-9.

Do not perform math function operations on complex data in C charts

Math operations such as sin, cos, min, max, and abs do not work with
complex data in C charts. However, you can use MATLAB functions for
these operations.

For more information, see “Perform Math Function Operations with a
MATLAB Function” on page 20-15.

Mix complex and real operands only for addition, subtraction, and
multiplication

If you mix operands for any other math operations in C charts, an error
appears when you try to simulate your model.

To mix complex and real operands for division, you can use a MATLAB
function as described in “Perform Complex Division with a MATLAB
Function” on page 20-16.

20-12

Rules for Using Complex Data in C Charts

Tip Another way to mix operands for division is to use the complex, real,
and imag operators in C charts.

Suppose that you want to calculate y = x1/x2, where x1 is complex and x2 is
real. You can rewrite this calculation as:

y = complex(real(x1)/x2, imag(x1)/x2)

For more information, see “Define Complex Data Using Operators” on page
20-9.

Do not define complex data with constant scope

If you define complex data with Constant scope, an error appears when you
try to simulate your model.

Do not define complex data with ml, struct, or boolean base type

If you define complex data with ml, struct, or boolean base type, an error
appears when you try to simulate your model.

Use only real values to set initial values of complex data

When you define the initial value for data that is complex, use only a real
value. See “Properties You Can Set in the Description Pane” on page 8-26 for
instructions on setting an initial value in the Data properties dialog box.

Do not enter minimum or maximum values for complex data

In the Data properties dialog box, do not enter any values in theMinimum or
Maximum field when you define complex data. If you enter a value in either
field, an error message appears when you try to simulate your model.

Assign complex values only to data of complex type

If you assign complex values to real data types, an error appears when you
try to simulate your model.

20-13

20 Complex Data in C Charts

Note You can assign both real and complex values to complex data types.

Do not pass real values to function inputs of complex type

This restriction applies to the following types of chart functions:

• Graphical functions

• Truth table functions

• MATLAB functions

• Simulink functions

If your C chart passes real values to function inputs of complex type, an error
appears when you try to simulate your model.

Do not use complex data with temporal logic operators

You cannot use complex data as an argument for temporal logic operators,
because you cannot define time as a complex number.

20-14

Best Practices for Using Complex Data in C Charts

Best Practices for Using Complex Data in C Charts

In this section...

“Perform Math Function Operations with a MATLAB Function” on page
20-15

“Perform Complex Division with a MATLAB Function” on page 20-16

Perform Math Function Operations with a MATLAB
Function
Math functions such as sin, cos, min, max, and abs do not work with complex
data in C charts. However, you can use a MATLAB function in your chart to
perform math function operations on complex data.

A Simple Example
In the following chart, a MATLAB function calculates the absolute value
of a complex number:

The value of comp_num is 1+2i. Calculating the absolute value gives an
answer of 2.2361.

20-15

20 Complex Data in C Charts

How to Calculate Absolute Value
Suppose that you want to find the absolute value of a complex number. Follow
these steps:

1 Add a MATLAB function to your chart with this signature:

y = myabs(u)

2 Double-click the function box to open the editor.

3 In the editor, enter the code below:

function y = myabs(u)
%#codegen
y = abs(u);

The function myabs takes a complex input u and returns the absolute value
as an output y.

4 Configure the input argument u to accept complex values.

a Open the Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
MATLAB function myabs.

c In the Contents pane of the Model Explorer, right-click the input
argument u and select Properties from the context menu.

d In the Data properties dialog box, select On in the Complexity field
and click OK.

You cannot pass real values to function inputs of complex type. For details,
see “Rules for Using Complex Data in C Charts” on page 20-12.

Perform Complex Division with a MATLAB Function
Division with complex operands is not available as a binary or assignment
operation in C charts. However, you can use a MATLAB function in your
chart to perform division on complex data.

20-16

Best Practices for Using Complex Data in C Charts

A Simple Example
In the following chart, a MATLAB function performs division on two complex
operands:

The values of comp_num and comp_den are 1+2i and 3+4i, respectively.
Dividing these values gives an answer of 0.44+0.08i.

How to Perform Complex Division
To divide two complex numbers:

1 Add a MATLAB function to your chart with this function signature:

y = mydiv(u1, u2)

2 Double-click the function box to open the editor.

3 In the editor, enter the code below:

function y = mydiv(u1, u2)
%#codegen
y = u1 / u2;

The function mydiv takes two complex inputs, u1 and u2, and returns the
complex quotient of the two numbers as an output y.

4 Configure the input and output arguments to accept complex values.

20-17

20 Complex Data in C Charts

a Open the Model Explorer.

b In the Model Hierarchy pane of the Model Explorer, navigate to the
MATLAB function mydiv.

c For each input and output argument, follow these steps:

i In the Contents pane of the Model Explorer, right-click the argument
and select Properties from the context menu.

ii In the Data properties dialog box, select On in the Complexity field
and click OK.

You cannot pass real values to function inputs of complex type. For details,
see “Rules for Using Complex Data in C Charts” on page 20-12.

20-18

Detect Valid Transmission Data Using Frame Synchronization

Detect Valid Transmission Data Using Frame
Synchronization

This model shows how to process complex data in transmission signals of a
communication system.

What Is Frame Synchronization?

In communication systems, frame synchronization is a method of finding
valid data in a transmission that consists of data frames. To aid frame
synchronization, the transmitter inserts a fixed data pattern at the start of
each data frame to mark the start of valid data. The receiver searches for the
fixed pattern in each data frame and achieves frame synchronization when
the correlation between the input data and the fixed pattern is high.

Model Structure

The model contains the following components.

The C chart contains the following states, transitions, and MATLAB functions.

20-19

20 Complex Data in C Charts

Key characteristics of the C chart include:

• Complex input and output signals

The chart accepts a complex input signal I/Q. After synchronizing the data
frame, the chart stores the valid data in a complex output signal frame.

• Complex multiplication

20-20

Detect Valid Transmission Data Using Frame Synchronization

The output signal frame is a vector of complex products between each valid
data point and the phase angle of the carrier wave.

• Indexing into a complex vector

The chart uses the temporalCount operator to index into the complex
vector frame.

• MATLAB functions with complex arguments

The MATLAB functions correlate and get_carrier_phase have complex
input and output arguments.

Simulation Results

The sf_frame_sync_controller model does not produce simulation results.
The purpose of this example is to explain how to process complex data in
a chart.

How the C Chart Works

The chart calculates the correlation between the input signal I/Q and the
fixed data pattern trainSig. You define trainSig by writing and running
a MATLAB script before you simulate the model.

• If the correlation exceeds 50 percent, frame synchronization occurs. The
chart stores 220 valid data points in the complex vector frame.

• If the correlation stays below 50 percent after the chart has evaluated 300
data points, the frame synchronization algorithm resets.

Stage Summary Details

1 Activation of the frame
synchronization algorithm

When the chart wakes up, the state look_for_sync
activates to start the frame synchronization
algorithm.

2 Calculation of correlation between
the input signal and the fixed
pattern

The MATLAB function correlate finds the
correlation between the input signal I/Q and the
fixed data pattern trainSig. Then, the function
stores the complex correlation as corr.

20-21

20 Complex Data in C Charts

Stage Summary Details

3 Calculation of absolute value of
the complex correlation

The MATLAB function correlate also finds the
absolute value of corr and stores the output as
corrAbs. The value of corrAbs is the correlation
percentage, which can range from 0 to 100 percent.
At 0 percent, there is no correlation; at 100
percent, there is perfect correlation.

4 Identification of valid data in a
frame

If corrAbs exceeds 50 percent, the correlation is
high and the chart has identified the start of valid
data in a data frame. The transition from the state
look_for_sync to get_payload occurs.

If corrAbs stays below 50 percent after the
chart has evaluated 300 data points, the frame
synchronization algorithm restarts.

5 Storage of valid data in a complex
vector

When the correlation is high, the state
get_payload activates.

The MATLAB function get_carrier_phase finds
the phase angle of the carrier wave and stores
the value as phasor. Then, the state multiplies
the input signal I/Q with the phase angle phasor
and stores each complex product in successive
elements of the vector frame.

6 Output of valid frame data After collecting 220 data points, the chart outputs
the vector frame to the next block in the model.

7 Restart of the frame
synchronization algorithm

The state look_for_sync reactivates, and the
frame synchronization algorithm restarts for the
next data frame.

20-22

Measure Frequency Response Using a Spectrum Analyzer

Measure Frequency Response Using a Spectrum Analyzer
This model shows measurement of the frequency response of a second-order
system driven by a complex sinusoidal signal. A scope displays the measured
frequency response as discrete Bode plots.

What Is a Spectrum Analyzer?

A spectrum analyzer is a tool that measures the frequency response
(magnitude and phase angle) of a physical system over a range of frequencies.

Model Structure

The model sf_spectrum_analyzer contains the following components.

Model Component Description

Sinusoid Generator
block

Generates a complex sinusoidal signal of increasing
frequency and supplies this signal to other blocks.

Complex to
Imaginary block

Extracts the imaginary part of the complex signal
from the Sinusoid Generator block so that a sine
wave of increasing frequency can drive the Plant
block.

20-23

20 Complex Data in C Charts

Model Component Description

Plant block Uses a transfer function to describe a second-order
system with a natural frequency of 150 Hz (300π
radians per second) and a damping ratio of 0.3. Since
the ratio is less than 1, this system is underdamped
and contains two complex conjugate poles in the
denominator of the transfer function.

Note Typical applications implement the Plant
block using a D/A (digital-to-analog) converter on the
input signal and an A/D (analog-to-digital) converter
on the output signal.

Analyzer chart Calculates the frequency response of the second-order
system defined by the Plant block.

Unwrap chart Processes the phase angle output of the Analyzer
chart.

Simulation Results

Simulation of the sf_spectrum_analyzer model produces discrete Bode plots
in the Measured Frequency Response scope.

20-24

Measure Frequency Response Using a Spectrum Analyzer

To adjust the scope display, right-click inside the grid and select Autoscale
from the context menu.

• In the magnitude plot, the sharp peak is the response of the Plant block to
a resonant frequency.

• In the phase plot, the angle changes from 0 to –π radians (–180 degrees).
Each complex pole in the Plant block adds –π/2 radians to the phase angle.

How the Sinusoid Generator Block Works

This block is a masked chart that uses MATLAB as the action language.
To access the chart, right-click the Sinusoid Generator block and select
Mask > Look Under Mask.

20-25

20 Complex Data in C Charts

Key characteristics of the signal generator chart include:

• Absolute-time temporal logic for controlling changes in frequency

• MATLAB code in the chart that generates a complex signal

• Transition condition that contains complex operands

20-26

Measure Frequency Response Using a Spectrum Analyzer

Stage Summary Details

1 Signal frequency specification When the chart awakens, the default transition
sets the signal frequency f to fstart and activates
state A.

Note To set fstart, double-click the Sinusoid
Generator block and enter a value (in Hz) in the
Initial frequency field.

2 Complex signal generation While state A is active, the chart generates
the complex signal y based on frequency f and
simulation time t.

3 Frequency and complex signal
updates

If delay seconds have elapsed since activation of
state A, the frequency f increases by an amount
fstep and state A generates a new signal.

Updates occur until the frequency f reaches the
value fstop.

Note To set delay, double-click the Sinusoid
Generator block and enter a value (in seconds) in
the Delay at each frequency field. To set fstep,
enter a value (in Hz) in the Step frequency field.

4 Complex signal termination When the frequency f reaches the value fstop,
the state Stopped becomes active. The complex
signal terminates and the simulation ends.

Note To set fstop, double-click the Sinusoid
Generator block and enter a value (in Hz) in the
Stop frequency field.

How the Analyzer Chart Works

20-27

20 Complex Data in C Charts

Key characteristics of the Analyzer chart include:

• Change detection of input frequency

• MATLAB code inside that chart that processes complex data

• State during action that contains complex operands

Stage Summary Details

1 State A activation When the chart wakes up, the values of y and yn
initialize to zero.

• The data y stores the second-order system
response to a signal from the Sinusoid Generator
block.

• The data yn stores an input signal of a given
frequency.

2 Change detection of input
frequency

The hasChanged operator detects if the input
frequency f has changed since the previous
time step. If so, MATLAB code calculates the
magnitude and phase angle for the new frequency.

How the Unwrap Chart Works

20-28

Measure Frequency Response Using a Spectrum Analyzer

This chart unwraps the phase angle output of the Analyzer chart.
Unwrapping means preventing the phase angle from jumping more than π
radians or dropping more than –π radians.

• If the phase angle jumps more than π radians, the chart subtracts 2π
radians from the angle.

• If the phase angle drops more than –π radians, the chart adds 2π radians
to the angle.

20-29

20 Complex Data in C Charts

20-30

21

Define Interfaces to
Simulink Models and
the MATLAB Workspace

• “Overview of Stateflow Block Interfaces” on page 21-3

• “Specify Chart Properties” on page 21-5

• “Set the Stateflow Block Update Method” on page 21-16

• “Implement Interfaces to Simulink Models” on page 21-18

• “When to Use Chart Libraries” on page 21-23

• “Create Specialized Chart Libraries for Large-Scale Modeling” on page
21-24

• “Properties You Can Specialize Across Instances of Library Blocks” on
page 21-25

• “Limitations of Library Charts” on page 21-27

• “MATLAB Workspace Interfaces” on page 21-28

• “About Masks” on page 21-30

• “Limitations on Stateflow Masks” on page 21-31

• “Mask Parameters” on page 21-32

• “Look Under a Mask” on page 21-34

• “Mask a Stateflow Block” on page 21-35

• “About Active State Output” on page 21-38

• “When to Use Active State Output” on page 21-42

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

• “Limitations for Active State Output” on page 21-43

• “Use Active State Output” on page 21-44

• “Change the Port Name” on page 21-48

• “Define the Enum Name and Type” on page 21-50

21-2

Overview of Stateflow® Block Interfaces

Overview of Stateflow Block Interfaces

In this section...

“Stateflow Block Interfaces” on page 21-3

“Typical Tasks to Define Stateflow Block Interfaces” on page 21-4

“Where to Find More Information on Events and Data” on page 21-4

Stateflow Block Interfaces
Each Stateflow block interfaces to its Simulink model. Each Stateflow block
can interface to sources external to the Simulink model (data, events, custom
code). Events and data are the Stateflow objects that define the interface from
the point of view of the Stateflow block.

Events can be local to the Stateflow block or can be propagated to and from
the Simulink model and sources external to it. Data can be local to the
Stateflow block or can be shared with and passed to the Simulink model and
to sources external to the Simulink model.

The Stateflow interfaces include:

• Physical connections between Simulink blocks and the Stateflow block

• Event and data information exchanged between the Stateflow block and
external sources

• The properties of Stateflow charts

• Graphical functions exported from a chart

See “Export Functions for Reuse in Other Charts” on page 7-37 for more
details.

• The MATLAB workspace

See “Access Built-In MATLAB Functions and Workspace Data” on page
10-41 for more details.

• Definitions in external code sources

21-3

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Typical Tasks to Define Stateflow Block Interfaces
Defining the interface for a Stateflow block in a Simulink model involves some
or all the tasks described in the following topics:

• Specify the update method for a Stateflow block in a Simulink model.

This task is described in “Set the Stateflow Block Update Method” on
page 21-16.

• Define the input and output data and events that you need.

See the following topics for detailed information:

- “Activate a Stateflow Chart Using Input Events” on page 9-12

- “Activate a Simulink Block Using Output Events” on page 9-25

- “Share Output Data with Simulink” on page 8-31

• Add and define any nonlocal data and events with which your chart must
interact.

The preceding task list is a typical sequence. You might find that another
sequence better complements your model development.

See “Implement Interfaces to Simulink Models” on page 21-18 for examples of
implemented interfaces to Simulink models.

Where to Find More Information on Events and Data
See the following references for defining the interface of a Stateflow Chart
block in a Simulink model:

• “Activate a Stateflow Chart Using Input Events” on page 9-12

• “Activate a Simulink Block Using Output Events” on page 9-25

• “Share Output Data with Simulink” on page 8-31

21-4

Specify Chart Properties

Specify Chart Properties

In this section...

“About Chart Properties” on page 21-5

“Set Properties for a Single Chart” on page 21-5

“Set Properties for All Charts in the Model” on page 21-14

About Chart Properties
Chart properties allow you to specify how your chart interfaces with the
Simulink model. You can specify properties for a single chart or all charts
in a model.

Set Properties for a Single Chart
To specify properties for a single chart:

1 Double-click a chart to open it.

2 Right-click an open area of the chart and select Properties.

All charts provide general and documentation properties. Charts that use
MATLAB as the action language provide an additional tab for specifying
fixed-point properties.

21-5

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

C charts provide an additional option for enabling C-bit operations.

21-6

Specify Chart Properties

3 Specify properties for the chart.

21-7

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

Name Stateflow chart name (read-only). Click
this hypertext link to bring the chart to the
foreground.

Machine Simulink subsystem name (read-only). Click
this hypertext link to bring the Machine
properties dialog box to the foreground.

Action Language Action language for programming the chart.
Choices are C or MATLAB. For more information,
see “Modify the Action Language for a Chart”
on page 11-2.

State Machine Type Type of state machine to create. Choices are:

• Classic: Default state machine. Provides
full set of semantics for MATLAB charts and
C charts.

• Mealy: State machine in which output is a
function of inputs and state.

• Moore: State machine in which output is a
function only of state.

Mealy and Moore charts use a subset of
Stateflow chart semantics.

Update method Method by which a simulation updates (wakes
up) a chart in a Simulink model (see “Set
the Stateflow Block Update Method” on page
21-16). You can select Inherited, Discrete,
or Continuous. For more information about
continuous updating, see “Model Hybrid
Systems with Model Logic” on page 18-5.

Sample Time IfUpdate method is Discrete, enter a sample
time.

21-8

Specify Chart Properties

Field Description

Enable zero-crossing
detection

If Update method is Continuous,
zero-crossing detection is enabled by default.
See “When to Enable Zero-Crossing Detection”
on page 18-9.

Enable C-bit
operations

For C charts only. Select this check box to
interpret the following operators (~, &, |, and
^) as C bitwise operators, not logical operators,
in action statements (default).

If you clear this check box, the following occurs:

• & , | and ~ are interpreted as logical
operators.

• ^ is interpreted as the power operator
(for example, 2^3 = 8).

Other bit operations such as >> and << will be
interpreted as bit operations regardless of this
setting.

User specified
state/transition
execution order

Select this check box to use explicit ordering
of parallel states and transitions (default). In
this mode, you have complete control of the
order in which parallel states are executed
and transitions originating from a source are
tested for execution. For more information,
see “Execution Order for Parallel States” on
page 3-73 and “Transition Testing Order in
Multilevel State Hierarchy” on page 3-64.

Export Chart Level
Functions

Select this check box to export functions defined
at the root level of the chart. See “Export
Functions for Reuse in Other Charts” on page
7-37 for more information.

21-9

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

Use Strong Data
Typing with
Simulink I/O

If selected, the chart accepts input signals of
any data type supported by Simulink software,
provided that the type of the input signal
matches the type of the corresponding chart
input data item. If the types do not match, an
error occurs.

If cleared, the chart accepts and outputs only
signals of type double. In this case, Stateflow
software converts Simulink input signals to
the data types of the corresponding chart input
data items. Similarly, Stateflow software
converts chart output data to type double.

For fixed-point data, the Use Strong Data
Typing with Simulink I/O option is always
on. If an input or output of fixed-point type
in a chart does not match its counterpart in a
model, an error occurs.

See “Share Output Data with Simulink” on
page 8-31.

Execute (enter)
Chart At
Initialization

Select this check box if you want a chart’s state
configuration to be initialized at time 0 instead
of at the first occurrence of an input event (see
“Execution of a Chart at Initialization” on page
3-49).

Initialize Outputs
Every Time Chart
Wakes Up

Interprets the initial value of outputs every
time a chart wakes up, not only at time 0.
When you set an initial value for an output data
object, the output will be reset to that value.

Outputs are reset whenever a chart is triggered,
whether by function call, edge trigger, or clock
tick.

Enable this option to:

• Ensure all outputs are defined in every chart
execution

21-10

Specify Chart Properties

Field Description

• Prevent latching of outputs (carrying over
values of outputs computed in previous
executions)

• Give all chart outputs a meaningful initial
value

Enable Super Step
Semantics

Select to enable charts to take multiple
transitions in each time step until it reaches
a stable state. For more information, see
“Execution of a Chart with Super Step
Semantics” on page 3-40.

Maximum Iterations
in Each Super Step

If you enable super step semantics, specify
the maximum number of transitions the chart
should take in each time step. The chart always
takes one transition during a super step, so
the value N that you specify represents the
maximum number of additional transitions
(for a total of N+1). For more information, see
“What Is Maximum Number of Iterations?” on
page 3-41 Try to choose a number that allows
the chart to reach a stable state within the time
step, based on the mode logic of your chart.

Behavior after too
many iterations

If you enable super step semantics, specify how
the chart behaves after reaching the maximum
number of transitions before taking all valid
transitions. Options include:

• Proceed— Chart execution continues to the
next time step

• Throw Error — Simulation stops and an
error message appears

21-11

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Field Description

Note The Throw Error option is valid only for
simulation. In generated code, chart execution
always proceeds.

Support
variable-size arrays

Select to support chart input and output data
that vary in dimension during simulation. For
more information, see “Declare Variable-Size
Inputs and Outputs” on page 16-5.

Saturate on integer
overflow

Select to specify that integer overflows saturate
in the generated code. For more information,
see “Handle Integer Overflow for Chart Data”
on page 8-57.

Create output port
for monitoring child
activity

Select to create output port for child state
activity. See “About Active State Output” on
page 21-38.

States When
Enabling

If your chart uses function-call input events,
specify how states behave when the event
reenables the chart. Options include:

• Held— Maintain most recent values of the
states.

• Reset — Revert to the initial conditions of
the states.

• Inherit — Inherit this setting from the
parent subsystem.

For more information, see “Control States
When Function-Call Inputs Reenable Charts”
on page 9-17.

Debugger
breakpoint: On
chart entry

Select to set a debugging breakpoint on entry
to this chart.

21-12

Specify Chart Properties

Field Description

Lock Editor Select to mark the chart as read-only and
prevent any write operations.

Treat these
inherited Simulink
signal types as fi
objects

For MATLAB charts only. Determines whether
to treat inherited fixed-point and integer
signals as Fixed-Point Designer fi objects.

• If set to Fixed-point (default), the MATLAB
chart treats all fixed-point inputs as fi
objects.

• If set to Fixed-point & Integer, the
MATLAB chart treats all fixed-point and
integer inputs as fi objects.

MATLAB Chart
fimath

For MATLAB charts only. Default fimath
properties for the MATLAB chart. . Otherwise,
specify the default fimath properties by
constructing the fimath object in the MATLAB
or model workspace and setting the property
equal to the variable name.

• If set to Same as MATLAB Default, the
chart uses the same fimath properties as the
current default fimath

• If set to Specify Other, you can specify your
own default fimath object. Either construct
the fimath object inside the edit box, or create
it in the MATLAB or model workspace, and
enter its variable name in the edit box.

Description Textual description/comment.

Document link Enter a Web URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address,
and edit/spec/data/speed.txt.

4 Click one of these buttons:

• Apply to save the changes

21-13

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

• Cancel to cancel any changes since the last apply

• OK to save the changes and close the dialog box

• Help to display the online help in an HTML browser window

Set Properties for All Charts in the Model
You can set some properties for all charts in the model by setting properties for
the Stateflow machine, which represents all of the Stateflow blocks in a model.

To set properties for the Stateflow machine:

1 In the Chart properties dialog box for a particular chart, select the
Machine link at the top of the dialog box.

The Machine properties dialog box appears.

2 Enter information in the fields that appear.

Field Description

Simulink Model Name of the Simulink model that defines this
Stateflow machine (read-only). You change the
model name in the Simulink window when you
save the model under a chosen file name.

Creation Date Date on which this machine was created, which
is read-only.

Creator Name of the person who created this Stateflow
machine.

Modified Time of the most recent modification of this
Stateflow machine.

Version Version number of this Stateflow machine.

21-14

Specify Chart Properties

Field Description

Use C-like bit
operations in new
charts

For C charts only. Select this check box for
all new C charts to interpret the following
operators (~, &, |, and ^) as C bitwise operators,
not logical operators, in action statements.

You can enable or disable this option for
individual C charts in the individual chart’s
property dialog box. See “Set Properties for
a Single Chart” on page 21-5 for a detailed
explanation of this property.

Description Brief description of this Stateflow machine,
which is stored with the model that defines it.

Document link MATLAB expression that, when evaluated,
displays documentation for this Stateflow
machine.

3 Click one of these buttons:

• Apply saves the changes.

• Cancel closes the dialog box without making any changes.

• OK saves the changes and closes the dialog box.

• Help displays the online help in an HTML browser window.

21-15

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Set the Stateflow Block Update Method
Stateflow blocks are Simulink subsystems. Simulink events wake up
subsystems for execution. To specify a wakeup method, set Update method
in the Chart properties dialog box (see “Specify Chart Properties” on page
21-5). Select one of the following wakeup methods:

• Inherited

This is the default update method. Specifying this method causes input
from the Simulink model to determine when the chart wakes up during a
simulation.

If you define input events for the chart, the Stateflow block is explicitly
triggered by a signal on its trigger port originating from a connected
Simulink block. This trigger input event can be set in the Model Explorer
to occur in response to a Simulink signal that is Rising, Falling, or Either
(rising and falling), or in response to a Function Call. See “Activate a
Stateflow Chart Using Input Events” on page 9-12.

If you do not define input events, the Stateflow block implicitly inherits
triggers from the Simulink model. These implicit events are the sample
times (discrete or continuous) of the Simulink signals providing inputs
to the chart. If you define data inputs (see “Share Output Data with
Simulink” on page 8-31), the chart awakens at the rate of the fastest data
input. If you do not define any data input for the chart, the chart wakes up
as defined by its parent subsystem’s execution behavior.

• Discrete

The Simulink model awakens (samples) the Stateflow block at the rate
you specify as the block’s Sample Time property. An implicit event is
generated at regular time intervals corresponding to the specified rate. The
sample time is in the same units as the Simulink simulation time. Other
blocks in the Simulink model can have different sample times.

21-16

Set the Stateflow® Block Update Method

• Continuous

Stateflow charts maintain mode in minor time steps and can define
continuous states and their derivatives. In addition, charts can register
zero crossings, allowing Simulink models to sample Stateflow charts
whenever state changes occur.

21-17

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Implement Interfaces to Simulink Models

In this section...

“Define a Triggered Stateflow Block” on page 21-18

“Define a Sampled Stateflow Block” on page 21-19

“Define an Inherited Stateflow Block” on page 21-20

“Define a Continuous Stateflow Block” on page 21-21

“Define Function-Call Output Events” on page 21-21

“Define Edge-Triggered Output Events” on page 21-22

Define a Triggered Stateflow Block
Essential conditions that define an edge-triggered Stateflow block are:

• The chart Update method (set in the Chart properties dialog box) is
Discrete or Inherited. (See “Specify Chart Properties” on page 21-5.)

• The chart has an Input from Simulink event defined and an edge-trigger
type specified. (See “Activate a Stateflow Chart Using Input Events” on
page 9-12.)

Triggered Stateflow Block Example
The following model shows an edge-triggered Stateflow block named Callee:

21-18

Implement Interfaces to Simulink® Models

The Input from Simulink event has an Either edge-trigger type. If you
define more than one Input from Simulink event, the Simulink model
determines the sample times to be consistent with various rates of all the
incoming signals. The outputs of a triggered Stateflow block are held after the
execution of the block.

Define a Sampled Stateflow Block
There are two ways you can define a sampled Stateflow block.

• Set the chart Update method (in the Chart properties dialog box) to
Discrete and enter a Sample Time value. (See “Specify Chart Properties”
on page 21-5.)

• Alternatively, add and define input data either in the Stateflow Editor by
selecting Chart > Add Inputs & Outputs > Data Input from Simulink
or in the Model Explorer. (See “Share Output Data with Simulink” on
page 8-31.)

Simulink determines the chart sample time to be consistent with the rate
of the incoming data signal.

The Sample Time you set in the Chart properties dialog box takes precedence
over the sample time of any input data.

Sampled Stateflow Block Example
You specify a discrete sample rate to have Simulink trigger a Stateflow block
that does use an explicit trigger port. You can specify a sample time for the
chart in the Chart properties dialog box. Simulink then calls the Stateflow
block at a defined, regular sample time.

21-19

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

The outputs of a sampled Stateflow block are held after the execution of the
block.

Define an Inherited Stateflow Block
Essential conditions that define an inherited trigger Stateflow block are:

• The chart Update method (set in the Chart properties dialog box) is
Discrete or Inherited. (See “Specify Chart Properties” on page 21-5)

• The chart has an Input from Simulink data object defined using the
Stateflow Editor Add menu or the Model Explorer. (See “Share Output
Data with Simulink” on page 8-31.) Simulink determines the chart sample
time to be consistent with the rate of the incoming data signal.

Inherited Stateflow Block Example
Simulink can trigger a Stateflow block that does not use an explicit trigger
port or a specified discrete sample time. In this case, the Simulink calls the
Stateflow block at a sample time determined by the model.

In this example, the chart contains two Input from Simulink data objects.
Simulink determines the sample times to be consistent with the rates of both
incoming signals.

21-20

Implement Interfaces to Simulink® Models

The outputs of an inherited trigger Stateflow block are held after the
execution of the block.

Define a Continuous Stateflow Block
To define a continuous Stateflow block, set the chart Update method in the
Chart properties dialog box to Continuous.

Define Function-Call Output Events
This topic shows you how to trigger a function-call subsystem in a Simulink
model with a function-call output event in a Stateflow chart. The procedure
assumes that you have a programmed function-call subsystem and a Stateflow
block in the model. Use the following steps to connect the Stateflow block to
the function-call subsystem and trigger it during simulation.

1 In your chart, select Chart > Add Inputs & Outputs > Event Output
To Simulink.

The Event properties dialog box appears with a default name of event and
a Scope of Output to Simulink.

2 Set Trigger to Function Call.

3 Name the event appropriately and click OK to close the dialog box.

An output port with the name of the event you add appears on the right
side of the Stateflow block.

4 Connect the output port on the Stateflow block for the function-call output
event to the input trigger port of the subsystem.

21-21

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Avoid placing any other blocks in the connection lines between the
Stateflow block and the function-call subsystem.

Note You cannot connect a function-call output event from a chart to a
Demux block to trigger multiple subsystems.

5 To execute the function-call subsystem, include an event broadcast of the
function-call output event in the actions of the chart.

For examples of using function-call output events, see “Activate a Simulink
Block Using Function Calls” on page 9-34.

Define Edge-Triggered Output Events
Simulink controls the execution of edge-triggered subsystems with output
events. Essential conditions that define this use of triggered output events
are:

• The chart has an Output to Simulink event with the trigger type set to
Either. See “Activate a Simulink Block Using Output Events” on page 9-25.

• The Simulink block connected to the edge-triggered Output to Simulink
event has its own trigger type set to the equivalent edge trigger.

For examples of using edge-triggered output events, see “Activate a Simulink
Block Using Edge Triggers” on page 9-25.

21-22

When to Use Chart Libraries

When to Use Chart Libraries
In Simulink, you can create your own block libraries as a way to reuse the
functionality of blocks or subsystems in one or more models. Similarly, you
can reuse a set of Stateflow algorithms by encapsulating the functionality in
a chart library.

As with other Simulink block libraries, you can specialize each instance of
chart library blocks in your model to use different data types, sample times,
and other properties. Library instances that inherit the same properties can
reuse generated code.

For more information about Simulink block libraries, see “Libraries”.

21-23

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Create Specialized Chart Libraries for Large-Scale
Modeling

1 Add Stateflow charts with polymorphic logic to a Simulink model.

Polymorphic logic is logic that can process data with different properties,
such as type, size, and complexity.

2 Configure the charts to inherit the properties you want to specialize.

For a list, see “Properties You Can Specialize Across Instances of Library
Blocks” on page 21-25.

3 Optionally, customize your charts using masking.

For more information, see “Masks on Blocks in User Libraries” in the
Simulink documentation.

4 Simulate and debug your charts.

5 In Simulink, create a library model by selecting File > New > Library.

6 Copy or drag the charts into a library model.

For an example using MATLAB Function blocks, see “Create Custom Block
Libraries” in the Simulink documentation.

21-24

Properties You Can Specialize Across Instances of Library Blocks

Properties You Can Specialize Across Instances of Library
Blocks

You can specialize instances of Stateflow library blocks by allowing them to
inherit any of the following properties from Simulink.

Property Inherits by
Default?

How to Specify Inheritance

Type Yes Set the data type property to Inherit:
Same as Simulink.

Size Yes Set the data size property to -1.

Complexity Yes Set the data complexity property to
Inherited.

Limit range No Specify minimum and maximum values
as Simulink parameters. For example, if
minimum value = aParam and maximum
value = aParam + 3, different instances of
a Stateflow library block can resolve to
different aParam parameters defined in
their parent mask subsystems.

Initial value Depends on
scope

For local data, temporary data, and
outputs, specify initial values as Simulink
parameters. Other data always inherits
the initial value:

• Parameters inherit the initial value
from the associated parameter in the
parent mask subsystem.

• Inputs inherit the initial value from the
Simulink input signal.

• Data store memory inherits the initial
value from the Simulink data store to
which it is bound.

Sampling mode
(input)

Yes Stateflow chart input ports always inherit
sampling mode.

21-25

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Property Inherits by
Default?

How to Specify Inheritance

Data type
override mode
for fixed-point
data

Yes Different library instances inherit
different data type override modes from
their ancestors in the model hierarchy.

Sample time
(block)

Yes Set the block sample time property to -1.

21-26

Limitations of Library Charts

Limitations of Library Charts
Events parented by a library Stateflow machine are invalid. The parser flags
such events as errors.

21-27

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

MATLAB Workspace Interfaces

In this section...

“About the MATLAB Workspace” on page 21-28

“Examine the MATLAB Workspace” on page 21-28

“Interface the MATLAB Workspace with Charts” on page 21-28

About the MATLAB Workspace
The MATLAB workspace is an area of memory normally accessible from the
MATLAB command line. It maintains a set of variables built up during a
MATLAB session.

Examine the MATLAB Workspace
Two commands, who and whos, show the current contents of the workspace.
The who command gives a short list, while whos also gives size and storage
information.

To delete all the existing variables from the workspace, enter clear all
at the MATLAB command line. See the MATLAB documentation for more
information.

Interface the MATLAB Workspace with Charts
A chart has the following access to the MATLAB workspace:

• You can access MATLAB data or MATLAB functions using the ml
namespace operator or the ml function.

See “Access Built-In MATLAB Functions and Workspace Data” on page
10-41 for more information.

• You can use the MATLAB workspace to initialize chart data at the
beginning of a simulation.

See “Enter Expressions and Parameters for Data Properties” on page 8-27.

• You can save chart data to the workspace at the end of a simulation.

21-28

MATLAB® Workspace Interfaces

See “Save Data to the MATLAB Workspace” on page 8-34 for more
information.

21-29

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

About Masks
Creating a mask for Stateflow charts, state transition tables, and truth tables
simplifies using and sharing blocks. The mask encapsulates the block by
hiding the underlying logic and creates a user interface for the block. You
can customize the block by:

• Changing the appearance with meaningful icons and ports.

• Creating a user interface for parameters.

• Adding customized documentation.

You decide which parameters can be changed through the mask user
interface. You can provide meaningful descriptions of these parameters.

Masking a Stateflow block is the same as masking other Simulink blocks. For
more information about masking in Simulink, see “Masking”.

21-30

Limitations on Stateflow® Masks

Limitations on Stateflow Masks
You cannot mask atomic subcharts, states, or any other objects within a chart.
You can only create masks on Stateflow object blocks you can access from the
Simulink library: charts, state transition tables, and truth tables.

21-31

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Mask Parameters
When you create a mask for a Stateflow block, you can define a custom
interface for block parameters.

You provide access to the block parameters by defining corresponding
parameters with the same name in the Mask Editor. A user interface to these
parameters is then provided through a Mask Parameters dialog box.

The mask parameters appear as editable fields in the Mask Parameters dialog
box. Stateflow applies these values to the corresponding block parameters
during simulation.

For example, in the sf_car model, double-click the shift_logic Stateflow
block to see the Mask Parameters dialog box.

This dialog box contains a parameter description Delay before gear
change(tick) and a box to edit the value. This value is tied to the parameter
TWAIT inside the mask. When you edit the value in this box, Stateflow assigns
the new value to TWAIT during simulation.

Before simulation begins, Simulink searches the mask workspace to find
values for the parameters. If parameters for the model are not defined in

21-32

Mask Parameters

the mask, Simulink continues searching the workspace hierarchy for the
definitions and values.

You can create other types of user interfaces for the mask parameters, such
as check boxes, context menus, and option buttons. For more information, see
“Parameters & Dialog Pane”.

21-33

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Look Under a Mask
You can view and edit the contents of a masked block by selecting
Diagram > Mask > Look under Mask. Looking under a mask does not
unmask the block.

Stateflow charts provide badges for looking inside a mask. The badge looks
like a downward facing arrow in the lower-left corner of the chart.

This badge does not appear on state transition tables and truth tables.

21-34

Mask a Stateflow® Block

Mask a Stateflow Block

In this section...

“Create Mask” on page 21-35

“Change the Icon” on page 21-35

“Add a Parameter” on page 21-36

“View the New Mask” on page 21-36

“Edit the Mask” on page 21-37

You can create masks for Stateflow charts in models. To see a chart already
masked, look at shift_logic in the sf_car model that ships with Stateflow.

Create Mask
To create a mask for the Stateflow chart in the model old_sf_car:

1 Open the model old_sf_car.

2 From the Simulink Editor, select the chart shift_logic.

3 Open the Mask Editor by selecting Diagram-> Mask->Create Mask.

Change the Icon
You can customize the appearance of the block icon by using drawing
commands, or loading an image.

1 On the Icon & Ports pane, in the edit box under Icon Drawing commands
type:

image('shift_logic.svg')

2 Click Apply.

The Mask Editor loads the image file shift_logic.svg to use as the masked
block icon. For more information, see “Draw Mask Icon”.

21-35

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Add a Parameter
The chart shift_logic has a parameter TWAIT that is already defined. To
add TWAIT as a parameter to the mask:

1 In the Mask Editor, select the Parameters & Dialog pane.

2 Double-click the Edit parameter icon.

3 Next to edit, under Prompt, type

Delay before gear change(tick) .

This text will is the prompt for the new mask parameter in the Mask
Parameters dialog box.

4 Under Name, type "TWAIT".

This name defines the parameter in the mask. The names ties it to the
underlying block parameter with the same name, TWAIT.

5 Click Apply.

6 Click OK.

For more information, see “Parameters & Dialog Pane”.

View the New Mask
After creating a mask, the new icon for the shift_logic chart appears in the
Simulink canvas. The name of the block has not changed.

21-36

Mask a Stateflow® Block

If you double-click the icon, the Mask Parameters dialog box opens. This
dialog box has the prompt for the parameter TWAIT. The value in the edit box
is assigned to the parameter TWAIT during simulation.

To see the logic in the shift_logic chart, click the Look inside mask badge
on the chart.

Edit the Mask
You can edit a mask by selecting Diagram > Mask > Edit Mask.

21-37

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

About Active State Output

In this section...

“State Activity Type” on page 21-38

“State Activity Data Type” on page 21-38

“Leaf state activity and parallel states” on page 21-39

Stateflow can provide state activity data through an output port to Simulink.
You can use active state output for a Stateflow chart, state, state transition
table, or atomic subchart.

Enable active state output by selecting Create output port for monitoring
in the Properties window of Stateflow object.

State Activity Type
The following chart defines the levels of activity supported for each Stateflow
object that has active state output.

Stateflow
Object

Self activity Child activity Leaf state
activity

Charts Not supported Supported Supported

States Supported Supported Supported

Atomic subcharts Supported at the
container level

Supported inside
the subchart

Supported inside
the subchart

State transition
tables

Not supported Supported Supported

State Activity Data Type
When you enable active state output, Stateflow creates an output port on
the block in Simulink.

21-38

About Active State Output

Mode Output Data Type Description

Self activity Boolean Is the state active?

Child activity Enumeration Which child is active?

Leaf state activity Enumeration Which leaf state is
active?

For self activity of a chart or state, the data value is 1 when active and 0 when
inactive. For child and leaf state activity, the data is an enumerated type that
can be automatically or custom managed. For more information about the
enumeration type, see “Define the Enum Name and Type” on page 21-50.

Leaf state activity and parallel states
When leaf state activity is enabled, a state that contains parallel (AND)
substates is treated as a leaf state. State activity in the parallel substates
is not available.

In the following example, leaf state activity is enabled for the chart. The leaf
states are A1, A2, and B. State B is treated as a leaf state because the substates
B1 and B2 have parallel decomposition.

21-39

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

21-40

About Active State Output

The active state output data connected to a scope shows the enumerated
values for the leaf states A1, A2, and B.

21-41

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

When to Use Active State Output
By turning on active state output, the state activity is made available through
an output data port to Simulink. This data signal can be:

• Viewed using a scope.

• Logged for diagnostics.

• Used to drive another subsystem.

Using active state output can simplify the design in some Stateflow charts.
You do not have to explicitly update data used to track state activity. For
an example, see .

For more information about logging the chart or state activity data in
Simulink , see “Signal Logging”.

Note When active state output is turned on in Stateflow, logging through
Stateflow is not available. Log the signals in Simulink instead.

21-42

Limitations for Active State Output

Limitations for Active State Output
You cannot enable active state output for child activity in states or charts that
have parallel states. You can use self activity for parallel states.

Do not enable child active state output for states that have no children. Doing
so results in an error at compilation and run time.

When you enable active state output, the Logging pane is not visible, and
logging is unavailable through Stateflow. You can log the state activity
signals in Simulink. For more information, see “Signal Logging”.

Caution Do not set the chart property Initialize Outputs Every Time
Chart Wakes Up on charts that use active state output inside an atomic
subchart, as the behavior is unpredictable.

21-43

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Use Active State Output
This example shows how active state output is used in the model sf_car.

Here is a version of the gear_state state in the Stateflow chart shift_logic
that does not use active state output.

The output variable gear has an assignment in each state. The assignment
tracks which state, first, second, third or fourth is currently active in
gear_state.

The following steps show how to enable and use active state output to simplify
the design:

1 Delete the entry: assignments to the output data variable gear for each
state in gear_state.

2 Delete the output variable gear from the Model Explorer window.

3 Right-click inside the state gear_state, and select Properties.

4 Select the check box for Create output port for monitoring.

5 Type the name gear next to Port name.

6 Type the name gearType next to Enum name.

The state Properties window looks like the following graphic.

21-44

Use Active State Output

21-45

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

The gear_shift state now looks like this graphic.

The outport port, gear, on the shift_logic chart is now automatically
created by Stateflow. The output of gear is an enumerated type automatically
managed by Stateflow. Here is the output of gear as seen on a scope. The
names of the enumerated type match the names of the states in gear_state,
with the addition of None to indicate no active child.

21-46

Use Active State Output

Explicitly assigning the value of gear is no longer necessary, thereby
simplifying the design of gear_state.

To see the model sf_car with active state output enabled for gear_state,
at the MATLAB command prompt, type sf_car .

21-47

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Change the Port Name
When you enable active state output, Stateflow creates a name for the output
port. You can change this name by editing the value next to Port name in
the Properties window. Stateflow uses this name for the outport port on the
Stateflow block in the Simulink canvas.

21-48

Change the Port Name

21-49

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

Define the Enum Name and Type
When you use active state output to monitor child or leaf state activity, the
output data is an enumeration. Stateflow will automatically create this
enumeration, or you can customize it.

In the enumeration definition, there must be one literal for each state name
plus an extra literal to indicate no active child.

For example, here is the enumeration definition for the output of gear_state
in the model sf_car.

enumeration
None(0),
first(1),
second(2),
third(3),
fourth(4)

end

You can customize the name and definition for the enumeration output in the
Properties window. To customize the name, type the new name in the edit box
next to Enum name.

Stateflow will automatically create this enumeration, or you can tell
Stateflow to use an existing definition by selecting Define enumerated
type manually.

If you select Define enumerated type manually, but no definition
exists, then Stateflow provides a link to automatically create a MATLAB
definition. Selecting, Create enum definition from template, generates
an enumeration definition in a .m file. You can then customize this definition.

In the example, sf_car, the port name is named gear, and the enumeration
type is gearType.

21-50

Define the Enum Name and Type

21-51

21 Define Interfaces to Simulink® Models and the MATLAB® Workspace

21-52

22

Structures and Bus Signals
in Stateflow Charts

• “About Stateflow Structures” on page 22-2

• “Connect Structures in Charts to External Bus Signals” on page 22-3

• “Rules for Defining Structure Data Types in Charts” on page 22-8

• “Define Stateflow Structures” on page 22-9

• “Structure Operations” on page 22-17

• “Integrate Custom Structures in Stateflow Charts” on page 22-22

• “Debug Structures” on page 22-26

22 Structures and Bus Signals in Stateflow® Charts

About Stateflow Structures

In this section...

“What Is a Stateflow Structure?” on page 22-2

“What You Can Do with Structures” on page 22-2

What Is a Stateflow Structure?
A Stateflow structure is a data type that you define as a Simulink.Bus object.
The elements of a Stateflow structure data type are called fields. The fields
can be any combination of individual signals, muxed signals, vectors, and
buses. Each field has its own data type, which need not match that of any
other field.

What You Can Do with Structures
With the Stateflow structure data type, you can create:

• Inputs and outputs for accessing Simulink bus signals from Stateflow
charts, Truth Table blocks, and MATLAB Function blocks (see “Define
Structure Inputs and Outputs” on page 22-9)

• Local structure data in Stateflow charts, truth tables, graphical functions,
MATLAB functions, and boxes (see “Define Local Structures” on page 22-12)

• Temporary structure data in Stateflow graphical functions, truth tables,
and MATLAB functions (see “Define Temporary Structures” on page 22-14)

22-2

Connect Structures in Charts to External Bus Signals

Connect Structures in Charts to External Bus Signals
The model sfbus_demo provides examples of structures in a Stateflow chart.

The chart contains a graphical function.

22-3

22 Structures and Bus Signals in Stateflow® Charts

In this model, the Stateflow chart receives a bus input signal using the
structure inbus at input port 1 and outputs a bus signal from the structure
outbus at output port 1. The input signal comes from the Simulink Bus
Creator block COUNTERBUSCreator, which bundles signals from two other Bus
Creator blocks: SIGNALBUSCreator and LIMITBUSCreator. The structure
outbus connects to a Simulink Bus Selector block BUSSelector. The
Stateflow chart also contains a local structure counterbus_struct and a
graphical function get_input_signal that contains an input structure u
and output structure y.

Structure Definitions in sfbus_demo Stateflow Chart
Definitions of structures in the chart of the sfbus_demo model appear in the
Model Explorer as follows:

22-4

Connect Structures in Charts to External Bus Signals

Note The local structure counterbus_struct is defined using the type
operator in an expression, as described in “Define Structure Types with
Expressions” on page 22-15.

Structure Definitions in sfbus_demo Stateflow
Graphical Function
Definitions of structures in the graphical function get_input_signal appear
in the Model Explorer as follows:

Simulink Bus Objects Define Stateflow Structures
Each Stateflow structure must be defined by a Simulink.Bus object in the
base workspace. The structure shares the same properties as the bus object,
including number, name, and type of fields. For example, the sfbus_demo
model defines the following bus objects in the base workspace:

22-5

22 Structures and Bus Signals in Stateflow® Charts

You can find the bus object that defines a Stateflow structure by looking
in the Data Type and Compiled Type columns in the Contents pane of
the Model Explorer. For example, the structures inbus, outbus, and
counterbus_struct are all defined in sfbus_demo by the same Simulink
bus object, COUNTERBUS.

Based on these definitions, inbus, outbus, and counterbus_struct have the
same properties as COUNTERBUS. For example, these Stateflow structures
in sfbus_demo reference their fields by the same names as the elements in
COUNTERBUS, as follows:

Structure First Field Second Field

inbus inbus.inputsignal inbus.limits

outbus outbus.inputsignal outbus.limits

counterbus_struct counterbus_struct.inputsignal counterbus_struct.limits

22-6

Connect Structures in Charts to External Bus Signals

To learn how to define structures in Stateflow charts using Simulink.Bus
objects, see “Define Stateflow Structures” on page 22-9.

If you define a custom structure in C for your Stateflow chart, you must make
sure that the structure’s typedef declaration in your header file matches the
properties of the Simulink.Bus object that defines the structure, as described
in “Integrate Custom Structures in Stateflow Charts” on page 22-22.

22-7

22 Structures and Bus Signals in Stateflow® Charts

Rules for Defining Structure Data Types in Charts
Follow these rules when defining structures in Stateflow charts:

• You must define each structure as a Simulink.Bus object in the base
workspace.

• You cannot define structures for Stateflow machines.

Note The Stateflow machine is the object that contains all other Stateflow
objects in a Simulink model (see “Stateflow Hierarchy of Objects” on page
1-9).

• Structures cannot have these scopes: Constant or Data Store Memory.

• Structures of parameter scope must be tunable.

• Data array objects cannot contain structures.

22-8

Define Stateflow® Structures

Define Stateflow Structures

In this section...

“Define Structure Inputs and Outputs” on page 22-9

“Define Local Structures” on page 22-12

“Define Structures of Parameter Scope” on page 22-13

“Define Temporary Structures” on page 22-14

“Define Structure Types with Expressions” on page 22-15

Define Structure Inputs and Outputs

• “Interface Stateflow Structures with Simulink Bus Signals” on page 22-9

• “Work with Virtual and Nonvirtual Buses” on page 22-11

Interface Stateflow Structures with Simulink Bus Signals
You can drive Stateflow structure inputs by using any Simulink bus signal
that has matching properties. Similarly, Stateflow charts can output
structures to Simulink blocks that accept bus signals.

To create inputs and outputs in Stateflow charts:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink documentation.

2 Open the Model Explorer.

3 In the Model Explorer, add a data object as described in “How to Add Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

22-9

22 Structures and Bus Signals in Stateflow® Charts

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select either Input or Output.

6 In the Type field, select Inherit: Same as Simulink, Bus: <object
name>, or <data type expression> according to these guidelines:

Type Works with
Scope

Requirements

Inherit:
Same as
Simulink

Input You do not need to specify a value. The data type is inherited
from previously-defined data, based on the scope you selected for
the data object.

There must be a Simulink bus signal in your model that connects
to the Stateflow structure input.

The Simulink bus signal must be a nonvirtual bus (see “Work with
Virtual and Nonvirtual Buses” on page 22-11).

You must specify a Simulink.Bus object in the base workspace
with the same properties as the bus signal in your model that
connects to the Stateflow structure input. The following properties
must match:

• Number, name, and type of inputs

• Dimension

• Sample Time

• Complexity

• Sampling Mode

If your input signal comes from a Bus Creator block, you must
specify an appropriate bus object for Output data type in the
Bus Creator dialog box. When you specify the bus object, Simulink

22-10

Define Stateflow® Structures

Type Works with
Scope

Requirements

verifies that the properties of the Simulink.Bus object in the base
workspace match the properties of the Simulink bus signal.

Bus:
<object
name>

Input or
Output

Replace “<object name>” in the Type field with the name of
the Simulink.Bus object in the base workspace that defines the
Stateflow structure. For example: Bus: inbus.

Note You are not required to specify a bus signal in your
Simulink model that connects to the Stateflow structure input
or output. However, if you do specify a bus signal, its properties
must match the Simulink.Bus object that defines the Stateflow
structure input or output.

<date type
expression>

Input or
Output

Replace “<data type expression>” in the Type field with an
expression that evaluates to a data type.Enter the expression
according to these guidelines:

• For structure inputs, you can use the Stateflow type operator
to assign the type of your structure based on the type of another
structure defined in the Stateflow chart, as described in “Define
Structure Types with Expressions” on page 22-15.

Note You cannot use the type operator for structure outputs
(structures of scope Output).

• For structure inputs or outputs, you can enter the name of the
Simulink.Bus object in the base workspace that defines the
Stateflow structure.

7 Click Apply.

Work with Virtual and Nonvirtual Buses
Simulink models support virtual and nonvirtual buses. Virtual buses read
their inputs from noncontiguous memory, while nonvirtual buses read their

22-11

22 Structures and Bus Signals in Stateflow® Charts

inputs from data structures stored in contiguous memory (see “Virtual and
Nonvirtual Buses” in the Simulink documentation).

Stateflow charts support nonvirtual buses only. When Simulink models
contain Stateflow structure inputs and outputs, a hidden converter block
converts bus signals for use with Stateflow charts, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for Stateflow
structure inputs

• Converts outgoing nonvirtual bus signals from Stateflow charts to virtual
bus signals, if necessary

Even though this conversion process allows Stateflow charts to accept virtual
and nonvirtual buses as input, Stateflow structures cannot inherit properties
from virtual bus input signals. If the input to a chart is a virtual bus, you must
set the data type mode of the Stateflow bus input to Bus Object, as described
in “Interface Stateflow Structures with Simulink Bus Signals” on page 22-9.

Define Local Structures
To define local structures:

1 Create a Simulink bus object in the base workspace to define the structure
type for your Stateflow chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Open the Model Explorer.

3 In the Model Explorer, add a data object as described in “How to Add Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Local.

22-12

Define Stateflow® Structures

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Define Structure Types with Expressions” on page 22-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Define Structures of Parameter Scope
To define structures of parameter scope:

1 Create a Simulink bus object in the base workspace to define the structure
type for your chart.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Open the Model Explorer.

3 In the Model Explorer, add a data object as described in “How to Add Data
Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

22-13

22 Structures and Bus Signals in Stateflow® Charts

5 In the Scope field, select Parameter.

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Define Structure Types with Expressions” on page 22-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Tip Stateflow structures with parameter scope must be tunable. To ensure
tunability, open the Model Configuration Parameters dialog box and clear
the Inline parameters check box on the Optimization > Signals and
Parameters pane. In this case, each element in the structure is tunable.

For more information, see “Tunable Parameters” in the Simulink
documentation.

Define Temporary Structures
You can define temporary structures in truth tables, graphical functions, and
MATLAB functions of a Stateflow chart.

To define a temporary structure:

1 Create a Simulink bus object in the base workspace to define the structure
type for your chart.

22-14

Define Stateflow® Structures

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference documentation.

2 Open the Model Explorer.

3 In the Model Explorer, add a data object to your function as described in
“How to Add Data Using the Model Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog box in
its right-hand Dialog pane.

4 In the Name field of the Properties dialog box, enter the name of the
structure data.

5 In the Scope field, select Temporary.

6 In the Type field, select either Bus: <object name>, or <data type
expression>, and then specify the expression as follows:

Type What to Specify

Bus: <object
name>

Replace “<object name>” in the Type field with the name of the Simulink.Bus
object in the base workspace that defines the Stateflow structure. For example:
Bus: inbus.

<date type
expression>

Replace “<data type expression>” in the Type field with an expression that
evaluates to a data type.You can enter any of the following expressions:

• Use the Stateflow type operator to assign the type of your structure based
on the type of another structure defined in the Stateflow chart, as described
in “Define Structure Types with Expressions” on page 22-15

• Enter the name of the Simulink.Bus object in the base workspace that
defines the Stateflow structure.

7 Click Apply.

Define Structure Types with Expressions
You can define structure types with expressions that call the Stateflow type
operator. This operator assigns the type of your structure based on the type
of another structure defined in the Stateflow chart. For example, the model

22-15

22 Structures and Bus Signals in Stateflow® Charts

sfbus_demo contains a local structure whose type is defined using a type
operator expression, as follows:

In this case, the structure counterbus_struct derives its type from
structure inbus, which is defined by the Simulink.Bus object COUNTERBUS.
Therefore, the structure counterbus_struct is also defined by the bus object
COUNTERBUS.

To learn how to use the Stateflow type operator, see “Derive Data Types from
Previously Defined Data” on page 8-47.

22-16

Structure Operations

Structure Operations

In this section...

“Index Sub-Structures and Fields” on page 22-17

“Guidelines for Assignment of Values” on page 22-19

“Get Addresses” on page 22-20

Index Sub-Structures and Fields
You index substructures and fields of Stateflow structures by using dot
notation. With dot notation, the first text string identifies the parent object,
and subsequent text strings identify the children along a hierarchical path.
When the parent is a structure, its children are individual fields or fields that
contain other structures (also called substructures). By default, the names
of the fields of a Stateflow structure match the names of the elements of the
Simulink.Bus object that defines the structure.

Suppose that you have the following model:

In this example, the SubBus and BusObject blocks to the left of the chart are
Bus Creator blocks. The BusObject block to the right of the chart is a Bus
Selector block.

22-17

22 Structures and Bus Signals in Stateflow® Charts

The following structures are defined in the chart:

Name of Structure Scope Defined By
Simulink.Bus Object

in Input BusObject

out Output BusObject

subbus Local SubBus

The Simulink.Bus objects that define these structures have the following
elements:

By default, Stateflow structures in and out have the same fields — sb, a,
b, and c — as the elements of Simulink.Bus object BusObject. Similarly,
the Stateflow structure subbus has the same field ele as the element of
Simulink.Bus object SubBus. Based on these specifications, the following

22-18

Structure Operations

table shows how the Stateflow chart resolves symbols in dot notation for
indexing fields of the structures in this example:

Dot Notation Symbol Resolution

in.c Field c of input structure in

in.a[1] Second value of the vector field a of input structure in

out.sb Substructure sb of output structure out

in.sb.ele[2][3] Value in the third row, fourth column of field ele of
substructure sb of input structure in

subbus.ele[1][1] Value in the second row, second column of field ele
of local structure subbus

Guidelines for Assignment of Values
You can assign values to any Stateflow structure except input structures —
that is, a structure with scope equal to Input. Here are the guidelines for
assigning values to output, local, parameter, and temporary structures:

Operation Conditions

Assign one structure to another
structure

You must define both structures
with the same Simulink.Bus object
in the base workspace.

Assign one structure to a
substructure of a different structure
and vice versa

You must define the structure with
the same Simulink.Bus object in the
base workspace as the substructure.

Assign a field of one structure to a
field of another structure

The fields must have the same type
and size.

Note In this case, you do not need
to define the Stateflow structures
with the same Simulink.Bus object
in the base workspace.

22-19

22 Structures and Bus Signals in Stateflow® Charts

For example, the following table presents valid and invalid structure
assignments based on specifications for the sfbus_demo model, as described in
“Connect Structures in Charts to External Bus Signals” on page 22-3:

Assignment Valid or
Invalid?

Rationale

outbus = inbus; Valid Both outbus and inbus are defined
by the same Simulink.Bus object,
COUNTERBUS.

inbus = outbus; Invalid You cannot write to input structures.

inbus.limits = outbus.limits; Invalid You cannot write to fields of input
structures.

counterbus_struct = inbus; Valid Both counterbus_struct and inbus
are defined by the same Simulink.Bus
object, COUNTERBUS.

counterbus_struct.inputsignal =
inbus.inputsignal;

Valid Both
counterbus_struct.inputsignal
and inbus.inputsignal have the
same type and size because they
each reference field inputsignal, a
substructure of the Simulink.Bus
object COUNTERBUS.

outbus.limits.upper_saturation_limit
= inbus.inputsignal.input;

Valid The field upper_saturation_limit
from limits, a substructure of
COUNTERBUS, has the same type
and size as the field input from
inputsignal, a different substructure
of COUNTERBUS.

outbus.limits = inbus.inputsignal; Invalid The substructure limits is defined by
a different Simulink.Bus object than
the substructure inputsignal.

Get Addresses
When you write custom functions that take structure pointers as arguments,
you must pass the structures by address. To get addresses of Stateflow

22-20

Structure Operations

structures and structure fields, use the & operator, as in the following
examples:

• &in — Address of Stateflow structure in

• &in.b— Address of field b in Stateflow structure in

The model sfbus_demo contains a custom C function counterbusFcn that
takes structure pointers as arguments, defined as follows in a custom header
file:

...
extern void counterbusFcn

(COUNTERBUS *u1, int u2, COUNTERBUS *y1, int *y2);
...

To call this function, you must pass addresses to two structures defined by the
Simulink.Bus object COUNTERBUS, as in this example:

counterbusFcn(&counterbus_struct, u2, &outbus, &y2);

See “Connect Structures in Charts to External Bus Signals” on page 22-3 for a
description of the structures defined in sfbus_demo.

22-21

22 Structures and Bus Signals in Stateflow® Charts

Integrate Custom Structures in Stateflow Charts
You can define custom structures in C code, which you can then integrate with
your chart for simulation and real-time code generation. Follow these steps:

1 Define your structure in C, creating custom source and header files.

The header file must contain the typedef statements for your structures.
For example, the model sfbus_demo uses custom structures, defined in a
custom header file as follows:

...
#include "tmwtypes.h"

typedef struct {
int input;

} SIGNALBUS;

typedef struct {
int upper_saturation_limit;
int lower_saturation_limit;

} LIMITBUS;

typedef struct {
SIGNALBUS inputsignal;
LIMITBUS limits;

} COUNTERBUS;
...

2 Define a Simulink.Bus object in the base workspace that matches each
custom structure typedef.

22-22

Integrate Custom Structures in Stateflow® Charts

For example, the model sfbus_demo defines the following Simulink.Bus
objects to match each typedef in the custom header file:

3 Open the Bus Editor and for each bus object in the base workspace defined
in custom code, add the name of the header file that contains the matching
typedef.

22-23

22 Structures and Bus Signals in Stateflow® Charts

For example, the model sfbus_demo specifies the custom header file
counterbus.h for the bus object COUNTERBUS:

4 Configure your chart to include custom C code, as follows.

To Include
Custom C
Code:

Do This:

In code
generated for
simulation

Follow these steps:
1 Open the chart that uses your custom C structures.
2 Open the Model Configuration Parameters dialog box.
3 In the Model Configuration Parameters dialog box,
select Simulation Target > Custom Code in the
Select tree.

Custom code options appear in the right pane.

22-24

Integrate Custom Structures in Stateflow® Charts

To Include
Custom C
Code:

Do This:

4 Specify your custom code as described in “Task 1:
Include Custom C Code in the Simulation Target” on
page 27-8.

In code
generated
for real-time
applications

Follow these steps:
1 Open the chart that uses your custom C structures.
2 Open the Model Configuration Parameters dialog box.
3 In the Model Configuration Parameters dialog box,
select Code Generation > Custom Code in the
Select tree.

Custom code options appear in the right pane.
4 Follow instructions in “Configure Model for
External Code Integration” in the Simulink Coder
documentation.

5 Build your model and fix errors (see “Debug Structures” on page 22-26).

6 Run your model.

22-25

22 Structures and Bus Signals in Stateflow® Charts

Debug Structures
You debug structures as you would other Stateflow chart data, as described in
“Watch Data Values During Simulation” on page 28-55. Using the Stateflow
Debugger, you can examine the values of structure fields during simulation,
either from the graphical debugging window or from the command line, as
described in “Watch Data Values During Simulation” on page 28-55. To view
the values of structure fields at the command line, use dot notation to index
into the structure, as described in “Index Sub-Structures and Fields” on
page 22-17.

22-26

23

Stateflow Design Patterns

• “Debounce Signals” on page 23-2

• “Schedule Function Calls” on page 23-8

• “Schedule Execution of Simulink Subsystems” on page 23-9

• “Schedule Multiple Subsystems in a Single Step” on page 23-10

• “Schedule One Subsystem in a Single Step” on page 23-15

• “Schedule Subsystems to Execute at Specific Times” on page 23-19

• “Implement Dynamic Test Vectors” on page 23-23

• “Map Fault Conditions to Actions in Truth Tables” on page 23-32

• “Design for Isolation and Recovery in a Chart” on page 23-36

23 Stateflow® Design Patterns

Debounce Signals

In this section...

“Why Debounce Signals” on page 23-2

“The Debouncer Model” on page 23-3

“Key Behaviors of Debouncer Chart” on page 23-4

“Run the Debouncer” on page 23-5

Why Debounce Signals
When a switch opens and closes, the switch contacts can bounce off each other
before the switch completely transitions to an on or off state. The bouncing
action can produce transient signals that do not represent a true change of
state. Therefore, when modeling switch logic, it is important to filter out
transient signals using a process called debouncing.

For example, if you model a controller in a Stateflow chart, you do not
want your switch logic to overwork the controller by turning it on and off
in response to every transient signal it receives. Instead, you can design a
Stateflow debouncer that uses temporal logic to determine whether the switch
is really on or off.

23-2

Debounce Signals

The Debouncer Model
The model sf_debouncer illustrates a design pattern that uses temporal logic
to isolate transient signals.

The Debouncer chart contains the following logic:

23-3

23 Stateflow® Design Patterns

Key Behaviors of Debouncer Chart
The key behaviors of the Debouncer chart are:

• “Intermediate Debounce State Isolates Transients” on page 23-4

• “Temporal Logic Determines True State” on page 23-5

Intermediate Debounce State Isolates Transients
In addition to the states On and Off, the Debouncer chart contains an
intermediate state called Debounce. The Debounce state isolates transient
inputs by checking whether the signals retain their positive or negative
values, or fluctuate between zero crossings over a prescribed period of time.
The logic works as follows.

If the input signal... Then this state... Transitions to... And the...

Retains positive value
for 0.1 second

Debounce.On On Switch turns on

Retains negative value
for 0.1 second

Debounce.Off Off Switch turns off

Fluctuates between
zero crossings for 0.3
second

Debounce Off.Fault

Note The Debounce
to Off.Fault transition
comes from a
higher level in the
chart hierarchy
and overrides the
transitions from
the Debounce.Off
and Debounce.On
substates.

Chart isolates the
input as a transient
signal and gives it
time to recover

23-4

Debounce Signals

Temporal Logic Determines True State
The debouncer design pattern uses temporal logic to:

• Determine whether the input signal is normal or transient

• Give transient signals time to recover and return to normal state

Use Absolute-Time Temporal Logic. The debouncer design uses the
after(n, sec) operator to implement absolute-time temporal logic (see
“Operators for Absolute-Time Temporal Logic” on page 10-68). The keyword
sec defines simulation time that has elapsed since activation of a state.

Use Event-Based Temporal Logic. As an alternative to absolute-time
temporal logic, you can apply event-based temporal logic to determine true
state in the Debouncer chart by using the after(n, tick) operator (see
“Operators for Event-Based Temporal Logic” on page 10-62). The keyword
tick specifies and implicitly generates a local event when the chart awakens
(see “Control Chart Execution Using Implicit Events” on page 9-39).

The Error Generator block in the sf_debouncer model generates a pulse
signal every 0.001 second. Therefore, to convert the absolute-time temporal
logic specified in the Debouncer chart to event-based logic, multiply the n
argument by 1000, as follows.

Absolute Time-Based Logic Event-Based Logic

after (0.1, sec) after (100, tick)

after (0.3, sec) after (300, tick)

after (1, sec) after (1000, tick)

Run the Debouncer
To run the sf_debouncer model, follow these steps:

1 Open the model by typing sf_debouncer at the MATLAB command prompt.

2 Open the Stateflow chart Debouncer and the Scope block.

3 Simulate the chart.

23-5

23 Stateflow® Design Patterns

The scope shows how the debouncer isolates transient signals from the
noisy input signal.

23-6

Debounce Signals

Note To debounce the signals using event-based logic, change the
Debouncer chart as described in “Use Event-Based Temporal Logic” on
page 23-5 and simulate the chart again. You should get the same results.

23-7

23 Stateflow® Design Patterns

Schedule Function Calls
You can schedule calls to Simulink and MATLAB functions by using
conditional and time-based logic in Stateflow. You can design logic using
temporal operators without requiring timers and counters. Temporal logic
can be based on events or elapsed time. For more information on temporal
logic, see“Control Chart Execution Using Temporal Logic” on page 10-61.

For an example, see “Scheduling Simulink® Algorithms Using Stateflow®”.

23-8

Schedule Execution of Simulink® Subsystems

Schedule Execution of Simulink Subsystems

In this section...

“When to Implement Schedulers” on page 23-9

“Types of Schedulers” on page 23-9

When to Implement Schedulers
Use Stateflow charts to schedule the order of execution of Simulink
subsystems explicitly in a model. Stateflow schedulers extend control
of subsystem execution in a Simulink model, which determines order of
execution implicitly based on block connectivity via sample time propagation.

Types of Schedulers
You can implement the following types of schedulers using Stateflow charts.

Scheduler
Design
Pattern

Description

Ladder logic
scheduler

Schedules multiple Simulink subsystems to execute in a
single time step

Loop
scheduler

Schedules one Simulink subsystem to execute multiple
times in a single time step

Temporal
logic
scheduler

Schedules Simulink subsystems to execute at specific times

23-9

23 Stateflow® Design Patterns

Schedule Multiple Subsystems in a Single Step
The ladder logic scheduler design pattern allows you to specify the order in
which multiple Simulink subsystems execute in a single time step. The model
sf_ladder_logic_scheduler illustrates this design pattern.

23-10

Schedule Multiple Subsystems in a Single Step

The Ladder Logic Scheduler chart contains the following logic:

Key Behaviors of Ladder Logic Scheduler
The key behaviors of the ladder logic scheduler are:

• “Function-Call Output Events Trigger Multiple Subsystems” on page 23-11

• “Flow Chart Determines Order of Execution” on page 23-12

Function-Call Output Events Trigger Multiple Subsystems
In a given time step, the Stateflow chart broadcasts a series of function-call
output events to trigger the execution of three function-call subsystems — A1,
A2, and A3 — in the Simulink model in an order determined by the ladder
logic scheduler. Here is the sequence of activities during each time step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

23-11

23 Stateflow® Design Patterns

2 The Edge to Function chart broadcasts the function-call output event call
to activate the Stateflow chart Ladder Logic Scheduler.

3 The Ladder Logic Scheduler chart broadcasts function-call output events
to trigger the function-call subsystems A1, A2, and A3, based on the values
of inputs u1 and u2 (see “Flow Chart Determines Order of Execution” on
page 23-12).

Flow Chart Determines Order of Execution
The Ladder Logic Scheduler chart uses Stateflow flow charting capabilities to
implement the logic that schedules the execution of the Simulink function-call
subsystems. The chart contains a Stateflow flow chart that resembles a
ladder diagram. Each rung in the ladder represents a rule or condition that
determines whether to execute one of the Simulink function-call subsystems.
The flow logic evaluates each condition sequentially, which has the effect of
scheduling the execution of multiple subsystems within the same time step.
The chart executes each subsystem by using the send action to broadcast a
function-call output event (see “Directed Local Event Broadcast Using send”
on page 10-57).

Here is the sequence of activities that occurs in the Ladder Logic Scheduler
chart in each time step:

1 Assign output y to input u1.

2 If u1 is positive, send function-call output event A1 to the Simulink model.

The subsystem connected to A1 executes. This subsystem multiplies its
input by a gain of 2 and passes this value back to the Stateflow Ladder
Logic Scheduler chart as input u2. Control returns to the next condition in
the Ladder Logic Scheduler.

3 If u2 is positive or zero, send function-call output event A2 to the Simulink
model.

The subsystem connected to A2 executes. This subsystem outputs its input
value unchanged. Control returns to the next condition in the Ladder
Logic Scheduler.

23-12

Schedule Multiple Subsystems in a Single Step

4 If u1 and u2 are positive, send function-call output event A3 to the Simulink
model.

The subsystem connected to A3 executes. This subsystem multiplies its
input by a gain of 1.

5 The Ladder Logic Scheduler chart goes to sleep.

Run the Ladder Logic Scheduler
To run the sf_ladder_logic_scheduler model, follow these steps:

1 Open the model by typing sf_ladder_logic_scheduler at the MATLAB
command prompt.

2 Open the Scope block.

3 Start simulation.

The scope shows how output y changes, depending on which subsystems
the Ladder Logic Scheduler chart calls during each time step.

23-13

23 Stateflow® Design Patterns

Tip If you keep the chart closed, the simulation runs much faster. For
other tips, see “Speed Up Simulation” on page 27-16.

23-14

Schedule One Subsystem in a Single Step

Schedule One Subsystem in a Single Step
With the loop scheduler design pattern, you can schedule one Simulink
subsystem to execute multiple times in a single time step. The model
sf_loop_scheduler illustrates this design pattern.

23-15

23 Stateflow® Design Patterns

The Looping Scheduler chart contains the following logic:

Key Behaviors of Loop Scheduler
The key behaviors of the loop scheduler are:

• “Function-Call Output Event Triggers Subsystem Multiple Times” on
page 23-16

• “Flow Chart Implements For Loop” on page 23-17

Function-Call Output Event Triggers Subsystem Multiple Times
In a given time step, the Stateflow chart broadcasts a function-call output
event to trigger the execution of the function-call subsystem A1 multiple times
in the Simulink model. Here is the sequence of activities during each time
step:

1 The Simulink model activates the Stateflow chart Edge to Function at a
rising edge of the 1-millisecond pulse generator.

2 The Edge to Function chart broadcasts the function-call output event call
to activate the Stateflow chart Looping Scheduler.

3 The Looping Scheduler chart broadcasts a function-call output event from a
for loop to trigger the function-call subsystem A1 multiple times (see “Flow
Chart Implements For Loop” on page 23-17).

23-16

Schedule One Subsystem in a Single Step

Flow Chart Implements For Loop
The Looping Scheduler chart uses Stateflow flow charting capabilities to
implement a for loop for broadcasting an event multiple times in a single
time step. The chart contains a Stateflow flow chart that uses a local data
variable i to control the loop. At each iteration, the chart updates output y
and issues the send action to broadcast a function-call output event that
executes subsystem A1. Subsystem A1 uses the value of y to recompute its
output and send the value back to the Looping Scheduler chart.

Run the Loop Scheduler
To run the sf_loop_scheduler model, follow these steps:

1 Open the model by typing sf_loop_scheduler at the MATLAB command
prompt.

2 Open the Scope block.

3 Start simulation.

23-17

23 Stateflow® Design Patterns

The scope displays the value of y at each time step.

In this example, the Looping Scheduler chart executes the for loop 10 times
in each time step. During each iteration:

1 The chart increments y by 1 (the constant value of input u1).

2 The chart broadcasts a function-call output event that executes subsystem
A1.

3 Subsystem A1 multiplies y by a gain of 1.

4 Control returns to the chart.

23-18

Schedule Subsystems to Execute at Specific Times

Schedule Subsystems to Execute at Specific Times
The temporal logic scheduler design pattern allows you to schedule
Simulink subsystems to execute at specified times. The model
sf_temporal_logic_scheduler illustrates this design pattern.

23-19

23 Stateflow® Design Patterns

The Temporal Logic Scheduler chart contains the following logic:

Key Behaviors of Temporal Logic Scheduler
The Temporal Logic Scheduler chart contains two states that schedule the
execution of the function-call subsystems A1, A2, and A3 at different rates,
as determined by the temporal logic operator every (see “Operators for
Event-Based Temporal Logic” on page 10-62).

In the FastScheduler state, the every operator schedules function calls as
follows:

• Sends A1 every time the function-call output event call wakes up the chart

• Sends A2 at half the base rate

• Sends A3 at one-quarter the base rate

The SlowScheduler state schedules function calls less frequently — at 8, 16,
and 32 times slower than the base rate. The chart switches between fast and
slow executions after every 100 invocations of the call event.

23-20

Schedule Subsystems to Execute at Specific Times

Run the Temporal Logic Scheduler
To run the sf_temporal_logic_scheduler model, follow these steps:

1 Open the model by typing sf_temporal_logic_scheduler at the MATLAB
command prompt.

2 Open the Scope block.

3 Start simulation.

4 After the simulation ends, click the Autoscale button in the Scope block.

23-21

23 Stateflow® Design Patterns

The scope illustrates the different rates of execution.

23-22

Implement Dynamic Test Vectors

Implement Dynamic Test Vectors

In this section...

“When to Implement Test Vectors” on page 23-23

“A Dynamic Test Vector Chart” on page 23-25

“Key Behaviors of the Chart and Model” on page 23-27

“Run the Model with Stateflow Test Vectors” on page 23-29

When to Implement Test Vectors
Use Stateflow charts to create test vectors that change dynamically during
simulation, based on the state of the system you are modeling.

For example, suppose you want to test an automatic car transmission
controller in the situation where a car is coasting. To achieve a coasting state,
a driver accelerates until the transmission shifts into the highest gear, then
eases up on the gas pedal. To test this scenario, you could generate a signal
that represents this behavior, as in the following Signal Builder block.

23-23

23 Stateflow® Design Patterns

However, this approach has limitations. The signal changes value based
on time, but cannot respond dynamically to changes in the system that
are not governed by time alone. For example, how does the signal know
when the transmission shifts into the highest gear? In this case, the signal
assumes that the shift always occurs at time 5 because it cannot test for other

23-24

Implement Dynamic Test Vectors

deterministic conditions such as the speed of the vehicle. Moreover, you
cannot change the signal based on outputs from the model.

By contrast, you can use Stateflow charts to develop test vectors that use
conditional logic to evaluate and respond to changes in system state as they
occur. For example, to test the coasting scenario, the chart can evaluate
an output that represents the gear range and reduce speed only after the
transmission shifts to the highest gear. That is, the car slows down as a direct
result of the gear shift and not at a predetermined time. For a detailed look at
this type of chart, see “A Dynamic Test Vector Chart” on page 23-25.

A Dynamic Test Vector Chart
The following model of an automatic transmission controller uses a Stateflow
chart to implement test vectors that represent brake, throttle, and gear shift
dynamics. The chart, called Dynamic Test Vectors, interfaces with the rest of
the model as shown.

23-25

23 Stateflow® Design Patterns

The chart models the dynamic relationship between the brake and throttle to
test four driving scenarios. Each scenario is represented by a state.

23-26

Implement Dynamic Test Vectors

In some of these scenarios, the throttle changes in response to time; in
other cases, it responds to gear selection, an output of the Stateflow chart
Shift_logic. The Shift_logic chart determines the gear value based on the
speed of the vehicle.

Key Behaviors of the Chart and Model
The key behaviors of the test vector chart and model are:

• “Chart Represents Test Cases as States” on page 23-27

• “Chart Uses Conditional Logic to Respond to Dynamic Changes” on page
23-27

• “Model Provides an Interface for Selecting Test Cases” on page 23-28

Chart Represents Test Cases as States
The Dynamic Test Vectors chart represents each test case as an exclusive
(OR) state. Each state manipulates brake and throttle values in a unique
way, based on the time and gear inputs to the chart.

The chart determines which test to execute from the value of a constant signal
case, output from the Signal Builder block. Each test case corresponds to a
unique signal value.

Chart Uses Conditional Logic to Respond to Dynamic Changes
The Dynamic Test Vectors chart uses conditions on transitions to test time
and gear level, and then adjusts brake and throttle accordingly for each
driving scenario. Stateflow charts provide many constructs for testing system
state and responding to changes, including:

• Conditional logic (see “State Action Types” on page 10-2 and “Transition
Action Types” on page 10-7)

• Temporal logic (see “Control Chart Execution Using Temporal Logic” on
page 10-61)

• Change detection operators (see “Detect Changes in Data Values” on page
10-81)

23-27

23 Stateflow® Design Patterns

• MATLAB functions (see “Access Built-In MATLAB Functions and
Workspace Data” on page 10-41)

Model Provides an Interface for Selecting Test Cases
The model uses a Signal Builder block to provide an interface for selecting
test scenarios to simulate.

23-28

Implement Dynamic Test Vectors

Select and Run Test Cases. In the Signal Builder, select and run test
cases as follows:

To Test: Do This:

One case Click the tab that corresponds to the
driving scenario you want to test and
click the Start simulation button:

All cases and produce a model
coverage report (requires a Simulink
Verification and Validation™
software license)

Click the Run all and produce
coverage button:

The Signal Builder block sends to the Dynamic Test Vectors chart one or more
constant signal values that correspond to the driving scenarios you select. The
chart uses these values to activate the appropriate test cases.

Run the Model with Stateflow Test Vectors
To run the sf_test_vectors model, follow these steps:

1 Open the model by typing sf_test_vectors at the MATLAB command
prompt.

2 Open the Dynamic Test Vectors chart, the Signal Builder block, and the
Scope block.

3 Select and simulate a driving scenario from the Signal Builder block, as
described in “Select and Run Test Cases” on page 23-29.

The scope shows the interaction between speed and throttle for the selected
scenario.

23-29

23 Stateflow® Design Patterns

Driving
Scenario

Scope Display Description

Passing
Maneuver

Driver accelerates
rapidly. At t = 15 seconds,
steps the throttle to 100.
With continued heavy
throttle, the vehicle
accelerates to about 100
MPH and then shifts into
overdrive at about t =
21 seconds. The vehicle
cruises along in fourth
gear for the remainder of
the simulation.

Gradual
Acceleration

Driver maintains a
slow but steady rate of
acceleration.

23-30

Implement Dynamic Test Vectors

Driving
Scenario

Scope Display Description

Hard Braking Driver accelerates until
the transmission shifts to
third gear, then removes
foot from the gas pedal.
After a short delay, moves
foot to the brake pedal
and pushes hard.

Coasting Driver accelerates until
transmission shifts to
highest gear, then eases
up on the gas.

23-31

23 Stateflow® Design Patterns

Map Fault Conditions to Actions in Truth Tables
You can use truth tables in Stateflow to map fault conditions of a system
directly to their consequent actions. Truth tables implement logic design
based on conditions, decisions, and actions. For more information, see “What
Is a Truth Table?” on page 24-2.

This example shows how the model sf_aircraft maps the fault conditions and
actions using a truth table. For details on this model, see “Fault Detection
Control Logic in an Aircraft Elevator Control System”.

The fault detection system for the aircraft elevator control system has these
requirements.

Condition Action

Hydraulic pressure 1 failure While there are no other failures,
turn off the left outer actuator.

Hydraulic pressure 2 failure While there are no other failures,
turn off the left inner actuator and
the right inner actuator.

Hydraulic pressure 3 failure While there are no other failures,
turn off the right outer actuator.

Actuator position failure While there are no other failures,
isolate that specific actuator.

Hydraulic pressure 1 and left outer
actuator failures

While there are no other failures,
turn off the left outer actuator

Hydraulic pressure 2 and left inner
actuator failures

While there are no other failures,
turn off the left inner actuator.

Hydraulic pressure 3 and right outer
actuator failures

While there are no other failures,
turn off the right outer actuator

Multiple failures on left hydraulics
and actuators

Isolate the left outer actuator and
the left inner actuator.

23-32

Map Fault Conditions to Actions in Truth Tables

Condition Action

Multiple failures on right hydraulics
and actuators

Isolate the right outer actuator and
the right inner actuator.

Intermittent actuator failures If an actuator has been switched on
and off five times during operation,
isolate that specific actuator.

Logic to satisfy these requirements is constructed using two truth tables in
the chart Mode Logic; one for the right elevator (R_switch), and one for the
left elevator (L_switch). This truth table is for the left elevator.

23-33

23 Stateflow® Design Patterns

23-34

Map Fault Conditions to Actions in Truth Tables

The first requirement indicates that if a failure is only detected in the
hydraulic pressure 1 system, turn off the left outer actuator. This requirement
is represented in the decision D1 in the truth table. If there is low pressure in
the hydraulic system 1, then D1 specifies that action 2 is performed. Action 2
sends an event go_off to the left actuator, Actuators.LO.

Similarly, the other requirements are mapped to the appropriate actions
in the truth table. For example, if the left outer actuator fails, D3 causes
action 3. Action 3 sends the event go_isolated to Actuators.LO to isolate
the left actuator.

The truth tables are called at entry(en) and during(du) actions for the chart so
that fault checks execute at each time step.

23-35

23 Stateflow® Design Patterns

Design for Isolation and Recovery in a Chart

In this section...

“Mode Logic for the Elevator Actuators” on page 23-36

“States for Failure and Isolation” on page 23-38

“Transitions for Recovery” on page 23-38

Mode Logic for the Elevator Actuators
This example shows how the model sf_aircraft uses the chart Mode Logic to
detect system faults and recover from failure modes for an aircraft elevator
control system. For more information on this model, see “Fault Detection
Control Logic in an Aircraft Elevator Control System”.

There are two elevators in the system, each with an outer and inner actuator.
The Actuators state has a corresponding substate for each of the four
actuators. An actuator has five modes: Passive, Active, Standby, Off, and
Isolated. By default, the outer actuators are on, and the inner actuators are
on standby. If a fault is detected in the outer actuators, the system responds
to maintain stability by turning the outer actuators off and activating the
inner actuators.

23-36

Design for Isolation and Recovery in a Chart

23-37

23 Stateflow® Design Patterns

States for Failure and Isolation
Each actuator contains an Off state and an Isolated state. When the fault
detection logic in one of the truth tables detects a failure, it broadcasts the
event go_off or go_isolated to the failing actuator. For more information,
see “Map Fault Conditions to Actions in Truth Tables” on page 23-32.

The go_off event instructs the failing actuator to transition to the Off state
until the condition is resolved. The event go_isolated causes the failing
actuator to transition to Isolated. Transitions to the Isolated state are from
the superstate L1, which contains all the other operating modes. This state
has no outgoing transitions, so that once an actuator has entered Isolated
it remains there. Intermittent failures that cause an actuator to fail 5 or
more times, also cause a transition to Isolated. The variable fails logs the
number of failures for an actuator by incrementing each time a transition
occurs out of Off.

Transitions for Recovery
Transitions in the substates for each actuator account for recovery
requirements of the elevator system. These requirements derive from rules
for symmetry and safety of the elevators such as:

• Only one actuator for an elevator must be active at one time.

• Outer actuators have priority over the inner actuators.

• Actuator activity should be symmetric if possible.

• Switching between actuators must be kept to a minimum.

For example, one requirement of the system is if one outer actuator fails, then
the other outer actuator must move to standby and the inner actuators take
over. Consequently, there is a transition from each Active state to Standby,
and vice versa.

23-38

Design for Isolation and Recovery in a Chart

For the inner left actuator (LI), the transition to Active inside the L1
superstate is conditionally based on [!LO_act()|RI_act()]. This causes the
left inner actuator to turn on if the outer actuator (LO) has failed, or the right
inner actuator (RI) has turned on.

23-39

23 Stateflow® Design Patterns

Another consequence if LO fails and moves out of Active is a transition that
occurs in the right outer actuator (RO). The RO state transitions inside the L1
superstate from Active to Standby. This satisfies the requirement of the
outer actuators and inner actuators to work in symmetry.

23-40

24

Truth Table Functions for
Decision-Making Logic

• “What Is a Truth Table?” on page 24-2

• “Why Use a Truth Table in a Stateflow Chart?” on page 24-4

• “Where to Use a Truth Table” on page 24-5

• “Language Options for Stateflow Truth Tables” on page 24-6

• “Represent Combinatorial Logic Using Truth Tables” on page 24-8

• “Build Model with Stateflow Truth Table” on page 24-9

• “Program a Truth Table” on page 24-22

• “Debug a Truth Table” on page 24-48

• “Correct Overspecified and Underspecified Truth Tables” on page 24-63

• “How Stateflow Generates Content for Truth Tables” on page 24-74

• “Truth Table Editor Operations” on page 24-83

24 Truth Table Functions for Decision-Making Logic

What Is a Truth Table?
Truth table functions implement combinatorial logic design behavior.
Stateflow truth tables contain conditions, decisions, and actions arranged as
follows:

Condition Decision 1 Decision 2 Decision 3
Default
Decision

x == 1 T F F -

y == 1 F T F -

z == 1 F F T -

Action t = 1 t = 2 t = 3 t = 4

Each of the conditions entered in the Condition column must evaluate to
true (nonzero value) or false (zero value). Outcomes for each condition are
specified as T (true), F (false), or - (true or false). Each of the decision columns
combines an outcome for each condition with a logical AND into a compound
condition, that is referred to as a decision.

You evaluate a truth table one decision at a time, starting with Decision 1. If
one of the decisions is true, you perform its action and truth table execution is
complete. For example, if conditions 1 and 2 are false and condition 3 is true,
Decision 3 is true and the variable t is set equal to 3. The remaining decisions
are not tested and evaluation of the truth table is finished.

The last decision in the preceding example, Default Decision, covers all
possible remaining decisions. If Decisions 1, 2, and 3 are false, then the
Default Decision is automatically true and its action (t = 4) is executed. You
can see this behavior when you examine the following equivalent pseudocode
for the evaluation of the preceding truth table example:

24-2

What Is a Truth Table?

Description Pseudocode

Decision 1

Decision 1 Action
if ((x == 1) & !(y == 1) & !(z == 1))
t = 1;

Decision 2

Decision 2 Action
elseif (!(x == 1) & (y == 1) & !(z == 1))
t = 2;

Decision 3

Decision 3 Action
elseif (!(x == 1) & !(y == 1) & (z == 1))
t = 3;

Default Decision

Default Decision Action
else
t = 4;

endif

24-3

24 Truth Table Functions for Decision-Making Logic

Why Use a Truth Table in a Stateflow Chart?
A truth table implements combinatorial logic in a concise, tabular format.
Typical applications for truth tables include decision making for:

• Fault detection and management

• Mode switching

24-4

Where to Use a Truth Table

Where to Use a Truth Table
A truth table function can reside anywhere in a chart, state, or subchart.
The location of a function determines its scope, that is, the set of states and
transitions that can call the function. Follow these guidelines:

• If you want to call the function only within one state or subchart and its
substates, put your truth table function in that state or subchart. That
function overrides any other functions of the same name in the parents and
ancestors of that state or subchart.

• If you want to call the function anywhere in that chart, put your truth table
function at the chart level.

24-5

24 Truth Table Functions for Decision-Making Logic

Language Options for Stateflow Truth Tables

In this section...

“C Truth Tables” on page 24-6

“MATLAB Truth Tables” on page 24-6

“Select a Language for Stateflow Truth Tables” on page 24-7

“Migration from C to MATLAB Truth Tables” on page 24-7

C Truth Tables
Using C truth tables, you can specify conditions and actions using C as the
action language. C truth tables support basic C constructs and provide access
to MATLAB functions using the ml namespace operator or ml function.

MATLAB Truth Tables
Using MATLAB truth tables, you can specify conditions and actions using
MATLAB as the action language, which provides optimizations for code
generation.

MATLAB truth tables offer several advantages over C truth tables:

• MATLAB as the action language provides a richer syntax for specifying
control flow logic in truth table actions. It provides for loops, while loops,
nested if statements, and switch statements.

• You can call MATLAB functions directly in truth table actions. Also, you
can call library functions (for example, MATLAB sin and fft functions)
and generate code for these functions using Simulink Coder code generation
software.

• You can create temporary or persistent variables during simulation or in
code directly without having to define them in the Model Explorer.

• You have access to better debugging tools. You can set breakpoints on lines
of code, step through code, and watch data values using tool tips.

24-6

Language Options for Stateflow® Truth Tables

• You can use persistent variables in truth table actions. This feature allows
you to define data that persists across multiple calls to the truth table
function during simulation.

Select a Language for Stateflow Truth Tables
To specify an action language for your Stateflow truth table:

1 Double-click the truth table to open the Truth Table Editor.

2 Select Settings > Language.

3 Select C or MATLAB from the drop-down menu.

Migration from C to MATLAB Truth Tables
When you migrate from a C truth table to a MATLAB truth table, you must
verify that the code used to program the actions conforms to MATLAB syntax.
Between the two action languages, these differences exist.

For this type of action
language...

Indices are... And the expression
for not equal to is...

MATLAB One-based ~=

C Zero-based !=

You can check for syntax errors in the Truth Table Editor by selecting
Settings > Run Diagnostics, as described in “Check Truth Tables for
Errors” on page 24-48.

24-7

24 Truth Table Functions for Decision-Making Logic

Represent Combinatorial Logic Using Truth Tables
Here is the recommended workflow for using truth tables in Simulink models.

Step Task Reference

1 Add a truth table to your
Simulink model.

“Build Model with Stateflow
Truth Table” on page 24-9

2 Specify properties of the truth
table function.

“Specify Properties of Truth
Table Functions in Stateflow
Charts” on page 24-13

3 Select an action language and
program the conditions and
actions in the truth table.

“Program a Truth Table” on page
24-22

4 Debug the truth table for syntax
errors and for errors during
simulation.

“Debug a Truth Table” on page
24-48

5 Simulate the model and check
the generated content for the
truth tables.

“How Stateflow Generates
Content for Truth Tables” on
page 24-74

24-8

Build Model with Stateflow® Truth Table

Build Model with Stateflow Truth Table

In this section...

“Methods for Adding Truth Tables to Simulink Models” on page 24-9

“Add a Stateflow Block that Calls a Truth Table Function” on page 24-9

Methods for Adding Truth Tables to Simulink Models
Methods for adding a Stateflow truth table to a Simulink model are:

Procedure Action Languages
Supported

How To Do It

Add a Truth Table block
directly to the model.

MATLAB only See the Truth Table
block reference page.

Add a Stateflow block
that calls a truth table
function.

C and MATLAB See “Add a Stateflow
Block that Calls a
Truth Table Function”
on page 24-9.

Add a Stateflow Block that Calls a Truth Table
Function
This section describes how to add a Stateflow block to your Simulink model,
and then create a chart that calls a truth table function. These topics include:

• “Create a Simulink Model” on page 24-10

• “Create a Stateflow Truth Table” on page 24-12

• “Specify Properties of Truth Table Functions in Stateflow Charts” on page
24-13

• “Call a Truth Table in a Stateflow Action” on page 24-16

• “Create Truth Table Data in Stateflow Charts and Simulink Models” on
page 24-17

Once you build a model in this section, finish it by programming the truth
table with its behavior in “Program a Truth Table” on page 24-22.

24-9

24 Truth Table Functions for Decision-Making Logic

Create a Simulink Model
To execute a truth table, you first need a Simulink model that calls a
Stateflow block. Later, you will create a Stateflow chart for the Stateflow
block that calls a truth table function. In this exercise, you create a Simulink
model that calls a Stateflow block.

1 At the MATLAB prompt, enter the following command:

sfnew

An untitled model with a Stateflow block appears.

2 Click and drag the Stateflow block to the center of the model window.

3 In the model window, select View > Library Browser.

The Simulink Library Browser window opens with the Simulink node
expanded.

4 Under the Simulink node, select the Sources library.

The right pane of the Simulink Library Browser window displays the
blocks of the Sources library.

5 From the right pane of the Simulink Library Browser, click and drag the
Constant block to the left of the Chart block in the model.

6 Add two more Constant blocks to the left of the Chart block, and add a
Display block (from the Sinks library) to the right of the Chart block.

7 In the model, double-click the middle Constant block.

8 In the Block Parameters dialog box that appears, change Constant value
to 0.

24-10

Build Model with Stateflow® Truth Table

9 Click OK to close the dialog box.

10 In the model, double-click the bottom Constant block.

11 In the Block Parameters dialog box that appears, change Constant value
to 0.

12 Click OK to close the dialog box.

Your model should now look something like this:

13 Open the Model Configuration Parameters dialog box.

14 On the Solver pane, set:

• Type to Fixed-step

• Solver to discrete (no continuous states)

• Fixed-step size to 1

15 Click OK to accept these values and close the Model Configuration
Parameters dialog box.

16 Save the model as ex_first_truth_table.

24-11

24 Truth Table Functions for Decision-Making Logic

Create a Stateflow Truth Table
You created a Simulink model in “Create a Simulink Model” on page 24-10
that contains a Stateflow block. Now you need to open the chart for the block
and specify a truth table for it:

1 In your model, double-click the Chart block to open an empty chart.

2 Click the Truth Table drawing tool:

3 Move your pointer into the empty chart and notice that it appears in the
shape of a box.

4 Click to place a new truth table.

A shaded box appears with the title truthtable.

5 Enter the signature label

t = ttable(x,y,z)

and click outside the truth table box.

The signature label of the truth table function follows this syntax:

[return_val1, return_val2,...] = function_name(arg1, arg2,...)

You can specify multiple return values and multiple input arguments.
Each return value and input argument can be a scalar, vector, or matrix of
values.

24-12

Build Model with Stateflow® Truth Table

Note For functions with only one return value, you can omit the brackets
in the signature label.

Specify Properties of Truth Table Functions in Stateflow Charts
After you add a truth table function to a chart, you can specify its properties
by following these steps:

1 Right-click the truth table function box and select Properties from the
context menu.

The Truth Table properties dialog box for the truth table function appears.
It contains a General tab and a Documentation tab.

24-13

24 Truth Table Functions for Decision-Making Logic

The fields in the Truth Table properties dialog box under the General
tab are as follows:

Field Description

Name Function name; read-only; click this hypertext link
to bring the truth table function to the foreground
in its native Stateflow chart.

Breakpoints Select Function Call to set a breakpoint to pause
execution during simulation when the truth table
function is called.

Function Inline
Option

This option controls the inlining of the truth table
function in generated code through the following
selections:

• Auto
Decides whether or not to inline the truth table
function based on an internal calculation.

• Inline
Inlines the truth table function as long as it is
not exported to other charts and is not part of
a recursion. A recursion exists if the function
calls itself either directly or indirectly through
another called function.

• Function
Does not inline the function.

Label You can specify the signature label for the function
through this field. See “Create a Stateflow Truth
Table” on page 24-12 for more information.

24-14

Build Model with Stateflow® Truth Table

The fields in the Truth Table properties dialog box under the
Documentation tab are as follows:

Field Description

Description Textual description/comment.

Document link Enter a URL address or a general
MATLAB command. Examples are
www.mathworks.com, mailto:email_address, and
edit/spec/data/speed.txt.

2 Click OK to close the dialog box.

24-15

24 Truth Table Functions for Decision-Making Logic

Call a Truth Table in a Stateflow Action
In “Create a Stateflow Truth Table” on page 24-12, you created the truth table
function ttable with the signature:

t = ttable(x,y,z)

Now you need to specify a call to the truth table function in the chart. Later,
when the chart executes during simulation, it calls the truth table.

You can call truth table functions from the actions of any state or transition.
You can also call truth tables from other functions, including graphical
functions and other truth tables. Also, if you export a truth table, you can
call it from any chart in the model.

To call the ttable function from the default transition of its own chart, follow
these steps:

1 From the toolbar, select the Default Transition tool:

2 Move your pointer to a location left of the truth table function and notice
that it appears in the shape of a downward-pointing arrow.

3 Click to place a default transition into a terminating junction.

4 Click the question mark character (?) that appears on the default
transition.

A blinking cursor in a text field appears for entering the label of the default
transition.

24-16

Build Model with Stateflow® Truth Table

5 Enter the text

{d = ttable(a,b,c);}

and click outside the transition label to finish editing it.

You might want to adjust the label’s position by clicking and dragging it to
a new location. The finished chart should look something like this:

The label on the default transition provides a condition action that calls
the truth table with arguments and a return value. When the Simulink
model triggers the Stateflow block during simulation, the default transition
executes and a call to the truth table ttable occurs.

The function call to the truth table must match the truth table signature.
The type of the return value d must match the type of the signature return
value t, and the type of the arguments a, b, and c must match the type of
the signature arguments x, y, and z. You ensure this with a later step in
this section when you create the data that you use in the chart.

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion.
For more information, see “How Scalar Expansion Works for Functions”
on page 15-6.

6 Save the model.

Create Truth Table Data in Stateflow Charts and Simulink
Models
When you create a truth table with its own signature, you specify data for it in
the form of a return value (t) and argument values (x, y, z). When you specify
a call to a truth table, as you did in “Call a Truth Table in a Stateflow Action”

24-17

24 Truth Table Functions for Decision-Making Logic

on page 24-16, you specify data that you pass to the return and argument
values of the truth table (d, a, b, and c). Now you must define this data for
the chart as follows:

1 Double-click the truth table function to open the Truth Table Editor.

2 In the Truth Table Editor, select Add > Edit Data/Ports.

The Model Explorer appears.

In the Model Hierarchy pane, the node for the function ttable appears
highlighted, and the Contents pane displays the output (t) and inputs (x,
y, z) for ttable. By default, these data are scalars of type double. If you
want to redefine these data with a different size and type, you do it in the
Model Explorer. However, no changes are necessary for this example.

Notice also in theModel Hierarchy pane that the node above the function
ttable is Chart, the name of the chart that contains the truth table ttable.

24-18

Build Model with Stateflow® Truth Table

How do I enable the third pane in the Model Explorer?

To enable or disable the third pane in the Model Explorer, select
View > Show Dialog Pane.

3 In the Model Hierarchy pane, select Chart.

Notice that Chart contains no input or output data in the Contents pane.
You must add the return and argument data for calling ttable.

4 Select Add > Data.

A scalar data is added to the chart in the Contents pane of the Model
Explorer with the default name data. This data matches argument x in
type and size.

How do I verify type and size?

To verify that the properties match, right-click data in the Contents pane
and select Properties. The property sheet shows that the type is double
and the size is scalar (the default when there is no entry in the Size field).

5 In the Contents pane, double-click the entry data in the Name column.

A small text field opens with the name data highlighted.

6 In the text field, change the name to a.

7 Under Scope, click the entry Local .

A drop-down menu of selectable scopes appears with Local selected.

8 Select Input.

The scope Input means that the Simulink model provides the value for this
data, which passes to the chart through an input port on the Stateflow
block.

You should now see the new data input a in the Contents pane.

9 Repeat steps 4 through 8 to add the data b and c with the scope Input,
and data d with the scope Output.

24-19

24 Truth Table Functions for Decision-Making Logic

The scope Output means that the chart provides this data, which passes to
the Simulink model through an output port on the Stateflow block.

You should now see the input and output data in the Model Explorer.

The data a, b, c, and d match their counterparts x, y, z, and t in the truth
table signature in size (scalar) and type (double), but have sources outside
the Stateflow block. Notice that input ports for a, b, and c, and an output
port for d appear on the Stateflow block in the model.

24-20

Build Model with Stateflow® Truth Table

10 Complete connections to the Simulink blocks:

11 Save the model.

24-21

24 Truth Table Functions for Decision-Making Logic

Program a Truth Table

In this section...

“Open a Truth Table for Editing” on page 24-22

“Select An Action Language” on page 24-24

“Enter Truth Table Conditions” on page 24-24

“Enter Truth Table Decisions” on page 24-27

“Enter Truth Table Actions” on page 24-29

“Assign Truth Table Actions to Decisions” on page 24-40

“Add Initial and Final Actions” on page 24-45

Open a Truth Table for Editing
After you create and label a truth table in a chart, you specify its logical
behavior. Double-click the truth table function to open the Truth Table Editor.

24-22

Program a Truth Table

24-23

24 Truth Table Functions for Decision-Making Logic

By default, a truth table contains a Condition Table and an Action Table,
each with one row. The Condition Table also contains a single decision
column, D1, and a single action row.

Select An Action Language
Select the language you want to use for programming conditions and actions
in your truth table:

1 In the Truth Table Editor, select Settings > Language.

2 Choose a language from the drop-down menu.

Enter Truth Table Conditions
Conditions are the starting point for specifying logical behavior in a truth
table. You open the truth table ttable for editing in “Open a Truth Table for
Editing” on page 24-22. In this topic, you start programming the behavior
of ttable by specifying conditions.

You enter conditions in the Condition column of the Condition Table. For
each condition that you enter, you can also enter an optional description in
the Description column. Use the following procedure to enter conditions
for the truth table ttable:

1 Click anywhere in the Condition Table to select it.

2 Select Edit > Append Row twice.

The editor appends two rows to the bottom of the Condition Table.

3 Click and drag the bar that separates the Condition Table and the
Action Table panes down to enlarge the Condition Table pane.

4 In the Condition Table, click the top cell of the Description column.

A flashing text cursor appears in the cell, which appears highlighted.

5 Enter the following text:

x is equal to 1

24-24

Program a Truth Table

Condition descriptions are optional, but appear as comments in the
generated code for the truth table.

6 Press the Tab key to select the next cell on the right in the Condition
column.

Tip You can use Shift+Tab to select the next cell on the left.

7 In the first cell of the Condition column, enter the following text:

XEQ1:

This text is an optional label you can include with the condition. Each label
must begin with an alphabetic character ([a-z][A-Z]) followed by any
number of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore
(_).

8 Press Enter and enter the following text:

x == 1

This text is the actual condition. Each condition you enter must evaluate to
zero (false) or nonzero (true). You can use optional brackets in the condition
(for example, [x == 1]) as you do in transition labels.

In truth table conditions, you can use data that passes to the truth table
function through its arguments. The preceding condition tests whether the
argument x is equal to 1. You can also use data defined for parent objects
of the truth table, including the chart.

24-25

24 Truth Table Functions for Decision-Making Logic

9 Repeat the preceding steps to enter the other two conditions.

24-26

Program a Truth Table

Enter Truth Table Decisions
Each decision column (D1, D2, and so on) binds a group of condition outcomes
together with an AND relationship into a decision. The possible values for
condition outcomes in a decision are T (true), F (false), and - (true or false). In
“Enter Truth Table Conditions” on page 24-24 you entered conditions for the
truth table ttable. Continue by entering values in the decision columns:

1 Click anywhere in the Condition Table to select it.

2 Select Edit > Append Column three times to add three columns to the
right end of the Condition Table.

3 Click the top cell in decision column D1.

A flashing text cursor appears in the cell, which appears highlighted.

4 Press the space bar until a value of T appears.

Pressing the space bar toggles through the possible values of F, -, and T.
You can also enter these characters directly. The editor rejects all other
entries.

5 Press the down arrow key to advance to the next cell down in the D1
column.

In the decision columns, you can use the arrow keys to advance to another
cell in any direction. You can also use Tab and Shift+Tab to advance
left or right in these cells.

24-27

24 Truth Table Functions for Decision-Making Logic

6 Enter the remaining values for the decision columns:

24-28

Program a Truth Table

During execution of the truth table, decision testing occurs in left-to-right
order. The order of testing for individual condition outcomes within a decision
is undefined. Truth tables evaluate the conditions for each decision in
top-down order (first condition 1, then condition 2, and so on). Because this
implementation is subject to change in the future, do not rely on a specific
evaluation order.

The Default Decision Column
The last decision column in ttable, D4, is the default decision for this truth
table. The default decision covers any decisions not tested for in preceding
decision columns to the left. You enter a default decision as the last decision
column on the right with an entry of - for all conditions in the decision. This
entry represents any outcome for the condition, T or F.

In the preceding example, the default decision column, D4, specifies these
decisions:

Condition
Decision
4

Decision
5

Decision
6

Decision
7

Decision
8

x == 1 F T F T T

y == 1 F F T T T

z == 1 F T T F T

Tip The default decision column must be the last column on the right in
the Condition Table.

Enter Truth Table Actions
During execution of the truth table, decision testing occurs in left-to-right
order. When a decision match occurs, the action in the Action Table
specified in the Actions row for that decision column executes. Then the
truth table exits.

In “Enter Truth Table Decisions” on page 24-27, you entered decisions in the
Truth Table Editor. The next step is to enter actions you want to occur for

24-29

24 Truth Table Functions for Decision-Making Logic

each decision in the Action Table. Later, you assign these actions to their
decisions in the Actions row of the Condition Table.

This section describes how to program truth table actions with these topics:

• “Set Up the Action Table” on page 24-30 — Shows you how to set up the
Action Table in truth table ttable.

• “Program Actions Using C Expressions” on page 24-32 — Provides sample
code to program actions in ttable. Follow this section if you selected C as
the language for this truth table.

• “Program Actions Using MATLAB Expressions” on page 24-35 — Provides
sample MATLAB code to program actions in ttable. Follow this section if
you selected MATLAB as the language for this truth table.

Set Up the Action Table

1 Click anywhere in the Action Table to select it.

24-30

Program a Truth Table

2 Select Edit > Append Row three times to add three rows to the bottom
of the Action Table:

24-31

24 Truth Table Functions for Decision-Making Logic

3 Program the actions using the language you selected for the truth table.

If you selected... Use this procedure...

C “Program Actions Using C Expressions” on page
24-32

MATLAB “Program Actions Using MATLAB Expressions” on
page 24-35

Program Actions Using C Expressions
Follow this procedure to program your actions using C as the action language:

1 Click the top cell in the Description column of the Action Table.

A flashing text cursor appears in the cell, which appears highlighted.

2 Enter the following description:

set t to 1

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an
action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

t=1;

24-32

Program a Truth Table

In truth table actions, you can use data that passes to the truth table
function through its arguments and return value. The preceding action,
t=1, sets the value of the return value t. You can also specify actions with
data defined for a parent object of the truth table, including the chart.
Truth table actions can also broadcast or send events that are defined for
the truth table, or for a parent, such as the chart itself.

Tip If you omit the semicolon at the end of an action, the result of the
action echoes to the MATLAB Command Window when the action executes
during simulation. Use this echoing option as a debugging tool.

24-33

24 Truth Table Functions for Decision-Making Logic

6 Enter the remaining actions in the Action Table, as shown:

24-34

Program a Truth Table

Now you are ready to assign actions to decisions, as described in “Assign
Truth Table Actions to Decisions” on page 24-40.

Program Actions Using MATLAB Expressions
If you selected MATLAB as the action language, you can write MATLAB code
to program your actions. Using this code, you can add control flow logic and
call MATLAB functions directly. In the following procedure, you program an
action in the truth table ttable, using the following features of MATLAB
syntax:

• Persistent variables

• if ... else ... end control flows

• for loop

Follow these steps:

1 Click the top cell in the Description column of the Action Table.

A flashing text cursor appears in the cell, which appears highlighted.

2 Enter this description:

Maintain a counter and a circular
vector of values of length 6.
Every time this action is called,
output t takes the next value of
the vector.

Action descriptions are optional, but appear as comments in the generated
code for the truth table.

3 Press Tab to select the next cell on the right, in the Action column.

4 Enter the following text:

A1:

You begin an action with an optional label followed by a colon (:). Later, you
enter these labels in the Actions row of the Condition Table to specify an

24-35

24 Truth Table Functions for Decision-Making Logic

action for each decision column. Like condition labels, action labels must
begin with an alphabetic character ([a-z][A-Z]) followed by any number
of alphanumeric characters ([a-z][A-Z][0-9]) or an underscore (_).

5 Press Enter and enter the following text:

persistent values counter;
cycle = 6;

coder.extrinsic('plot');

if isempty(counter)
% Initialize counter to be zero
counter = 0;

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
for i = 1:cycle

values(i) = i;
end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values(mod(counter, cycle) + 1);

In truth table actions, you can use data that passes to the truth table
function through its arguments and return value. The preceding action sets
the return value t equal to the next value of the vector values. You can
also specify actions with data defined for a parent object of the truth table,
including the chart. Truth table actions can also broadcast or send events
that are defined for the truth table, or for a parent, such as the chart itself.

24-36

Program a Truth Table

Note If you omit the semicolon at the end of an action, the result of the
action echoes to the MATLAB Command Window when the action executes
during simulation. Use this echoing option as a debugging tool.

6 Enter the remaining actions in the Action Table, as shown:

24-37

24 Truth Table Functions for Decision-Making Logic

24-38

Program a Truth Table

If action A1 executes during simulation, a plot of the values vector appears:

Now you are ready to assign actions to decisions, as described in “Assign
Truth Table Actions to Decisions” on page 24-40.

24-39

24 Truth Table Functions for Decision-Making Logic

Assign Truth Table Actions to Decisions
You must assign at least one action from the Action Table to each decision
in the Condition Table. The truth table uses this association to determine
what action to execute when a decision tests as true.

Rules for Assigning Actions to Decisions
The following rules apply when you assign actions to decisions in a truth table:

• You specify actions for decisions by entering a row number or a label in the
Actions row cell of a decision column.

If you use a label specifier, the label must appear with the action in the
Action Table.

• You must specify at least one action for each decision.

Actions for decisions are not optional. Each decision must have at least one
action specifier that points to an action in the Action Table. If you want
to specify no action for a decision, specify a row that contains no action
statements.

• You can specify multiple actions for a decision with multiple specifiers
separated by a comma, semicolon, or space.

For example, for the decision column D1, you can specify A1,A2,A3 or
1;2;3 to execute the first three actions when decision D1 is true.

• You can mix row number and label action specifiers interchangeably in
any order.

24-40

Program a Truth Table

The following example uses both row and label action specifiers.

24-41

24 Truth Table Functions for Decision-Making Logic

• You can specify the same action for more than one decision, as shown:

24-42

Program a Truth Table

• Row number action specifiers in the Actions row of the Condition Table
automatically adjust to changes in the row order of the Action Table.

How to Assign Actions to Decisions
This section describes how to assign actions to decisions in the truth table
ttable. In this example, the Actions row cell for each decision column
contains a label specified for each action in the Action Table. Follow these
steps:

1 Click the bottom cell in decision column D1, the first cell of the Actions
row of the Condition Table.

2 Enter the action specifier A1 for decision column D1.

When D1 is true, action A1 in the Action Table executes.

3 Enter the action specifiers for the remaining decision columns:

24-43

24 Truth Table Functions for Decision-Making Logic

24-44

Program a Truth Table

Now you are ready to perform the final step in programming a truth table,
“Add Initial and Final Actions” on page 24-45.

Add Initial and Final Actions
In addition to actions for decisions, you can add initial and final actions to the
truth table function. Initial actions specify an action that executes before any
decision testing occurs. Final actions specify an action that executes as the
last action before the truth table exits. To specify initial and final actions for
a truth table, use the action labels INIT and FINAL in the Action Table.

Use this procedure to add initial and final actions that display diagnostic
messages in the MATLAB Command Window before and after execution of
the truth table ttable:

1 In the Truth Table Editor, right-click row 1 of the Action Table and
select Insert Row.

A blank row appears at the top of the Action Table.

2 Select Edit > Append Row.

A blank row appears at the bottom of the Action Table.

24-45

24 Truth Table Functions for Decision-Making Logic

3 Click and drag the bottom border of the Truth Table Editor to show all six
rows of the Action Table:

24-46

Program a Truth Table

Truth Table
Type

Description Action

C Initial action:

Display message

INIT:

ml.disp('truth table ttable
entered');

MATLAB Initial action:

Display message

INIT:

coder.extrinsic('disp');

disp('truth table ttable
entered');

5 Add the final action in row 6 as follows:

Truth Table
Type

Description Action

C Final action:

Display message

FINAL:

ml.disp('truth table ttable
exited');

MATLAB Final action:

Display message

FINAL:

coder.extrinsic('disp');

disp('truth table ttable
exited');

Although the initial and final actions for the preceding truth table example
appear in the first and last rows of the Action Table, you can enter these
actions in any row. You can also assign initial and final actions to decisions by
using the action specifier INIT or FINAL in the Actions row of the Condition
Table.

24-47

24 Truth Table Functions for Decision-Making Logic

Debug a Truth Table

In this section...

“Check Truth Tables for Errors” on page 24-48

“Debug a Truth Table During Simulation” on page 24-49

Check Truth Tables for Errors
Once you completely specify your truth tables, you begin the process of
debugging them. The first step is to run diagnostics to check truth tables for
syntax errors including overspecification and underspecification, as described
in “Correct Overspecified and Underspecified Truth Tables” on page 24-63.

To check for syntax errors:

1 Double-click the truth table to open its editor.

2 In the Truth Table Editor, select Settings > Run Diagnostics.

If there are no errors or warnings, a message of success appears. If errors
exist, you see a window with diagnostic messages. For example, if you
change the action for decision column D4 to an action that does not exist,
you get the following messages:

24-48

Debug a Truth Table

Each error appears with a red button, and each warning appears with a
gray button. The first error message appears highlighted in the top pane,
and the diagnostic message appears in the bottom pane.

Truth table diagnostics run automatically when you start simulation of the
model with a new or modified truth table. If no errors exist, the diagnostic
window does not appear and simulation starts immediately.

Debug a Truth Table During Simulation
Ways to debug truth tables during simulation include:

24-49

24 Truth Table Functions for Decision-Making Logic

Method Type of Truth Tables How To Do It

Use Stateflow
debugging tools to step
through each condition
and action, and monitor
data values during
simulation.

C truth table and
MATLAB truth table

See “Use Stateflow
Debugging Tools” on
page 24-50.

Use MATLAB
debugging tools to
step through generated
code for the truth table.

MATLAB truth table
only

See “Use MATLAB
Debugging Tools” on
page 24-62.

Use Stateflow Debugging Tools
When you use Stateflow debugging tools to debug truth tables, you must
perform these tasks:

1 Specify a breakpoint for the call to the truth table.

2 Step through the conditions and actions.

Specify a Breakpoint for the Call to a Truth Table. Before you debug the
truth table during simulation, you must set a breakpoint for the truth table.
This breakpoint pauses execution during simulation so that you can debug
each execution step of a truth table using the Stateflow Debugger.

1 In the chart, right-click the function box for the truth table.

2 Select Set Breakpoint During Function Call.

A breakpoint occurs when the chart calls this truth table function during
simulation.

Note You can also set breakpoints using the Truth Table properties dialog
box. However, using the right-click context menu is faster. For more
information, see “Set Breakpoints to Debug Charts” on page 28-10.

24-50

Debug a Truth Table

Step Through Conditions and Actions of a Truth Table. After setting a
breakpoint for the truth table function call, you can step through conditions
and actions:

1 Enter sfdebugger at the command prompt to open the Stateflow Debugging
window.

2 In the Stateflow Debugging window, click Start to begin simulation of
your model.

24-51

24 Truth Table Functions for Decision-Making Logic

If you made any changes to the truth tables since the last simulation, the
debugger checks automatically for syntax errors. If you receive errors or
warnings, make corrections before you try to simulate again.

If no syntax errors exist in the truth table, simulation of your model begins.

3 Wait until the breakpoint for the call to the truth table occurs.

When this breakpoint occurs, the Truth Table Editor appears and the Start
button in the Stateflow Debugging window changes to Continue.

4 In the Stateflow Debugging window, from the Browse Data pull-down,
select All Data (Current Chart).

24-52

Debug a Truth Table

An updated display appears in the bottom pane.

24-53

24 Truth Table Functions for Decision-Making Logic

You can use this display to monitor Stateflow data during simulation.

5 In the Stateflow Debugging window, click Step In twice to advance
simulation through the call to the truth table.

24-54

Debug a Truth Table

The INIT action of the truth table highlights prior to execution.

24-55

24 Truth Table Functions for Decision-Making Logic

6 Click Step In to execute the INIT action and advance truth table execution
to the first condition.

24-56

Debug a Truth Table

7 Click Step In to evaluate the first condition and advance truth table
execution to the second condition.

24-57

24 Truth Table Functions for Decision-Making Logic

8 Click Step In to evaluate the second condition and advance truth table
execution to the third condition.

24-58

Debug a Truth Table

9 Click Step In to evaluate the third condition and advance truth table
execution to the first decision.

24-59

24 Truth Table Functions for Decision-Making Logic

10 Click Step In twice.

Because the first decision is true, truth table execution advances to its
action A1.

24-60

Debug a Truth Table

11 Click Step In four times to execute action A1 and advance to the FINAL
action.

24-61

24 Truth Table Functions for Decision-Making Logic

This step executes the final action and exits the truth table. The Display
block in the model displays the number 1.

Use MATLAB Debugging Tools
MATLAB truth tables generate content as MATLAB code, a format that offers
advantages for debugging. You can set breakpoints on any line of generated
code (whereas you cannot set breakpoints directly on a truth table). You can
debug code that MATLAB truth tables generate the same way you debug
a MATLAB function.

For more information about how to generate content for truth tables, see
“How Stateflow Generates Content for Truth Tables” on page 24-74.

24-62

Correct Overspecified and Underspecified Truth Tables

Correct Overspecified and Underspecified Truth Tables

In this section...

“Example of an Overspecified Truth Table” on page 24-63

“Example of an Underspecified Truth Table” on page 24-67

Example of an Overspecified Truth Table
An overspecified truth table contains at least one decision that never executes
because a previous decision specifies it in the Condition Table. The following
example shows the Condition Table of an overspecified truth table.

24-63

24 Truth Table Functions for Decision-Making Logic

24-64

Correct Overspecified and Underspecified Truth Tables

The decision in column D3 (-TT) specifies the decisions FTT and TTT. These
decisions are duplicates of decisions D1 (FTT) and D2 (TTT and TFT). Therefore,
column D3 is an overspecification.

The following example shows the Condition Table of a truth table that
appears to be overspecified, but is not.

24-65

24 Truth Table Functions for Decision-Making Logic

24-66

Correct Overspecified and Underspecified Truth Tables

In this case, the decision D4 specifies two decisions (TTT and FTT). FTT also
appears in decision D1, but TTT is not a duplicate. Therefore, this Condition
Table is not overspecified.

Example of an Underspecified Truth Table
An underspecified truth table lacks one or more possible decisions that
require an action to avoid undefined behavior. The following example shows
the Condition Table of an underspecified truth table.

24-67

24 Truth Table Functions for Decision-Making Logic

24-68

Correct Overspecified and Underspecified Truth Tables

Complete coverage of the conditions in the preceding truth table requires a
Condition Table with every possible decision:

24-69

24 Truth Table Functions for Decision-Making Logic

24-70

Correct Overspecified and Underspecified Truth Tables

A possible workaround is to specify an action for all other possible decisions
through a default decision, named DA:

24-71

24 Truth Table Functions for Decision-Making Logic

24-72

Correct Overspecified and Underspecified Truth Tables

The last decision column is the default decision for the truth table. The
default decision covers any remaining decisions not tested in the preceding
decision columns. See “The Default Decision Column” on page 24-29 for an
example and more complete description of the default decision column for
a Condition Table.

24-73

24 Truth Table Functions for Decision-Making Logic

How Stateflow Generates Content for Truth Tables

In this section...

“Types of Generated Content” on page 24-74

“View Generated Content” on page 24-74

“How Stateflow Software Generates Graphical Functions for Truth Tables”
on page 24-75

“How Stateflow Software Generates MATLAB Code for Truth Tables” on
page 24-79

Types of Generated Content
Stateflow software realizes the logical behavior specified in a truth table by
generating content as follows:

Type of Truth Table Generated Content

C Graphical function

MATLAB MATLAB code

View Generated Content
You generate content for a truth table when you simulate your model. Content
regenerates whenever a truth table changes. To view the generated content
of a truth table, follow these steps:

1 Simulate the model that contains the truth table.

2 Double-click the truth table to open its editor.

3 Click the View Generated Content button:

24-74

How Stateflow® Generates Content for Truth Tables

How Stateflow Software Generates Graphical
Functions for Truth Tables
This section describes how Stateflow software translates the logic of a C truth
table into a graphical function.

24-75

24 Truth Table Functions for Decision-Making Logic

In the following example, a C truth table has three conditions, four decisions
and actions, and initial and final actions.

24-76

How Stateflow® Generates Content for Truth Tables

Stateflow software generates a graphical function for the preceding truth
table. The top half of the flow chart looks like this:

The top half of the flow chart executes as follows:

• Performs initial actions

• Evaluates the conditions and stores the results in temporary data variables

The temporary data for storing conditions is based on the labels that you
enter for the conditions. If you do not specify the labels, temporary data
variables appear.

24-77

24 Truth Table Functions for Decision-Making Logic

The bottom half of the flow chart looks like this:

In the bottom half of the flow chart, the stored values for conditions determine
which decision is true and what action to perform. Each decision appears as a
fork from a connective junction with one of two possible paths:

• A transition segment with a decision followed by a segment with the
consequent action

24-78

How Stateflow® Generates Content for Truth Tables

The action appears as a condition action that leads to the FINAL action
and termination of the flow chart.

• A transition segment that flows to the next fork for an evaluation of the
next decision

This transition segment has no condition or action.

This implementation continues from the first decision through the remaining
decisions in left-to-right column order. When a decision match occurs,
the action for that decision executes as a condition action of its transition
segment. After the action executes, the flow chart performs the final action
for the truth table and terminates. Therefore, only one action results from a
call to a truth table graphical function. This behavior also means that no data
dependencies are possible between different decisions.

How Stateflow Software Generates MATLAB Code
for Truth Tables
Stateflow software generates the content of MATLAB truth tables as
MATLAB code that represents each action as a nested function inside the
main truth table function.

Nested functions offer these advantages:

• Nested functions are independent of one another. Variables are local to
each function and not subject to naming conflicts.

• Nested functions can access all data from the main truth table function.

The generated content appears in the function editor, which provides tools for
simulation and debugging.

Here is the generated content for the MATLAB truth table described in
“Program Actions Using MATLAB Expressions” on page 24-35:

• Main truth table function

function t = ttable(x,y,z)

% Initialize condition vars to logical scalar

24-79

24 Truth Table Functions for Decision-Making Logic

XEQ1 = false;
YEQ1 = false;
ZEQ1 = false;

% Condition #1, "XEQ1"
% x is equal to 1
XEQ1 = logical(x == 1);

% Condition #2, "YEQ1"
% y is equal to 1
YEQ1 = logical(y == 1);

% Condition #3, "ZEQ1"
% z is equal to 1
ZEQ1 = logical(z == 1);

if (XEQ1 && ~YEQ1 && ~ZEQ1) % D1
A1();

elseif (~XEQ1 && YEQ1 && ~ZEQ1) % D2
A2();

elseif (~XEQ1 && ~YEQ1 && ZEQ1) % D3
A3();

else % Default
A4();

end

• Action A1

function A1()
% Action #1, "A1"
% Maintain a counter and a circular vector of length 6.
% Every time this action is called,
% output t takes the next value of the vector.

persistent values counter;
cycle = 6;

if isempty(counter)
% Initialize counter to be zero
counter = 0;

24-80

How Stateflow® Generates Content for Truth Tables

else
% Otherwise, increment counter
counter = counter + 1;

end

if isempty(values)
% Values is a vector of 1 to cycle
values = zeros(1, cycle);
for i = 1:cycle

values(i) = i;
end

% For debugging purposes, call the MATLAB
% function "plot" to show values
plot(values);

end

% Output t takes the next value in values vector
t = values(mod(counter, cycle) + 1);

• Actions A2, A3, and A4

function A2()
% Action #2, "A2"
% set t to 2

t=2;

%==================================
function A3()
% Action #3, "A3"
% set t to 3

t=3;

%==================================
function A4()
% Action #4, "A4"
% set t to 4

24-81

24 Truth Table Functions for Decision-Making Logic

t=4;

24-82

Truth Table Editor Operations

Truth Table Editor Operations

In this section...

“Add or Modify Stateflow Data” on page 24-83

“Append Rows and Columns” on page 24-83

“Compact the Table” on page 24-84

“Delete Text, Rows, and Columns” on page 24-84

“Diagnose the Truth Table” on page 24-84

“View Generated Content” on page 24-84

“Edit Tables” on page 24-85

“Insert Rows and Columns” on page 24-85

“Move Rows and Columns” on page 24-85

“Print Tables” on page 24-86

“Select and Deselect Table Elements” on page 24-86

“Undo and Redo Edit Operations” on page 24-86

“View the Stateflow Chart for the Truth Table” on page 24-87

Add or Modify Stateflow Data

Edit Data/Ports opens the Model Explorer so that you can add
or modify Stateflow data.

Append Rows and Columns

Append Column adds a column on the right end of the selected
table.

Append Row adds a row to the bottom of the selected table.

24-83

24 Truth Table Functions for Decision-Making Logic

Compact the Table

Compact Table removes the empty rows and columns of the
selected table.

Delete Text, Rows, and Columns
To delete the contents of a cell:

1 Right-click the cell.

2 From the context menu, select Delete Cell.

To delete an entire row or column:

1 Right-click the row or column header.

2 From the context menu, select Delete Row or Delete Column.

You can also click the row or column header to select the entire row or
column and press the Delete key.

Diagnose the Truth Table

Run Diagnostics checks the truth table for syntax errors. See
“Debug a Truth Table” on page 24-48.

View Generated Content

View Generated Content displays the code generated for
the truth table. C truth tables generate graphical functions.
MATLAB truth tables generate MATLAB code. For details, see
“How Stateflow Generates Content for Truth Tables” on page
24-74.

24-84

Truth Table Editor Operations

Edit Tables
Both the default Condition Table and the default Action Table have one
empty row. Click a cell to edit its text contents. Use Tab and Shift+Tab to
move horizontally between cells. To add rows and columns to either table,
see “Append Rows and Columns” on page 24-83.

You set the Truth Table Editor to display only one of the two tables by
double-clicking the header of the table to display. To revert to the display of
both tables, double-click the header of the displayed table.

Cells for the numbered rows in decision columns like D1 can take values of T,
F, or -. After you select one of these cells, you can use the spacebar to step
through the T, F, and - values. In these cells you can use the left, right, up,
and down arrow keys to advance to another cell in any direction.

Insert Rows and Columns
To insert a blank row above an existing table row:

1 Right-click any cell in the row (including the row header).

2 From the context menu, select Insert Row.

To insert a blank decision column to the left of an existing decision column:

1 Right-click any cell in the existing decision column (including the column
header).

2 From the context menu, select Insert Column.

Move Rows and Columns
To move a condition or action row up or down:

1 Click the row header to select the row.

2 Drag the row to a new position.

The Truth Table Editor renumbers the rows automatically.

To move a decision column left or right:

24-85

24 Truth Table Functions for Decision-Making Logic

1 Click the column header to select the column.

2 Drag the column to a new position.

The Truth Table Editor renumbers the decision columns automatically.

Print Tables

Print makes a printed copy or an online viewable copy (HTML
file) of the truth table.

Select and Deselect Table Elements

To... Perform this action...

Select a cell for editing Click the cell

Select text in a cell Click and drag your pointer over the
text

Select a row Click the header for the row

Select a decision column in the
Condition Table

Click the header for the column

Deselect a selected cell, row, or
column

Press Esc or click another table, cell,
row, or column

Undo and Redo Edit Operations

Click the Undo button or press Ctrl+Z (Command+Z) to undo
the effects of the preceding operation.

Click the Redo button or press Ctrl+Y (Command+Y) to redo
the most recently undone operation.

24-86

Truth Table Editor Operations

View the Stateflow Chart for the Truth Table

Go to Diagram Editor displays the current truth table function
in its native chart.

24-87

24 Truth Table Functions for Decision-Making Logic

24-88

25

MATLAB Functions in
Stateflow Charts

• “MATLAB Functions in a Chart” on page 25-2

• “Why Use a MATLAB Function in a Chart?” on page 25-3

• “Where to Use a MATLAB Function” on page 25-4

• “MATLAB Functions in a Stateflow Chart” on page 25-5

• “Build Model with MATLAB Function in a Chart” on page 25-7

• “Specify MATLAB Function Properties in a Chart” on page 25-13

• “Program a MATLAB Function in a Chart” on page 25-18

• “Debug a MATLAB Function in a Chart” on page 25-22

• “Connect Structures in MATLAB Functions to Bus Signals in Simulink” on
page 25-28

• “Define Enumerated Data in MATLAB Functions” on page 25-31

• “Declare Variable-Size Data in MATLAB Functions” on page 25-32

• “Enhance Readability of Generated Code for MATLAB Functions” on page
25-33

25 MATLAB® Functions in Stateflow® Charts

MATLAB Functions in a Chart
A MATLAB function in a Stateflow chart is a graphical element you use to
write algorithms that are easier to perform by calling built-in MATLAB
functions. Typical applications include:

• Matrix-oriented calculations

• Data analysis and visualization

25-2

Why Use a MATLAB Function in a Chart?

Why Use a MATLAB Function in a Chart?
This type of function is useful for coding algorithms that are more easily
expressed using MATLAB instead of the graphical Stateflow constructs.
This function also provides optimizations for generating efficient,
production-quality C code for embedded applications.

25-3

25 MATLAB® Functions in Stateflow® Charts

Where to Use a MATLAB Function
A MATLAB function can reside anywhere in a chart, state, or subchart.
The location of a function determines its scope, that is, the set of states and
transitions that can call the function. Follow these guidelines:

• If you want to call the function only within one state or subchart and its
substates, put your MATLAB function in that state or subchart. That
function overrides any other functions of the same name in the parents and
ancestors of that state or subchart.

• If you want to call the function anywhere in that chart, put your MATLAB
function at the chart level.

25-4

MATLAB Functions in a Stateflow® Chart

MATLAB Functions in a Stateflow Chart
The following model contains a Stateflow chart with a MATLAB function.

The chart contains the following logic:

The function contains the following code:

function stats(vals)
%#codegen

% calculates a statistical mean and standard deviation
% for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
coder.extrinsic('plot');
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

25-5

25 MATLAB® Functions in Stateflow® Charts

Note in this example that the MATLAB function can call any of these types
of functions:

• Local functions

Local functions are defined in the body of the MATLAB function. In this
example, avg is a local function.

• Stateflow functions

Graphical, truth table, and other MATLAB functions can be called from a
MATLAB function in a chart.

• MATLAB toolbox functions that support code generation

Toolbox functions for code generation are a subset of the functions that you
can call in the MATLAB workspace. These functions generate C code for
building targets that conform to the memory and data type requirements
of embedded environments. In this example, length, sqrt, and sum are
examples of toolbox functions for code generation.

• MATLAB toolbox functions that do not support code generation

You can also call extrinsic functions on the MATLAB path that do not
generate code. These functions execute only in the MATLAB workspace
during simulation of the model.

• Simulink Design Verifier functions

Simulink Design Verifier software provides MATLAB functions for
property proving and test generation.

- sldv.prove

- sldv.assume

- sldv.test

- sldv.condition

25-6

Build Model with MATLAB Function in a Chart

Build Model with MATLAB Function in a Chart
This section explains how to create a model with a Stateflow chart that calls
two MATLAB functions, meanstats and stdevstats. meanstats calculates a
mean and stdevstats calculates a standard deviation for the values in vals
and outputs them to the Stateflow data mean and stdev, respectively.

Follow these steps:

1 Create a new model with the following blocks:

2 Save the model as call_stats_function_stateflow.

3 In the model, double-click the Chart block.

4 Drag two MATLAB functions into the empty chart using this icon from
the toolbar:

A text field with a flashing cursor appears in the middle of each MATLAB
function.

25-7

25 MATLAB® Functions in Stateflow® Charts

5 Label each function as shown:

You must label a MATLAB function with its signature. Use the following
syntax:

[return_val1, return_val2,...] = function_name(arg1, arg2,...)

You can specify multiple return values and multiple input arguments,
as shown in the syntax. Each return value and input argument can be a
scalar, vector, or matrix of values.

Note For MATLAB functions with only one return value, you can omit
the brackets in the signature label.

6 In the chart, draw a default transition into a terminating junction with
this condition action:

{
mean = meanstats(invals);
stdev = stdevstats(invals);
}

25-8

Build Model with MATLAB Function in a Chart

The chart should look something like this:

Tip If the formal arguments of a function signature are scalars, verify that
inputs and outputs of function calls follow the rules of scalar expansion.
For more information, see “How Scalar Expansion Works for Functions”
on page 15-6.

7 In the chart, double-click the function meanstats to edit its function body
in the editor.

8 In the function editor, select Tools > Model Explorer to open the Model
Explorer.

25-9

25 MATLAB® Functions in Stateflow® Charts

The function meanstats is highlighted in theModel Hierarchy pane. The
Contents pane displays the input argument vals and output argument
meanout. Both are scalars of type double by default.

9 Double-click the vals row under the Size column to set the size of vals to 4.

10 Back in the chart, double-click the function stdevstats and repeat the
previous two steps.

11 Back in the Model Hierarchy pane of the Model Explorer, select Chart
and add the following data:

Name Scope Size

invals Input 4

mean Output Scalar (no change)

stdev Output Scalar (no change)

25-10

Build Model with MATLAB Function in a Chart

You should now see the following data in the Model Explorer.

After you add the data invals, mean, and stdev to the chart, the
corresponding input and output ports appear on the Stateflow block in
the model.

25-11

25 MATLAB® Functions in Stateflow® Charts

12 Connect the Constant and Display blocks to the ports of the Chart block
and save the model.

To program the functions meanstats and stdevstats, see “Program a
MATLAB Function in a Chart” on page 25-18.

25-12

Specify MATLAB Function Properties in a Chart

Specify MATLAB Function Properties in a Chart

Set MATLAB Function Properties
To specify properties for a MATLAB function in a Stateflow chart:

1 In the Stateflow chart, right click the MATLAB function.

2 Select Properties.

In the dialog box that appears, there are tabs for both General and
Documentation Properties.

25-13

25 MATLAB® Functions in Stateflow® Charts

25-14

Specify MATLAB Function Properties in a Chart

3 Specify properties for the MATLAB function.

25-15

25 MATLAB® Functions in Stateflow® Charts

Field Description

Name MATLAB function read only name. Click
the link to open the function contents in the
MATLAB editor.

Function Inline
Option

Determine whether the function is inlined
in the generated code by choosing one of the
following options:

• If set to Auto internal heuristics are used
to determine whether or not to inline the
MATLAB function.

• If set to Inline inlining of the function is
forced.

• If set to Function inlining of the function
is prevented.

Saturate on integer
overflow

Select to specify that integer overflows saturate
in the generated code. For more information,
see “Handle Integer Overflow for Chart Data”
on page 8-57.

MATLAB Function
fimath

Setting defines the fimath properties for the
MATLAB function. The fimath properties
specified here are associated with all fi and
fimath objects constructed in the MATLAB
function. Choose one of the following options:

• If set to Same as MATLAB, the function
uses the same fimath properties as the
current global fimath. The edit box
appears dimmed and displays the current
global fimath in read-only form. For more
information on the global fimath and
fimath objects, see the Fixed-Point Designer
documentation.

• If set to Specify Other, you can specify
your own fimath object. This can be done by
either of these two methods:

a Construct the fimath inside the edit box.

b Construct the fimath object in the
MATLAB or model workspace and enter
its variable name in the edit box.

Label Text defining the label of the MATLAB function
in the Stateflow chart.

25-16

Specify MATLAB Function Properties in a Chart

Field Description

Description Textual description/comment.

Document link Link to documentation about the MATLAB
function. Enter a Web URL address or a
MATLAB expression that, when evaluated,
displays documentation . Examples are
www.mathworks.com , mailto:email_address
and edit /spec/data/speed.txt.

4 Click Apply.

25-17

25 MATLAB® Functions in Stateflow® Charts

Program a MATLAB Function in a Chart
To program the functions meanstats and stdevstats that you created in
“Build Model with MATLAB Function in a Chart” on page 25-7, follow these
steps:

1 Open the chart in the model call_stats_function_stateflow.

2 In the chart, open the function meanstats.

The function editor appears with the header:

function meanout = meanstats(vals)

This header is taken from the function label in the chart. You can edit the
header directly in the editor, and your changes appear in the chart after
you close the editor.

3 On the line after the function header, enter:

%#codegen

The %#codegen compilation directive helps detect compile-time violations of
syntax and semantics in MATLAB functions supported for code generation.

4 Enter a line space and this comment:

% Calculates the statistical mean for vals

5 Add the line:

len = length(vals);

The function length is an example of a built-in MATLAB function that is
supported for code generation. You can call this function directly to return
the vector length of its argument vals. When you build a simulation target,
the function length is implemented with generated C code. Functions
supported for code generation appear in “Functions and Objects Supported
for C and C++ Code Generation — Alphabetical List”.

The variable len is an example of implicitly declared local data. It has the
same size and type as the value assigned to it — the value returned by the

25-18

Program a MATLAB Function in a Chart

function length, a scalar double. To learn more about declaring variables,
see “Data Definition Basics”.

The MATLAB function treats implicitly declared local data as temporary
data, which exists only when the function is called and disappears when
the function exits. You can declare local data for a MATLAB function in a
chart to be persistent by using the persistent construct.

6 Enter this line to calculate the value of meanout:

meanout = avg(vals,len);

The function meanstats stores the mean of vals in the Stateflow data
meanout. Because these data are defined for the parent Stateflow chart,
you can use them directly in the MATLAB function.

Two-dimensional arrays with a single row or column of elements are
treated as vectors or matrices in MATLAB functions. For example, in
meanstats, the argument vals is a four-element vector. You can access
the fourth element of this vector with the matrix notation vals(4,1) or
the vector notation vals(4).

The MATLAB function uses the functions avg and sum to compute the value
of mean. sum is a function supported for code generation. avg is a local
function that you define later. When resolving function names, MATLAB
functions in your chart look for local functions first, followed by functions
supported for code generation.

Note If you call a function that the MATLAB function cannot resolve as
a local function or a function for code generation, you must declare the
function to be extrinsic.

7 Now enter this statement:

coder.extrinsic('plot');

8 Enter this line to plot the input values in vals against their vector index.

plot(vals,'-+');

25-19

25 MATLAB® Functions in Stateflow® Charts

Recall that you declared plot to be an extrinsic function because it is not
supported for code generation. When the MATLAB function encounters an
extrinsic function, it sends the call to the MATLAB workspace for execution
during simulation.

9 Now, define the local function avg, as follows:

function mean = avg(array,size)
mean = sum(array)/size;

The header for avg defines two arguments, array and size, and a single
return value, mean. The local function avg calculates the average of the
elements in array by dividing their sum by the value of argument size.

The complete code for the function meanstats looks like this:

function meanout = meanstats(vals)
%#codegen

% Calculates the statistical mean for vals

len = length(vals);
meanout = avg(vals,len);

coder.extrinsic('plot');
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

10 Save the model.

11 Back in the chart, open the function stdevstats and add code to compute
the standard deviation of the values in vals. The complete code should
look like this:

function stdevout = stdevstats(vals)
%#codegen

% Calculates the standard deviation for vals

25-20

Program a MATLAB Function in a Chart

len = length(vals);
stdevout = sqrt(sum(((vals-avg(vals,len)).^2))/len);

function mean = avg(array,size)
mean = sum(array)/size;

12 Save the model again.

25-21

25 MATLAB® Functions in Stateflow® Charts

Debug a MATLAB Function in a Chart

In this section...

“Check MATLAB Functions for Syntax Errors” on page 25-22

“Run-Time Debugging for MATLAB Functions in Charts” on page 25-24

“Check for Data Range Violations” on page 25-26

Check MATLAB Functions for Syntax Errors
Before you can build a simulation application for a model, you must fix syntax
errors. Follow these steps to check the MATLAB function meanstats for
syntax violations:

1 Open the function meanstats inside the chart in the
call_stats_function_stateflow model that you updated in
“Program a MATLAB Function in a Chart” on page 25-18.

The editor automatically checks your function code for errors and
recommends corrections.

2 In the Stateflow Editor, select Code > C/C++ Code > Build Model.

25-22

Debug a MATLAB Function in a Chart

If there are no errors or warnings, the Builder window appears and reports
success. Otherwise, it lists errors. For example, if you change the name
of local function avg to a nonexistent local function aug in meanstats, the
following errors appear:

Each error message appears with a red button. The selected error message
displays diagnostic information in the bottom pane.

3 Click the first error line to display its diagnostic message in the bottom
error window.

The diagnostic message provides details of the type of error and a link to the
code where the error occurred. The diagnostic message also contains a link
to a diagnostic report that provides links to your MATLAB functions and

25-23

25 MATLAB® Functions in Stateflow® Charts

compile-time type information for the variables and expressions in these
functions. If your model fails to build, this information simplifies finding
sources of error messages and aids understanding of type propagation
rules. For more information about this report, see “MATLAB Function
Reports” in the Simulink documentation.

4 In the diagnostic message, click the link after the function name meanstats
to display the offending line of code.

The offending line appears highlighted in the editor.

5 Correct the error by changing aug back to avg and recompile. No errors
are found and the compile completes successfully.

Run-Time Debugging for MATLAB Functions in Charts
You use simulation to test your MATLAB functions for run-time errors that
are not detectable by the Stateflow Debugger. When you simulate your model,
your MATLAB functions undergo diagnostic tests for missing or undefined
information and possible logical conflicts as described in “Check MATLAB
Functions for Syntax Errors” on page 25-22. If no errors are found, the
simulation of your model begins.

Follow these steps to simulate and debug the meanstats function during
run-time conditions:

1 In the function editor, click the dash (-) character in the left margin of
this line:

len = length(vals);

A small red ball appears in the margin of this line, indicating that you
have set a breakpoint.

2 Start simulation for the model.

If you get any errors or warnings, make corrections before you try to
simulate again. Otherwise, simulation pauses when execution reaches
the breakpoint you set. A small green arrow in the left margin indicates
this pause.

3 To advance execution to the next line, select Debug > Step.

25-24

Debug a MATLAB Function in a Chart

Notice that this line calls the local function avg. If you select Step here,
execution advances past the execution of the local function avg. To track
execution of the lines in the local function avg, select Debug > Step In
instead.

4 To advance execution to the first line of the called local function avg, select
Debug > Step In.

Once you are in the local function, you can advance through one line at a
time with the Step tool. If the local function calls another local function,
use the Step In tool to step into it. To continue through the remaining
lines of the local function and go back to the line after the local function
call, select Debug > Step Out.

5 Select Step to execute the only line in avg.

When avg finishes its execution, you see a green arrow pointing down
under its last line.

6 Select Step to return to the function meanstats.

Execution advances to the line after the call to avg.

7 To display the value of the variable len, place your pointer over the text
len in the function editor for at least a second.

The value of len appears adjacent to your pointer.

You can display the value for any data in the MATLAB function in this
way, no matter where it appears in the function. For example, you can
display the values for the vector vals by placing your pointer over it as an
argument to the function length, or as an argument in the function header.

You can also report the values for MATLAB function data in the MATLAB
Command Window during simulation. When you reach a breakpoint, the
debug>> command prompt appears in the MATLAB Command Window
(you might have to press Enter to see it). At this prompt, you can inspect
data defined for the function by entering the name of the data, as shown
in this example:

debug>> len
len =

25-25

25 MATLAB® Functions in Stateflow® Charts

4
debug>>

As another debugging alternative, you can display the execution result of a
function line by omitting the terminating semicolon. If you do, execution
results appear in the MATLAB Command Window during simulation.

8 To leave the function until it is called again and the breakpoint is reached,
select Debug > Continue.

At any point in a function, you can advance through the execution of the
remaining lines of the function with the Continue tool. If you are at the
end of the function, selecting Step does the same thing.

9 Click the breakpoint to remove it and select Debug > Exit Debug Mode
to complete the simulation.

In the model, the computed values of mean and stdev now appear in the
Display blocks.

Check for Data Range Violations
During debugging, MATLAB functions automatically check input and output
data for data range violations.

Specify a Range
To specify a range for input and output data, follow these steps:

1 In the Model Explorer, select the MATLAB function input or output of
interest.

25-26

Debug a MATLAB Function in a Chart

The Data properties dialog box opens in the Dialog pane of the Model
Explorer.

2 In the Data properties dialog box, click the General tab and enter a limit
range, as described in “Limit range properties” on page 8-14.

Control Data Range Checking
To control data range checking, follow these steps:

1 Open the Stateflow debugger, as described in “Open the Stateflow
Debugger” on page 28-5.

2 In the Error checking options pane, perform one of these actions:

To: Do This:

Enable data range checking Select the Data Range check box

Disable data range checking Clear the Data Range check box

25-27

25 MATLAB® Functions in Stateflow® Charts

Connect Structures in MATLAB Functions to Bus Signals in
Simulink

In this section...

“About Structures in MATLAB Functions” on page 25-28

“Define Structures in MATLAB Functions” on page 25-28

About Structures in MATLAB Functions
MATLAB functions support MATLAB structures. You can create structures
in top-level MATLAB functions in Stateflow charts to interface with Simulink
bus signals at input and output ports. Simulink buses appear inside the
MATLAB function as structures; structure outputs from the MATLAB
function appear as buses.

You can also create structures as local and persistent variables in top-level
functions and local functions of MATLAB functions.

Define Structures in MATLAB Functions
This section describes how to define structures in MATLAB functions.

• “Rules for Defining Structures in MATLAB Functions” on page 25-28

• “Define Structure Inputs and Outputs to Interface with Bus Signals” on
page 25-29

• “Define Local and Persistent Structure Variables” on page 25-30

Rules for Defining Structures in MATLAB Functions
Follow these rules when defining structures for MATLAB functions in
Stateflow charts:

• For each structure input or output in a MATLAB function, you must
define a Simulink.Bus object in the base workspace to specify its type to
the Simulink signal.

• MATLAB structures cannot inherit their type from Simulink signals.

25-28

Connect Structures in MATLAB® Functions to Bus Signals in Simulink®

• MATLAB functions support nonvirtual buses only (see “Virtual and
Nonvirtual Buses” in the Simulink documentation).

• Structures cannot have scopes defined as Constant.

Define Structure Inputs and Outputs to Interface with Bus
Signals
When you create structure inputs in MATLAB functions, the function
determines the type, size, and complexity of the structure from the Simulink
input signal. When you create structure outputs, you must define their type,
size, and complexity in the MATLAB function.

You can connect MATLAB structure inputs and outputs to any Simulink
bus signal, including:

• Simulink blocks that output bus signals — such as Bus Creator blocks

• Simulink blocks that accept bus signals as input — such as Bus Selector
and Gain blocks

• S-Function blocks

• Other MATLAB functions

To define structure inputs and outputs for MATLAB functions in Stateflow
charts, follow these steps:

1 Create a Simulink bus object in the base workspace to specify the properties
of the structure you will create in the MATLAB function.

For information about how to create Simulink bus objects, see
Simulink.Bus in the Simulink Reference.

2 Open the Model Explorer and follow these steps:

a In the Model Hierarchy pane, select the MATLAB function in your
chart.

b Add a data object, as described in “How to Add Data Using the Model
Explorer” on page 8-3.

The Model Explorer adds a data object and opens a Properties dialog
box in its right-hand Dialog pane.

25-29

25 MATLAB® Functions in Stateflow® Charts

c In the Properties dialog box, enter the following information in the
General tab fields:

Field What to Specify

Name Enter a name for referencing the structure in the
MATLAB function. This name does not have to match the
name of the bus object in the base workspace.

Scope Select Input or Output.

Type Select Bus: <bus object name> from the drop-down
list.

Then, replace “<bus object name>” with the name of the
Simulink.Bus object in the base workspace that defines
the structure. For example: Bus: inbus.

d To add or modify Simulink.Bus objects, open the Data Type Assistant.
Then, click the Edit button to open the Simulink Bus Editor
(see “Manage Bus Objects with the Bus Editor” in the Simulink
documentation).

e Click Apply.

3 If your structure is an output (has scope of Output), define the output
implicitly in the MATLAB function to have the same type, size, and
complexity as its Simulink.Bus object. For details, see “Structures”.

Define Local and Persistent Structure Variables
You can define structures as local or persistent variables inside MATLAB
functions. For details, see “Structures”.

25-30

Define Enumerated Data in MATLAB Functions

Define Enumerated Data in MATLAB Functions
Define and use enumerated data with MATLAB functions in Stateflow
charts the same way as in MATLAB Function blocks in a model. For more
information, see “Using Enumerated Data in MATLAB Function Blocks” in
the Simulink documentation.

To learn how to define and use enumerated data in Stateflow charts, see
“Define Enumerated Data in a Chart” on page 17-8.

25-31

25 MATLAB® Functions in Stateflow® Charts

Declare Variable-Size Data in MATLAB Functions
Declare and use variable-size matrices and arrays with MATLAB functions in
Stateflow charts the same way as in MATLAB Function blocks in a model.
For more information, see:

• “Enable Support for Variable-Size Data”

• “Declare Variable-Size Inputs and Outputs”

• “Filter a Variable-Size Signal”

To learn how to declare variable-size data at the chart level, see “Declare
Variable-Size Inputs and Outputs” on page 16-5.

25-32

Enhance Readability of Generated Code for MATLAB Functions

Enhance Readability of Generated Code for MATLAB
Functions

You can enhance the readability of generated code for MATLAB functions in
Stateflow charts the same way as in MATLAB Function blocks in a model.
For more information, see “Enhance Code Readability for MATLAB Function
Blocks” in the Simulink documentation.

To learn how to enhance readability of generated code for flow charts in
Stateflow charts, see “Enhance Readability of Code for Flow Charts” on page
5-35.

25-33

25 MATLAB® Functions in Stateflow® Charts

25-34

26

Simulink Functions in
Stateflow Charts

• “What Is a Simulink Function?” on page 26-2

• “Differences Between Simulink Functions and Function-Call Subsystems”
on page 26-3

• “Why Use a Simulink Function in a Stateflow Chart?” on page 26-4

• “Where to Use a Simulink Function” on page 26-11

• “Basic Approach to Defining Simulink Functions in Stateflow Charts” on
page 26-12

• “How a Simulink Function Binds to a State” on page 26-15

• “How a Simulink Function Behaves When Called from Multiple Sites” on
page 26-23

• “Rules for Using Simulink Functions in Stateflow Charts” on page 26-24

• “Best Practices for Using Simulink Functions” on page 26-26

• “Define a Function That Uses Simulink Blocks” on page 26-27

• “Schedule Execution of Multiple Controllers” on page 26-37

26 Simulink® Functions in Stateflow® Charts

What Is a Simulink Function?
In a Stateflow chart, a Simulink function is a graphical object that you fill
with Simulink blocks and call in the actions of states and transitions. This
function provides an efficient model design and improves readability by
minimizing graphical and nongraphical objects. Typical applications include:

• Defining a function that requires Simulink blocks, such as lookup tables
(see “About Lookup Table Blocks” in the Simulink documentation)

• Scheduling execution of multiple controllers

26-2

Differences Between Simulink® Functions and Function-Call Subsystems

Differences Between Simulink Functions and Function-Call
Subsystems

In a Stateflow chart, a Simulink function behaves like a function-call
subsystem block of a Simulink model. (See “Create a Function-Call
Subsystem” in the Simulink documentation.) However, these differences
apply.

Behavior Function-Call
Subsystem

Simulink Function

Requires function-call
output events for
execution

Yes No

Requires signal lines in
the model

Yes No

Supports frame-based
input and output
signals

Yes No

26-3

26 Simulink® Functions in Stateflow® Charts

Why Use a Simulink Function in a Stateflow Chart?

In this section...

“Advantages of Using Simulink Functions in a Stateflow Chart” on page
26-4

“Benefits of Using a Simulink Function to Access Simulink Blocks” on page
26-5

“Benefits of Using a Simulink Function to Schedule Execution of Multiple
Controllers” on page 26-7

Advantages of Using Simulink Functions in a
Stateflow Chart
When you define a function that uses Simulink blocks or schedule execution
of multiple controllers without Simulink functions, the model requires these
elements:

• Simulink function-call subsystem blocks

• Stateflow chart with function-call output events

• Signal lines between the chart and each function-call subsystem port

Simulink functions in a Stateflow chart provide these advantages:

• No function-call subsystem blocks

• No output events

• No signal lines

For details about each modeling method, see “Benefits of Using a Simulink
Function to Access Simulink Blocks” on page 26-5 and “Benefits of Using a
Simulink Function to Schedule Execution of Multiple Controllers” on page
26-7.

26-4

Why Use a Simulink® Function in a Stateflow® Chart?

Benefits of Using a Simulink Function to Access
Simulink Blocks
The sections that follow compare two ways of defining a function that uses
Simulink blocks.

Model Method Without a Simulink Function
You define a function-call subsystem in the Simulink model (see “Create a
Function-Call Subsystem”. Use an output event in a Stateflow chart to call
the subsystem, as shown.

26-5

26 Simulink® Functions in Stateflow® Charts

Model Method With a Simulink Function
You place one or more Simulink blocks in a Simulink function of a Stateflow
chart. Use a function call to execute the blocks in that function, as shown.

In the chart, the during action in selection_state contains a function call
to calc_th, which is a function that contains Simulink blocks.

26-6

Why Use a Simulink® Function in a Stateflow® Chart?

This modeling method minimizes the objects in your model.

For more information, see “Define a Function That Uses Simulink Blocks” on
page 26-27.

Benefits of Using a Simulink Function to Schedule
Execution of Multiple Controllers
The sections that follow compare two ways of scheduling execution of multiple
controllers.

26-7

26 Simulink® Functions in Stateflow® Charts

Model Method Without Simulink Functions
You define each controller as a function-call subsystem block and use output
events in a Stateflow chart to schedule execution of the subsystems, as shown.

26-8

Why Use a Simulink® Function in a Stateflow® Chart?

Model Method With Simulink Functions
You define each controller as a Simulink function in a Stateflow chart and use
function calls to schedule execution of the subsystems, as shown.

26-9

26 Simulink® Functions in Stateflow® Charts

This modeling method minimizes the objects in your model.

For more information, see “Schedule Execution of Multiple Controllers” on
page 26-37.

26-10

Where to Use a Simulink® Function

Where to Use a Simulink Function
A Simulink function can reside anywhere in a chart, state, or subchart. The
location of a function determines its scope, that is, the set of states and
transitions that can call the function. Follow these guidelines:

• If you want to call the function only within one state or subchart and its
substates, put your Simulink function in that state or subchart. That
function overrides any other functions of the same name in the parents and
ancestors of that state or subchart.

• If you want to call the function anywhere in that chart, put your Simulink
function at the chart level.

26-11

26 Simulink® Functions in Stateflow® Charts

Basic Approach to Defining Simulink Functions in Stateflow
Charts

In this section...

“Task 1: Add a Function to the Chart” on page 26-12

“Task 2: Define the Subsystem Elements of the Simulink Function” on
page 26-13

“Task 3: Configure the Function Inputs” on page 26-14

Task 1: Add a Function to the Chart
Follow these steps to add a Simulink function to the chart:

1 Click the Simulink function icon in the Stateflow Editor toolbar:

2 Move your pointer to the location for the new Simulink function in your
chart and click to insert the function box.

Tip You can also drag the function from the toolbar.

3 Enter the function signature.

The function signature specifies a name for your function and the formal
names for the arguments and return values. A signature has this syntax:

[r_1, r_2,..., r_n] = simfcn(a_1, a_2,..., a_n)

where simfcn is the name of your function, a_1, a_2, ..., a_n are formal
names for the arguments, and r_1, r_2, ..., r_n are formal names for the
return values.

26-12

Basic Approach to Defining Simulink® Functions in Stateflow® Charts

Note This syntax is the same as what you use for graphical functions,
truth tables, and MATLAB functions. You can define arguments and
return values as scalars, vectors, or matrices of any data type.

4 Click outside the function box.

The following example shows a Simulink function that has the name sim_fcn,
which takes three arguments (a, b, and c) and returns two values (x and y).

Note You can also create and edit a Simulink function by using API methods.

Task 2: Define the Subsystem Elements of the
Simulink Function
Follow these steps to define the subsystem elements of the Simulink function:

1 Double-click the Simulink function box.

The contents of the subsystem appear: input and output ports that match
the function signature and a single function-call trigger port.

2 Add Simulink blocks to the subsystem.

3 Connect the input and output ports to each block.

Note You cannot delete the trigger port in the function.

26-13

26 Simulink® Functions in Stateflow® Charts

The following example shows the subsystem elements for a Simulink function.

Task 3: Configure the Function Inputs
Follow these steps to configure inputs for the Simulink function:

1 Configure the input ports.

a Double-click an input port to open the Block Parameters dialog box.

b In the Signal Attributes pane, enter the size and data type.

For example, you can specify a size of [2 3] for a 2-by-3 matrix and a
data type of uint8.

2 Click OK.

Note An input port of a Simulink function cannot inherit size or data type.
Therefore, you define the size and data type of an input that is not scalar
data of type double. However, an output port can inherit size and data type.
For more information, see “Best Practices for Using Simulink Functions” on
page 26-26.

26-14

How a Simulink® Function Binds to a State

How a Simulink Function Binds to a State

In this section...

“Bind Behavior of a Simulink Function” on page 26-15

“Control Subsystem Variables When the Simulink Function Is Disabled” on
page 26-17

“Example of Binding a Simulink Function to a State” on page 26-17

Bind Behavior of a Simulink Function
When a Simulink function resides inside a state, the function binds to that
state. Binding results in the following behavior:

• Function calls can occur only in state actions and on transitions within
the state and its substates.

• When the state is entered, the function is enabled.

• When the state is exited, the function is disabled.

26-15

26 Simulink® Functions in Stateflow® Charts

For example, the following Stateflow chart shows a Simulink function that
binds to a state.

Because the function queue resides in state A1, the function binds to that state.

• State A1 and its substates A2 and A3 can call queue, but state B1 cannot.

• When state A1 is entered, queue is enabled.

• When state A1 is exited, queue is disabled.

26-16

How a Simulink® Function Binds to a State

Control Subsystem Variables When the Simulink
Function Is Disabled
If a Simulink function binds to a state, you can hold the subsystem variables
at their values from the previous execution or reset the variables to their
initial values. Follow these steps:

1 In the Simulink function, double-click the trigger port to open the Block
Parameters dialog box.

2 Select an option for States when enabling.

Option Description Reference Section

held Holds the values of the
subsystem variables
from the previous
execution

“How the Function
Behaves When
Variables Are Held” on
page 26-21

reset Resets the subsystem
variables to their
initial values

“How the Function
Behaves When
Variables Are Reset”
on page 26-22

Example of Binding a Simulink Function to a State
This example shows how a Simulink function behaves when bound to a state.

26-17

26 Simulink® Functions in Stateflow® Charts

The function queue contains a block diagram that increments a counter by
1 each time the function executes.

26-18

How a Simulink® Function Binds to a State

The Block Parameters dialog box for the trigger port appears as follows.

In the dialog box, setting Sample time type to periodic enables the
Sample time field, which defaults to 1. These settings tell the function to
execute for each time step specified in the Sample time field while the
function is enabled.

26-19

26 Simulink® Functions in Stateflow® Charts

Note If you use a fixed-step solver, the value in the Sample time field must
be an integer multiple of the fixed-step size. This restriction does not apply to
variable-step solvers. (For more information, see “Solvers” in the Simulink
documentation.)

Simulation Behavior of the Chart

When you simulate the chart, the following actions occur.

1 The default transition to state A1 occurs, which includes setting local data
u1 to 1.

2 When A1 is entered, the function queue is enabled.

3 Function calls to queue occur until the condition after(5, sec) is true.

4 The transition from state A1 to B1 occurs.

5 When A1 is exited, the function queue is disabled.

6 After two more seconds pass, the transition from B1 to A1 occurs.

7 Steps 2 through 6 repeat until the simulation ends.

26-20

How a Simulink® Function Binds to a State

How the Function Behaves When Variables Are Held
If you set States when enabling to held, the output y1 is as follows.

When state A1 becomes inactive at t = 5, the Simulink function holds the
counter value. When A1 is active again at t = 7, the counter has the same
value as it did at t = 5. Therefore, the output y1 continues to increment over
time.

26-21

26 Simulink® Functions in Stateflow® Charts

How the Function Behaves When Variables Are Reset
If you set States when enabling to reset, the output y1 is as follows.

When state A1 becomes inactive at t = 5, the Simulink function does not hold
the counter value. When A1 is active again at t = 7, the counter resets to zero.
Therefore, the output y1 resets too.

26-22

How a Simulink® Function Behaves When Called from Multiple Sites

How a Simulink Function Behaves When Called from
Multiple Sites

If you call a Simulink function from multiple sites in a chart, all call sites
share the state of the function variables. For example, suppose you have a
chart with two calls to the same Simulink function at each time step.

The function f contains a block diagram that increments a counter by 1 each
time the function executes.

At each time step, the function f is called twice, which causes the counter to
increment by 2. Because all call sites share the value of this counter, the data
y and y1 increment by 2 at each time step.

Note This behavior also applies to external function-call subsystems in
a Simulink model. For more information, see “Create a Function-Call
Subsystem” in the Simulink documentation.

26-23

26 Simulink® Functions in Stateflow® Charts

Rules for Using Simulink Functions in Stateflow Charts
Do not call Simulink functions in state during actions or transition
conditions of continuous-time charts

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink
functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see “Model Hybrid Systems with Model Logic” on page
18-5.

Do not call Simulink functions in default transitions if you enable
execute-at-initialization mode

If you select Execute (enter) Chart At Initialization in the Chart
properties dialog box, you cannot call Simulink functions in default transitions
that execute the first time that the chart awakens. Otherwise, an error
message appears when you simulate your model.

Use only alphanumeric characters or underscores when naming
input and output ports for a Simulink function

This rule ensures that the names of input and output ports are compatible
with identifier naming rules of Stateflow charts.

Note Any space in a name automatically changes to an underscore.

Convert discontiguous signals to contiguous signals for Simulink
functions

For Simulink functions inside a Stateflow chart, the output ports do not
support discontiguous signals. If your function contains a block that outputs
a discontiguous signal, insert a Signal Conversion block between the
discontiguous output and the output port. This action ensures that the output
signal is contiguous.

26-24

Rules for Using Simulink® Functions in Stateflow® Charts

Blocks that can output a discontiguous signal include the Bus Creator block
and the Mux block. For the Bus Creator block, the output is discontiguous
only if you clear the Output as nonvirtual bus check box — that is, if the
Bus Creator block outputs a virtual bus. If you select Output as nonvirtual
bus, the output signal is contiguous and no conversion is necessary.

For more information, see Bus Creator, Mux, and Signal Conversion in the
Simulink Reference documentation.

Do not export Simulink functions

If you try to export Simulink functions, an error appears when you simulate
your model. To avoid this behavior, clear the Export Chart Level
Functions (Make Global) check box in the Chart properties dialog box.

Use the Stateflow Editor to rename a Simulink function

If you try to use the Model Explorer to rename a Simulink function, the
change does not appear in the chart. Click the function box in the Stateflow
Editor to rename the function.

Do not use Simulink functions in Moore charts

This restriction prevents violations of Moore semantics during chart execution.
See “Design Rules for Moore Charts” on page 6-13 for more information.

Do not generate HDL code for Simulink functions

If you try to generate HDL code for charts that contain Simulink functions, an
error message appears when you simulate your model. HDL code generation
does not support Simulink functions.

26-25

26 Simulink® Functions in Stateflow® Charts

Best Practices for Using Simulink Functions
Place a Simulink function at the lowest possible level of the Stateflow
hierarchy

This guideline enables binding of a Simulink function only to the state and
substates that require access. You also enhance readability of the chart.

Set properties of input ports explicitly for a Simulink function

The input ports of a Simulink function cannot inherit their sizes and data
types. Therefore, you must set sizes and types explicitly when the inputs
are not scalar data of type double.

The output ports of a Simulink function can inherit sizes and data types based
on connections inside the subsystem. Therefore, you can specify sizes and
types of outputs as inherited.

Tip To minimize updates required for changes in input port properties, you
can specify sizes and data types as parameters.

Verify that function-call expressions have inputs and outputs of
correct size

If the formal arguments of a function signature are scalars, verify that inputs
and outputs of function calls follow the rules of scalar expansion. For more
information, see “How Scalar Expansion Works for Functions” on page 15-6.

Avoid using machine-parented data with Simulink functions

Use data store memory instead of machine-parented data. For more
information, see “Share Global Data with Multiple Charts” on page 8-35.

26-26

Define a Function That Uses Simulink® Blocks

Define a Function That Uses Simulink Blocks

In this section...

“Goal of the Tutorial” on page 26-27

“Edit a Model to Use a Simulink Function” on page 26-28

“Run the New Model” on page 26-35

Goal of the Tutorial
The goal of this tutorial is to use a Simulink function in a Stateflow chart to
improve the design of a model named old_sf_car.

Rationale for Improving the Model Design
The old_sf_car model contains a function-call subsystem named Threshold
Calculation and a Stateflow chart named shift_logic. The two blocks interact
as follows:

26-27

26 Simulink® Functions in Stateflow® Charts

• The chart broadcasts the output event CALC_TH to trigger the function-call
subsystem.

• The subsystem uses lookup tables to interpolate two values for the
shift_logic chart.

• The subsystem outputs (up_th and down_th) feed directly into the chart as
inputs.

No other blocks in the model access the subsystem outputs.

You can replace a function-call subsystem with a Simulink function in a
chart when:

• The subsystem performs calculations required by the chart.

• Other blocks in the model do not need access to the subsystem outputs.

Edit a Model to Use a Simulink Function
The sections that follow describe how to replace a function-call subsystem
in a Simulink model with a Simulink function in a Stateflow chart. This
procedure reduces the number of objects in the model while retaining the
same simulation results.

Step Task Reference

1 Open the model. “Open the Model” on page 26-29

2 Move the contents of the
function-call subsystem into a
Simulink function in the chart.

“Add a Simulink Function to the
Chart” on page 26-30

3 Change the scope of specific
chart-level data to Local.

“Change the Scope of Chart Data”
on page 26-34

4 Replace the event broadcast with
a function call.

“Update State Action in the
Chart” on page 26-34

5 Verify that function inputs and
outputs are defined.

“Add Data to the Chart” on page
26-35

6 Remove unused items in the
model.

“Remove Unused Items in the
Model” on page 26-35

26-28

Define a Function That Uses Simulink® Blocks

Note To skip the conversion steps and access the new model directly, type
sf_car at the MATLAB command prompt.

Open the Model
Type old_sf_car at the MATLAB command prompt. If you simulate the
model, you see these results in the two scopes.

26-29

26 Simulink® Functions in Stateflow® Charts

Add a Simulink Function to the Chart
Follow these steps to add a Simulink function to the shift_logic chart.

26-30

Define a Function That Uses Simulink® Blocks

1 In the Simulink model, right-click the Threshold Calculation block in the
lower left corner and select Cut from the context menu.

2 Open the shift_logic chart.

3 In the chart, right-click below selection_state and select Paste from
the context menu.

26-31

26 Simulink® Functions in Stateflow® Charts

4 Expand the new Simulink function so that the signature fits inside the
function box.

Tip To change the font size of a function, right-click the function box and
select a new size from the Font Size menu.

26-32

Define a Function That Uses Simulink® Blocks

5 Expand the border of selection_state to include the new function.

Note The function resides in this state instead of the chart level because
no other state in the chart requires the function outputs up_th and
down_th. See “How a Simulink Function Binds to a State” on page 26-15.

6 Rename the Simulink function from Threshold_Calculation
to calc_threshold by entering [down_th, up_th] =
calc_threshold(gear, throttle) in the function box.

26-33

26 Simulink® Functions in Stateflow® Charts

Change the Scope of Chart Data
In the Model Explorer, change the scope of chart-level data up_th and down_th
to Local because calculations for those data now occur inside the chart.

Update State Action in the Chart
In the Stateflow Editor, change the during action in selection_state to call
the Simulink function calc_threshold.

during: [down_th, up_th] = calc_threshold(gear, throttle);

26-34

Define a Function That Uses Simulink® Blocks

Add Data to the Chart
Because the function calc_threshold takes throttle as an input, you must
define that data as a chart input. (For details, see “Add Data” on page 8-2.)

1 Add input data throttle to the chart with a Port property of 1.

Using port 1 prevents signal lines from overlapping in the Simulink model.

2 In the Simulink model, add a signal line for throttle between the inport of
the Engine block and the inport of the shift_logic chart.

Remove Unused Items in the Model

1 In the Model Explorer, delete the function-call output event CALC_TH
because the Threshold Calculation block no longer exists.

2 Delete any dashed signal lines from your model.

Run the New Model
Your new model looks something like this:

26-35

26 Simulink® Functions in Stateflow® Charts

If you simulate the new model, the results match those of the original design.

26-36

Schedule Execution of Multiple Controllers

Schedule Execution of Multiple Controllers

In this section...

“Goal of the Tutorial” on page 26-37

“Edit a Model to Use Simulink Functions” on page 26-38

“Run the New Model” on page 26-45

Goal of the Tutorial
The goal of this tutorial is to use Simulink functions in a Stateflow chart to
improve the design of a model named sf_temporal_logic_scheduler.

26-37

26 Simulink® Functions in Stateflow® Charts

Rationale for Improving the Model Design
The sf_temporal_logic_scheduler model contains a Stateflow chart and
three function-call subsystems. These blocks interact as follows:

• The chart broadcasts the output events A1, A2, and A3 to trigger the
function-call subsystems.

• The subsystems A1, A2, and A3 execute at different rates defined by the
chart.

• The subsystem outputs feed directly into the chart.

No other blocks in the model access the subsystem outputs.

You can replace function-call subsystems with Simulink functions inside a
chart when:

• The subsystems perform calculations required by the chart.

• Other blocks in the model do not need access to the subsystem outputs.

Edit a Model to Use Simulink Functions
The sections that follow describe how to replace function-call subsystem
blocks in a Simulink model with Simulink functions in a Stateflow chart.
This procedure reduces the number of objects in the model while retaining
the same simulation results.

Step Task Reference

1 Open the model. “Open the Model” on page 26-40

2 Move the contents of the
function-call subsystems into
Simulink functions in the chart.

“Add Simulink Functions to the
Chart” on page 26-40

3 Change the scope of specific
chart-level data to Local.

“Change the Scope of Chart Data”
on page 26-43

4 Replace event broadcasts with
function calls.

“Update State Actions in the
Chart” on page 26-44

26-38

Schedule Execution of Multiple Controllers

Step Task Reference

5 Verify that function inputs and
outputs are defined.

“Add Data to the Chart” on page
26-44

6 Remove unused items in the
model.

“Remove Unused Items in the
Model” on page 26-45

Note To skip the conversion steps and access the new model directly, type
sf_temporal_logic_scheduler_with_sl_fcns at the MATLAB command
prompt.

26-39

26 Simulink® Functions in Stateflow® Charts

Open the Model
Type sf_temporal_logic_scheduler at the MATLAB command prompt. If
you simulate the model, you see this result in the scope.

For more information, see “Schedule Subsystems to Execute at Specific
Times” on page 23-19.

Add Simulink Functions to the Chart
Follow these steps to add Simulink functions to the Temporal Logic Scheduler
chart.

26-40

Schedule Execution of Multiple Controllers

1 In the Simulink model, right-click the A1 block in the lower right corner
and select Cut from the context menu.

2 Open the Temporal Logic Scheduler chart.

3 In the chart, right-click outside any states and select Paste from the
context menu.

26-41

26 Simulink® Functions in Stateflow® Charts

4 Expand the new Simulink function so that the signature fits inside the
function box.

Tip To change the font size of a function, right-click the function box and
select a new size from the Font Size menu.

5 Rename the Simulink function from A1 to f1 by entering y = f1(u) in
the function box.

26-42

Schedule Execution of Multiple Controllers

6 Repeat steps 1 through 5 for these cases:

• Copying the contents of A2 into a Simulink function named f2.

• Copying the contents of A3 into a Simulink function named f3.

Note The new functions reside at the chart level because both states
FastScheduler and SlowScheduler require access to the function outputs.

Change the Scope of Chart Data
In the Model Explorer, change the scope of chart-level data y to Local because
the calculation for that data now occurs inside the chart.

26-43

26 Simulink® Functions in Stateflow® Charts

Update State Actions in the Chart
In the Stateflow Editor, you can replace event broadcasts in state actions
with function calls.

1 Edit the state actions in FastScheduler and SlowScheduler to call the
Simulink functions f1, f2, and f3.

2 In both states, update each during action as follows.

du: y = u1-y2;

Add Data to the Chart
For the on every state actions of FastScheduler and SlowScheduler, define
three data. (For details, see “Add Data” on page 8-2.)

1 Add local data y1 and y2 to the chart.

26-44

Schedule Execution of Multiple Controllers

2 Add output data y3 to the chart.

3 In the model, connect the outport for y3 to the inport of the scope.

Tip To flip the Scope block, right-click and select Rotate & Flip > Flip
Block from the context menu.

Remove Unused Items in the Model

1 In the Model Explorer, delete output events A1, A2, and A3 and input data
u2 because the function-call subsystems no longer exist.

2 Delete any dashed signal lines from your model.

Run the New Model
Your new model looks something like this:

26-45

26 Simulink® Functions in Stateflow® Charts

If you simulate the new model, the results match those of the original design.

26-46

27

Build Targets

• “Targets You Can Build” on page 27-2

• “Choose a Procedure to Simulate a Model” on page 27-4

• “Integrate Custom C/C++ Code for Simulation” on page 27-6

• “Speed Up Simulation” on page 27-16

• “Choose a Procedure to Generate Embeddable Code” on page 27-19

• “Integrate Custom C/C++ Code for Code Generation” on page 27-21

• “Optimize Generated Code” on page 27-30

• “Command-Line API to Set Simulation and Code Generation Parameters”
on page 27-32

• “Specify Relative Paths for Custom Code” on page 27-41

• “Choose a Compiler” on page 27-43

• “Share Data Using Custom C Code” on page 27-44

• “What Happens During the Target Building Process?” on page 27-54

• “Parse Stateflow Charts” on page 27-55

• “Resolve Undefined Symbols in Your Chart” on page 27-56

• “Generated Code Files for Targets You Build” on page 27-60

• “Traceability of Stateflow Objects in Generated Code” on page 27-65

• “Inline State Functions in Generated Code” on page 27-80

27 Build Targets

Targets You Can Build

In this section...

“Code Generation for Stateflow Blocks” on page 27-2

“Software Requirements for Building Targets” on page 27-3

Code Generation for Stateflow Blocks
You can generate code for models with Stateflow blocks for these uses:

• Simulation

• Production and rapid prototyping

Code Generation for Simulation
A simulation target is a specification of the generated code, custom code,
and build type you use for generating simulation code for Stateflow blocks
in a model.

Whenever you simulate a model that contains Stateflow blocks, Stateflow
software generates code that compiles into an S-function MEX file (for details,
see “S-Function MEX-Files” on page 27-60). This code enables the Stateflow
blocks to interface with other blocks in a Simulink model, the MATLAB
base workspace, and the Stateflow Debugger. This code is not suitable for
production or rapid prototyping.

Code Generation for Production and Rapid Prototyping
An embeddable target is a specification of the generated code, custom code,
and build type you use for generating production code for Stateflow blocks
in a model.

Embedded Coder software can generate embeddable code for Stateflow blocks.
This code is optimized for production and rapid prototyping, but does not
contain code to interface with other blocks in a Simulink model, the MATLAB
base workspace, and the Stateflow Debugger.

27-2

Targets You Can Build

Software Requirements for Building Targets
To build targets for models with Stateflow blocks, you must have a license
for the software listed:

Target to Build Software to Use

Simulation target Stateflow

Embeddable target Embedded Coder

27-3

27 Build Targets

Choose a Procedure to Simulate a Model

In this section...

“Guidelines for Simulation” on page 27-4

“Choose the Right Procedure for Simulation” on page 27-4

Guidelines for Simulation
When you simulate a model, use these guidelines to choose the right
procedure.

Do this step... When...

Speed up
simulation

You have a large model with many blocks.

See “Speed Up Simulation” on page 27-16.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow generated code.

Choose a custom
compiler

You use the UNIX® version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choose a Compiler” on page 27-43.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choose the Right Procedure for Simulation
To choose the right procedure for simulation, find the highlighted block that
describes your goal and see the corresponding section in “Integrate Custom
C/C++ Code for Simulation” on page 27-6.

27-4

Choose a Procedure to Simulate a Model

��������

��������(

��

���
9���������:�
���������;/

���

��

'������
��
��
����(

��

-����-<<(
	

-$��
���
��
��
��������(

���
9-$��
�����
-�������;/

���

��

������	����
�$��
(

	

���

���

-�
��
�����������

�///(

������
�����������

�������������
���������

����9������
���������;/

���
9'��������
-�
���-<<
-����!��

���������;/

����9'��������
�-�
���-�-���
�!���=����	����
-$��
�!��
���������;/

����9'��������
�-�
���-�-���

!���>�	����
-$��
�!��
���������;/

����9'��������
-�
���-�-���
!�������-$��
�!��
���������;/

27-5

27 Build Targets

Integrate Custom C/C++ Code for Simulation

In this section...

“Start Simulation” on page 27-6

“Integrate Custom C++ Code for Simulation” on page 27-6

“Integrate Custom C Code for Nonlibrary Charts for Simulation” on page
27-8

“Integrate Custom C Code for Library Charts for Simulation” on page 27-11

“Integrate Custom C Code for All Charts for Simulation” on page 27-13

Start Simulation
Simulate your model by clicking the play button in the toolbar of the editor.
See “Generated Code Files for Targets You Build” on page 27-60 for details
about the simulation code you generate for your model and the folder
structure.

For information on setting simulation options using the command-line API,
see “Command-Line API to Set Simulation and Code Generation Parameters”
on page 27-32.

Note You cannot simulate only the Stateflow blocks in a library model. You
must first create a link to the library block in your main model and then
simulate the main model.

Integrate Custom C++ Code for Simulation
To integrate custom C++ code for simulation, perform the tasks that follow.

Task 1: Prepare Code Files
Prepare your custom C++ code for simulation as follows:

1 Add a C function wrapper to your custom code. This wrapper function
executes the C++ code that you are including.

27-6

Integrate Custom C/C++ Code for Simulation

The C function wrapper should have this form:

int my_c_function_wrapper()
{
.
.
.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes the C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for
Simulation
To include custom C++ code for simulation, you must configure your
simulation target and select C++ as the custom code language:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

3 Add your custom header file in the Header file subpane. Click Apply.

4 Add your custom C++ files in the Source files subpane. Click Apply.

5 In the Model Configuration Parameters dialog box, select the Code
Generation pane.

27-7

27 Build Targets

6 Select C++ from the Language menu.

7 Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choose a Compiler” on page 27-43.

Task 4: Simulate the Model
For instructions, see “Start Simulation” on page 27-6.

Integrate Custom C Code for Nonlibrary Charts for
Simulation
To integrate custom C code that applies to nonlibrary charts for simulation,
perform the tasks that follow.

Task 1: Include Custom C Code in the Simulation Target
Specify custom code options in the simulation target for your model:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

27-8

Integrate Custom C/C++ Code for Simulation

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

27-9

27 Build Targets

• Source file — Enter code lines to include at the top of a generated
source code file. These code lines appear at the top of the generated
model.c source file, outside of any function.

For example, you can include extern int declarations for global
variables.

• Header file — Enter code lines to include at the top of the generated
model.h header file that declares custom functions and data in the
generated code. These code lines appear at the top of all generated
source code files and are visible to all generated code.

Note When you include a custom header file, you must enclose the file
name in double quotes. For example, #include ''sample_header.h''
is a valid declaration for a custom header file.

Since the code you specify in this option appears in multiple source files
that link into a single binary, limitations exist on what you can include.
For example, do not include a global variable definition such as int x;
or a function body such as

void myfun(void)
{
...
}

These code lines cause linking errors because their symbol definitions
appear multiple times in the source files of the generated code. You can,
however, include extern declarations of variables or functions such as
extern int x; or extern void myfun(void);.

• Initialize function — Enter code statements that execute once at
the start of simulation. Use this code to invoke functions that allocate
memory or perform other initializations of your custom code.

• Terminate function — Enter code statements that execute at the
end of simulation. Use this code to invoke functions that free memory
allocated by the custom code or perform other cleanup tasks.

27-10

Integrate Custom C/C++ Code for Simulation

• Include directories— Enter a space-separated list of the folder paths
that contain custom header files that you include either directly (see
Header file option) or indirectly in the compiled target.

• Source files — Enter a list of source files to compile and link into the
target. You can separate source files with a comma, a space, or a new
line.

• Libraries— Enter a space-separated list of static libraries that contain
custom object code to link into the target.

4 Click OK.

Tip If you want to rebuild the target to include custom code changes, select
Code > C/C++ Code > Build Model in the Stateflow Editor.

Task 2: Simulate the Model
For instructions, see “Start Simulation” on page 27-6.

Integrate Custom C Code for Library Charts for
Simulation
To integrate custom C code that applies only to library charts for simulation,
perform the tasks that follow.

Task 1: Include Custom C Code in Simulation Targets for
Library Models
Specify custom code options in the simulation target for each library model
that contributes a chart to the main model:

1 In the Stateflow Editor, select Simulation > Debug > Simulation
Target For MATLAB & Stateflow.

27-11

27 Build Targets

The Model Configuration Parameters dialog box appears.

2 In the Simulation Target pane, select Use local custom code settings
(do not inherit from main model).

This step ensures that each library model retains its own custom code
settings during simulation.

3 Specify your custom code in the subpanes.

27-12

Integrate Custom C/C++ Code for Simulation

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 27-8 for descriptions of the custom code options.

4 Click OK.

Task 2: Simulate the Model
For instructions, see “Start Simulation” on page 27-6.

Integrate Custom C Code for All Charts for Simulation
To integrate custom C code that applies to all charts for simulation, perform
the tasks that follow.

Task 1: Include Custom C Code in the Simulation Target for
the Main Model
Specify custom code options in the simulation target for your main model:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

27-13

27 Build Targets

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

27-14

Integrate Custom C/C++ Code for Simulation

Note See “Task 1: Include Custom C Code in the Simulation Target” on
page 27-8 for descriptions of the custom code options.

4 Click OK.

By default, settings in the Simulation Target > Custom Code pane for
the main model apply to all charts contributed by library models.

Tip If you want to rebuild the target to include custom code changes, select
Code > C/C++ Code > Build Model in the Stateflow Editor.

Task 2: Ensure That Custom C Code for the Main Model Applies
to Library Charts
Configure the simulation target for each library model that contributes a
chart to your main model:

1 In the Stateflow Editor, select Simulation > Debug > Simulation
Target For MATLAB & Stateflow.

2 In the Simulation Target pane, clear the Use local custom code
settings (do not inherit from main model) check box.

This step ensures that library charts inherit the custom code settings of
your main model.

3 Click OK.

Task 3: Simulate the Model
For instructions, see “Start Simulation” on page 27-6.

27-15

27 Build Targets

Speed Up Simulation

In this section...

“Disable Simulation Target Options That Impact Execution Speed” on
page 27-16

“Keep Charts Closed During Simulation” on page 27-17

“Keep Scope Blocks Closed During Simulation” on page 27-17

“Use Library Charts in Your Model” on page 27-17

Disable Simulation Target Options That Impact
Execution Speed
To simulate your model more quickly, disable options as described in the
steps that follow:

1 Open the Model Configuration Parameters dialog box and select the
Simulation Target pane.

2 Clear any of these options:

• Enable debugging/animation— Clear this check box to disable chart
animation and debugging.

This option enables automatically when you use the Stateflow Debugger
to start a model simulation. You can also control chart animation
separately in the Debugger. (The Stateflow Debugger works only with

27-16

Speed Up Simulation

simulation targets. Therefore, you cannot generate debugging/animation
code for embeddable targets, even if you enable this option.)

• Enable overflow detection (with debugging)— Clear this check box
to disable overflow detection of Stateflow data in the generated code.
Overflow occurs for data when a value is assigned to it that exceeds
the numeric capacity of its type.

Note The Enable overflow detection (with debugging) option
is important for fixed-point data. For more information, see “Detect
Overflow for Fixed-Point Types” on page 19-11.

To detect overflow in data during simulation, you must also select the
Data Range check box in the Debugger window. See “Data Range
Violations in a Chart” on page 28-48 for more details.

• Echo expressions without semicolons — Clear this check box to
disable run-time output in the MATLAB Command Window, such as
actions that do not terminate with a semicolon.

3 Click OK.

Keep Charts Closed During Simulation
During model simulation, any open charts with animation enabled take longer
to simulate. If you keep all charts closed, you can speed up the simulation.

Keep Scope Blocks Closed During Simulation
During model simulation, any open Scope blocks continuously update their
display. If you keep all Scope blocks closed, you can speed up the simulation.
After the simulation ends, you can open the Scope blocks to view the results.

Use Library Charts in Your Model
When your model has multiple charts that contain the same elements, you
might generate multiple copies of identical simulation code. By using library
charts, you can minimize the number of copies of identical simulation code.

27-17

27 Build Targets

For example, using five library charts reduces the number of identical copies
from five down to one.

For more information about using library charts, see “Create Specialized
Chart Libraries for Large-Scale Modeling” on page 21-24.

27-18

Choose a Procedure to Generate Embeddable Code

Choose a Procedure to Generate Embeddable Code

In this section...

“Guidelines for Embeddable Code Generation” on page 27-19

“Choose the Right Procedure for Embeddable Code Generation” on page
27-19

Guidelines for Embeddable Code Generation
When you generate embeddable code for a model, use these guidelines to
choose the right procedure.

Do this step... When...

Optimize
generated code

You want to improve readability of the code and
reduce the amount of memory storage required.

See “Optimize Generated Code” on page 27-30.

Include custom
code

You want to take advantage of legacy code that
augments model capabilities and also include custom
variables and functions that you share between your
custom code and Stateflow generated code.

Choose a custom
compiler

You use the UNIX version of Stateflow software or do
not wish to use the default lcc compiler.

See “Choose a Compiler” on page 27-43.

Include custom
code only for
library charts

You want to provide custom code in a portable,
self-contained library for use in multiple models.

Choose the Right Procedure for Embeddable Code
Generation
To choose the right procedure for embeddable code generation, find the
highlighted block that describes your goal and see the corresponding section
in “Integrate Custom C/C++ Code for Code Generation” on page 27-21.

27-19

27 Build Targets

?����"�
��������
����(

��

����9?����"���
8�������
-���;/

���

��

'������
��
��
����(

��

-����-<<(
	

-$��
���
��
��
��������(

���
9-$��
�����
-�������;/

���

��

������	����
�$��
(

	

���

���

-�
��
�����������

�///(

������
�����������

�������������
���������

���
98��������
��-���;/

���
9'��������
-�
���-<<
-����!���-���
8��������;/

����9'��������
-�
���-�-���
�!���=����	����
-$��
�!���-���
8��������;/

����9'��������
�-�
���-�-���

!���>�	����
-$��
�!���-���
8��������;/

����9'��������
�-�
���-�-���
!�������-$��
�!��

-���
8��������;/

27-20

Integrate Custom C/C++ Code for Code Generation

Integrate Custom C/C++ Code for Code Generation

In this section...

“Generate Code” on page 27-21

“Integrate Custom C++ Code for Code Generation” on page 27-21

“Integrate Custom C Code for Nonlibrary Charts for Code Generation” on
page 27-23

“Integrate Custom C Code for Library Charts for Code Generation” on
page 27-25

“Integrate Custom C Code for All Charts for Code Generation” on page 27-27

Generate Code
Generate embeddable code for your model in one of these ways:

• Use the keyboard shortcut Ctrl-B or Command-B.

• Click Build in the Code Generation pane of the Model Configuration
Parameters dialog box.

See “Generated Code Files for Targets You Build” on page 27-60 for details
about the embeddable code you generate for your model and the folder
structure.

For information on setting code generation options using the command-line
API, see “Command-Line API to Set Simulation and Code Generation
Parameters” on page 27-32.

Note You cannot generate embeddable code only for the Stateflow blocks in a
library model. You must first create a link to the library block in your main
model and then generate code for the main model.

Integrate Custom C++ Code for Code Generation
To integrate custom C++ code for embeddable code generation, perform the
tasks that follow.

27-21

27 Build Targets

Task 1: Prepare Code Files
Prepare your custom C++ code for code generation.

1 Add a C function wrapper to your custom code. This wrapper function
executes the C++ code that you are including.

The C function wrapper should have this form:

int my_c_function_wrapper()
{
.
.
.
//C++ code
.
.
.
return result;

}

2 Create a header file that prototypes the C function wrapper in the previous
step.

The header file should have this form:

int my_c_function_wrapper();

The value _cplusplus exists if your compiler supports C++ code. The
extern "C" wrapper specifies C linkage with no name mangling.

Task 2: Include Custom C++ Source and Header Files for Code
Generation
To include custom C++ code for Simulink Coder code generation, perform
these steps:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select the Code
Generation pane.

27-22

Integrate Custom C/C++ Code for Code Generation

3 Select C++ from the Language menu. Click Apply.

4 Select the Code Generation > Custom Code pane.

5 Add your custom header file in the Header file subpane. Click Apply.

6 Add your custom C++ files in the Source files subpane.

7 Click OK.

Task 3: Choose a C++ Compiler
For instructions, see “Choose a Compiler” on page 27-43.

Task 4: Generate Code
For instructions, see “Generate Code” on page 27-21.

Integrate Custom C Code for Nonlibrary Charts for
Code Generation
To integrate custom C code that applies to nonlibrary charts for embeddable
code generation, perform the tasks that follow.

Task 1: Include Custom C Code for Embeddable Code
Generation
Specify custom code options for Simulink Coder code generation of your model:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select Code
Generation > Custom Code.

27-23

27 Build Targets

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

27-24

Integrate Custom C/C++ Code for Code Generation

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

Task 2: Generate Code
For instructions, see “Generate Code” on page 27-21.

Integrate Custom C Code for Library Charts for Code
Generation
To integrate custom C code that applies only to library charts for embeddable
code generation, perform the tasks that follow.

Task 1: Include Custom C Code in Embeddable Targets for
Library Models
Specify custom code options in the embeddable target for each library model
that contributes a chart to your main model:

1 In the Stateflow Editor, select Code > C/C++ Code > Code Generation
Options.

27-25

27 Build Targets

The Model Configuration Parameters dialog box appears.

2 In the Code Generation pane, select Use local custom code settings
(do not inherit from main model).

This step ensures that each library model retains its own custom code
settings during code generation.

3 Specify your custom code in the subpanes.

27-26

Integrate Custom C/C++ Code for Code Generation

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

4 Click OK.

Task 2: Generate Code
For instructions, see “Generate Code” on page 27-21.

Integrate Custom C Code for All Charts for Code
Generation
To integrate custom C code that applies to all charts for embeddable code
generation, perform the tasks that follow.

Task 1: Include Custom C Code for Embeddable Code
Generation of the Main Model
Specify custom code options for Simulink Coder code generation of your
main model:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select Code
Generation > Custom Code.

27-27

27 Build Targets

The custom code options appear.

3 Specify your custom code in the subpanes.

Follow the guidelines in “Specify Relative Paths for Custom Code” on
page 27-41.

27-28

Integrate Custom C/C++ Code for Code Generation

Note If you specified custom code settings for simulation, you can apply
these settings to code generation. To avoid entering the same information
twice, selectUse the same custom code settings as Simulation Target.

Task 2: Ensure That Custom C Code for the Main Model Applies
to Library Charts
Configure the embeddable target for each library model that contributes a
chart to your main model:

1 In the Stateflow Editor, select Code > C/C++ Code > Code Generation
Options.

2 In the Code Generation pane, clear the Use local custom code settings
(do not inherit from main model) check box.

This step ensures that library charts inherit the custom code settings of
your main model.

3 Click OK.

Task 3: Generate Code
For instructions, see “Generate Code” on page 27-21.

27-29

27 Build Targets

Optimize Generated Code

In this section...

“How to Optimize Generated Code for Embeddable Targets” on page 27-30

“Design Tips for Optimizing Generated Code” on page 27-30

How to Optimize Generated Code for Embeddable
Targets
To optimize code generation for your model:

1 Open the Model Configuration Parameters dialog box.

2 In the Model Configuration Parameters dialog box, select the
Optimization > Stateflow pane.

3 Choose from these options:

• Use bitsets for storing state configuration— Reduces the amount
of memory that stores state configuration variables. However, it can
increase the amount of memory that stores target code if the target
processor does not include instructions for manipulating bitsets.

• Use bitsets for storing Boolean data — Reduces the amount of
memory that stores Boolean variables. However, it can increase the
amount of memory that stores target code if the target processor does
not include instructions for manipulating bitsets.

Note You cannot use bitsets when you generate code for these cases:

– An external mode simulation

– A target that specifies an explicit structure alignment

Design Tips for Optimizing Generated Code
The following design tips can help optimize generated code.

27-30

Optimize Generated Code

Do not access machine-parented data in a graphical function

This restriction prevents long parameter lists from appearing in the code
generated for a graphical function. You can access local data that resides in
the same chart as the graphical function.

For more information, see “Reuse Logic Patterns Using Graphical Functions”
on page 7-35.

Be explicit about the inline option of a graphical function

When you use a graphical function in a Stateflow chart, select Inline or
Function for the property Function Inline Option. Otherwise, the code
generated for a graphical function may not appear as you want.

For more information, see “Specify Graphical Function Properties” on page
7-32.

Avoid using multiple edge-triggered events in Stateflow charts

If you use more than one edge trigger, you generate multiple source code files
to handle rising or falling edge detections. If multiple triggers are required,
use function-call events instead.

For more information, see “How Events Work in Stateflow Charts” on page
9-2.

Combine input signals of a chart into a single bus object

When you use a bus object, you reduce the number of parameters in the
parameter list of a generated function. This guideline also applies to output
signals of a chart.

For more information, see “Define Stateflow Structures” on page 22-9.

27-31

27 Build Targets

Command-Line API to Set Simulation and Code Generation
Parameters

In this section...

“How to Set Parameters at the Command Line” on page 27-32

“Simulation Parameters for Nonlibrary Models” on page 27-33

“Simulation Parameters for Library Models” on page 27-35

“Code Generation Parameters for Nonlibrary Models” on page 27-37

“Code Generation Parameters for Library Models” on page 27-39

How to Set Parameters at the Command Line
To programmatically set options in the Model Configuration Parameters
dialog box for simulation and embeddable code generation, you can use the
command-line API.

1 At the MATLAB command prompt, type:

object_name = getActiveConfigSet(gcs)

This command returns an object handle to the model settings in the Model
Configuration Parameters dialog box for the current model.

2 To set a parameter for that dialog box, type:

object_name.set_param('parameter_name', value)

This command sets a configuration parameter to the value that you specify.

For example, you can set the Reserved names parameter for simulation
by typing:

cp = getActiveConfigSet(gcs)
cp.set_param('SimReservedNameArray', {'abc','xyz'})

27-32

Command-Line API to Set Simulation and Code Generation Parameters

Note You can also get the current value of a configuration parameter by
typing:

object_name.get_param('parameter_name')

For more information about using get_param and set_param, see the
Simulink documentation.

Simulation Parameters for Nonlibrary Models
The following table summarizes the parameters and values that you can
set for simulation of nonlibrary models using the command-line API. The
parameters are listed in the order that they appear in the Model Configuration
Parameters dialog box.

Parameter and Values Dialog Box Equivalent Description

SFSimEnableDebug

string – 'off', 'on'

Simulation Target > Enable
debugging / animation

Enable debugging and
animation of a model during
simulation and also enables
the Stateflow Debugger.

SFSimOverflowDetection

string – 'off', 'on'

Simulation Target > Enable
overflow detection (with
debugging)

Enable overflow detection
of data during simulation.
Overflow occurs for data when
a value assigned to it exceeds
the numeric capacity of the
data type.

Note To enable this option,
you must also select the
Data Range check box in the
Stateflow Debugger window.

27-33

27 Build Targets

Parameter and Values Dialog Box Equivalent Description

SimIntegrity

string – 'off', 'on'

Simulation Target > Ensure
memory integrity

Detect violations of memory
integrity in code generated
for MATLAB Function blocks
and stop execution with a
diagnostic.

SFSimEcho

string – 'off', 'on'

Simulation Target >
Echo expressions without
semicolons

Enable run-time output to
appear in the MATLAB
Command Window during
simulation.

SimCtrlC

string – 'off', 'on'

Simulation Target > Ensure
responsiveness

Enable responsiveness checks
in code generated for MATLAB
Function blocks.

SimBuildMode

string –
'sf_incremental_build',
'sf_nonincremental_build',
'sf_make', 'sf_make_clean',
'sf_make_clean_objects'

Simulation Target >
Simulation target build
mode

Specify how you build the
simulation target for a model.

SimReservedNameArray

string array – {}

Simulation Target >
Symbols > Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code to avoid naming
conflicts.

SimParseCustomCode

string – 'off', 'on'

Simulation Target >
Custom Code > Parse
custom code symbols

Specify whether or not to parse
the custom code and report
unresolved symbols for the C
charts in a model.

SimCustomSourceCode

string – ''

Simulation Target >
Custom Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

SimCustomHeaderCode

string – ''

Simulation Target >
Custom Code > Header file

Enter code lines to appear
near the top of a generated
header file.

27-34

Command-Line API to Set Simulation and Code Generation Parameters

Parameter and Values Dialog Box Equivalent Description

SimCustomInitializer

string – ''

Simulation Target >
Custom Code > Initialize
function

Enter code statements that
execute once at the start of
simulation.

SimCustomTerminator

string – ''

Simulation Target >
Custom Code > Terminate
function

Enter code statements
that execute at the end of
simulation.

SimUserIncludeDirs

string – ''

Simulation Target >
Custom Code > Include
directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows® path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

SimUserSources

string – ''

Simulation Target >
Custom Code > Source files

Enter a space-separated list of
source files to compile and link
into the target.

SimUserLibraries

string – ''

Simulation Target >
Custom Code > Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

Simulation Parameters for Library Models
The following table summarizes the simulation parameters that apply to
library models. The parameters are listed in the order that they appear in
the Model Configuration Parameters dialog box.

27-35

27 Build Targets

Parameter and Values Dialog Box Equivalent Description

SimUseLocalCustomCode

string – 'off', 'on'

Simulation Target > Use
local custom code settings
(do not inherit from main
model)

Specify whether a library
model can use custom code
settings that are unique from
the main model to which the
library is linked.

SimCustomSourceCode

string – ''

Simulation Target > Source
file

Enter code lines to appear
near the top of a generated
source code file.

SimCustomHeaderCode

string – ''

Simulation Target >Header
file

Enter code lines to appear
near the top of a generated
header file.

SimCustomInitializer

string – ''

Simulation Target >
Initialize function

Enter code statements that
execute once at the start of
simulation.

SimCustomTerminator

string – ''

Simulation Target >
Terminate function

Enter code statements
that execute at the end of
simulation.

SimUserIncludeDirs

string – ''

Simulation Target >
Include directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

27-36

Command-Line API to Set Simulation and Code Generation Parameters

Parameter and Values Dialog Box Equivalent Description

SimUserSources

string – ''

Simulation Target > Source
files

Enter a space-separated list of
source files to compile and link
into the target.

SimUserLibraries

string – ''

Simulation Target >
Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

Code Generation Parameters for Nonlibrary Models
The following table is a partial list of the parameters and values that you
can set for embeddable code generation using the command-line API. The
parameters are listed in the order that they appear in the Model Configuration
Parameters dialog box.

Parameter and Values Dialog Box Equivalent Description

UseSimReservedNames

string – 'off', 'on'

Code Generation > Symbols
> Use the same reserved
names as Simulation
Target

Specify whether to use the
same reserved names as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks or Stateflow blocks.)

ReservedNameArray

string array – {}

Code Generation > Symbols
> Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code to avoid naming
conflicts.

RTWUseSimCustomCode

string – 'off', 'on'

Code Generation > Custom
Code > Use the same
custom code settings as
Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks or Stateflow blocks.)

27-37

27 Build Targets

Parameter and Values Dialog Box Equivalent Description

CustomSourceCode

string – ''

Code Generation > Custom
Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

CustomHeaderCode

string – ''

Code Generation > Custom
Code > Header file

Enter code lines to appear
near the top of a generated
header file.

CustomInitializer

string – ''

Code Generation > Custom
Code > Initialize function

Enter code statements that
execute once at the start of
simulation.

CustomTerminator

string – ''

Code Generation > Custom
Code > Terminate function

Enter code statements
that execute at the end of
simulation.

CustomInclude

string – ''

Code Generation > Custom
Code > Include directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

CustomSource

string – ''

Code Generation > Custom
Code > Source files

Enter a space-separated list of
source files to compile and link
into the target.

CustomLibrary

string – ''

Code Generation > Custom
Code > Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

27-38

Command-Line API to Set Simulation and Code Generation Parameters

Code Generation Parameters for Library Models
The following table summarizes the code generation parameters that apply to
library models. The parameters are listed in the order that they appear in
the Model Configuration Parameters dialog box.

Parameter and Values Dialog Box Equivalent Description

RTWUseSimCustomCode

string – 'off', 'on'

Code Generation > Use the
same custom code settings
as Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.
(Applies only if the model
contains MATLAB Function
blocks or Stateflow blocks.)

RTWUseLocalCustomCode

string – 'off', 'on'

Code Generation > Use
local custom code settings
(do not inherit from main
model)

Specify whether a library
model can use custom code
settings that are unique from
the main model to which the
library is linked.

CustomSourceCode

string – ''

Code Generation > Source
file

Enter code lines to appear
near the top of a generated
source code file.

CustomHeaderCode

string – ''

Code Generation > Header
file

Enter code lines to appear
near the top of a generated
header file.

CustomInitializer

string – ''

Code Generation >
Initialize function

Enter code statements that
execute once at the start of
simulation.

CustomTerminator

string – ''

Code Generation >
Terminate function

Enter code statements
that execute at the end of
simulation.

27-39

27 Build Targets

Parameter and Values Dialog Box Equivalent Description

CustomInclude

string – ''

Code Generation > Include
directories

Enter a space-separated list of
folder paths that contain files
you include in the compiled
target.

Note If your list includes any
Windows path strings that
contain spaces, each instance
must be enclosed in double
quotes within the argument
string, for example,

'C:\Project "C:\Custom Files"'

CustomSource

string – ''

Code Generation > Source
files

Enter a space-separated list of
source files to compile and link
into the target.

CustomLibrary

string – ''

Code Generation >
Libraries

Enter a space-separated list
of static libraries that contain
custom object code to link into
the target.

For more information about parameters and values you can specify for
embeddable code generation, see “Parameter Command-Line Information
Summary” in the Simulink Coder documentation.

27-40

Specify Relative Paths for Custom Code

Specify Relative Paths for Custom Code

In this section...

“Why Use Relative Paths?” on page 27-41

“Search Relative Paths” on page 27-41

“Path Syntax Rules” on page 27-41

Why Use Relative Paths?
If you specify paths and files with absolute paths and later move them, you
must change these paths to point to new locations. To avoid this problem, use
relative paths for custom code options that specify paths or files.

Search Relative Paths
Search paths exist relative to these folders:

• The current folder

• The model folder (if different from the current folder)

• The custom list of folders that you specify

• All the folders on the MATLAB search path, excluding the toolbox folders

Path Syntax Rules
When you construct relative paths for custom code, follow these syntax rules:

• You can use the forward slash (/) or backward slash (\) as a file separator,
regardless of whether you are on a UNIX or PC platform. The makefile
generator parses these strings and returns the path names with the correct
platform-specific file separators.

• You can use tokens that evaluate in the MATLAB workspace, if you enclose
them with dollar signs ($...$). For example, consider this path:

$mydir1$\dir1

27-41

27 Build Targets

In this example, mydir1 is a string variable that you define in the MATLAB
workspace as 'd:\work\source\module1'. In the generated code, this
custom include path appears as:

d:\work\source\module1\dir1

• You must enclose paths in double quotes if they contain spaces or other
nonstandard path characters, such as hyphens (-).

27-42

Choose a Compiler

Choose a Compiler
You must use a C or C++ compiler for compiling code that you generate. The
Windows version of Stateflow software ships with a C compiler (lcc.exe) and
a make utility (lccmake). Both tools reside in the folder matlabroot\sys\lcc.
If you do not install any other compiler, lcc is the default compiler that builds
your targets.

If you use the UNIX version of Stateflow software or do not wish to use the
default lcc compiler, you must install your own target compiler. You can use
any compiler supported by MATLAB software.

Note For a list of supported compilers, see:

http://www.mathworks.com/support/compilers/current_release/

To install your own target compiler:

1 At the MATLAB prompt, type:

mex -setup

2 Follow the prompts for entering information about your compiler.

Note If you select an unsupported compiler, this warning message appears
when you start a build that requires compilation:

The mex compiler specified using 'mex -setup' is not supported
for simulation builds. Using the lcc compiler instead.

27-43

http://www.mathworks.com/support/compilers/current_release/

27 Build Targets

Share Data Using Custom C Code

In this section...

“Use Custom Code to Define Global Constants” on page 27-44

“Use Custom Code to Define Global Constants, Variables, and Functions”
on page 27-47

Use Custom Code to Define Global Constants
This example describes how to use custom C code to define constants that
apply to all charts in your model.

1 Suppose that you have the following model:

27-44

Share Data Using Custom C Code

The chart contains the following logic:

The chart contains two states A and B, along with a Simulink input named
input_data, which you can set to 0 or 1 by toggling the Manual Switch in
the model during simulation.

2 Open the Model Configuration Parameters dialog box.

3 In the Model Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

4 Select the Header file subpane.

27-45

27 Build Targets

In this subpane, you can enter #define and #include statements.

In this example, you define two constants named TRUE and FALSE to move
between states in your chart, instead of using the values 1 and 0. These

27-46

Share Data Using Custom C Code

custom definitions improve the readability of your chart actions. Note that
TRUE and FALSE are not Stateflow data objects.

Because the two custom definitions appear at the top of your generated
machine header file ex_custom_code_global_constants_sfun.h, you
can use TRUE and FALSE in all charts that belong to this model. For more
information about generated files, see “Code Files for a Simulation Target” on
page 27-61.

Use Custom Code to Define Global Constants,
Variables, and Functions
This example describes how to use custom C code to define constants,
variables, and functions that apply to all charts in your model.

1 Suppose that you have the following model:

27-47

27 Build Targets

The chart contains the following logic:

The chart contains two states A and B, along with three data objects:
input_data, local_data, and out_data. The chart accesses a custom
variable named myglobal and calls a custom function named my_function.

2 Open the Model Configuration Parameters dialog box.

3 In the Model Configuration Parameters dialog box, select the Simulation
Target > Custom Code pane.

4 Select the Header file subpane.

27-48

Share Data Using Custom C Code

In this subpane, you can enter #define and #include statements.

Note When you include a custom header file, you must enclose the file
name in double quotes.

27-49

27 Build Targets

The custom header file
ex_custom_code_global_constants_vars_fcns_hdr.h contains the
definitions of three constants:

#define TRUE 1
#define FALSE 0
#define MAYBE 2

This header file also contains declarations for the variable myglobal and
the function my_function:

extern int myglobal;
extern int my_function(int var1, double var2);

5 Select the Include directories subpane.

27-50

Share Data Using Custom C Code

The single period (.) indicates that all your custom code files reside in the
same folder as ex_custom_code_global_constants_vars_fcns.

27-51

27 Build Targets

Tip To direct your makefile to look for header or source files in a subfolder
relative to the model folder, use this relative path name:

.\subfolder_name

6 Select the Source files subpane.

27-52

Share Data Using Custom C Code

The custom source file
ex_custom_code_global_constants_vars_fcns_src.c compiles along
with the Stateflow generated code into a single S-function MEX file. See
“S-Function MEX-Files” on page 27-60 for details.

Tip To include a source file that resides in a subfolder relative to the
model folder, use this relative path name:

.\subfolder_name\source_file.c

In this example, you define three constants, a variable, and a
function via custom code options. Because the custom definitions
appear at the top of your generated machine header file
ex_custom_code_global_constants_vars_fcns_sfun.h, you can
access them in all charts that belong to this model. For more information
about generated files, see “Code Files for a Simulation Target” on page 27-61.

27-53

27 Build Targets

What Happens During the Target Building Process?
The target building process takes place as follows:

1 The charts in your model parse to ensure that their logic is valid.

2 If any errors are found, diagnostic error messages appear in the Build
window, and the building process stops. See “Parse Stateflow Charts” on
page 27-55 for more details.

3 If your charts parse without error, code generation software generates C
code from your charts.

You can specify code generation options when you configure your targets.

4 Code generation software produces a makefile to build the generated source
code into an executable program.

The makefile can optionally build your custom code into the target.

5 The specified C compiler for the MATLAB environment and a make utility
build the code into an application for your target.

27-54

Parse Stateflow® Charts

Parse Stateflow Charts

In this section...

“How the Stateflow Parser Works” on page 27-55

“Calling the Stateflow Parser” on page 27-55

How the Stateflow Parser Works
The parser evaluates the graphical and nongraphical objects and data in
each Stateflow machine against the supported chart notation and the action
language syntax.

Calling the Stateflow Parser
When you simulate a model, build a target, or generate code for a target,
Stateflow automatically parses the Stateflow machine. Additionally, you can
invoke the Stateflow parser to check the syntax of your chart by selecting
Chart > Parse Chart from the Stateflow Editor.

When parsing is complete, the Stateflow Builder window opens. If parsing
is unsuccessful (that is, an error appears), the chart automatically appears
with the highlighted object that causes the first parse error. In the Stateflow
Builder window, each error appears with a red button icon. You can
double-click any error in this window to bring its source chart to the front
with the source object highlighted. Any unresolved data or events in the chart
are flagged in the Symbol Wizard.

27-55

27 Build Targets

Resolve Undefined Symbols in Your Chart

In this section...

“Search for Undefined Symbols” on page 27-56

“Define Chart Symbols Using the Symbol Wizard” on page 27-57

“Rules for Inferring the Scope of Unresolved Symbols” on page 27-59

“Inference of Size, Type, and Complexity” on page 27-59

Search for Undefined Symbols
To search for undefined symbol errors, you can use one of these methods:

• Parse a chart by selecting Chart > Parse Chart.

• Start simulation by selecting Simulation > Run in the model window.

• Update the model diagram by selecting Simulation > Update Diagram
in the model window.

For more information, see “Parse Stateflow Charts” on page 27-55.

The parser behaves differently depending how you set Parse custom code
symbols on the Simulation Target > Custom Code pane in the Model
Configuration Parameters dialog box.

• For C charts, if you select the Parse custom code symbols check box,
the parser tries to find unresolved chart symbols in the custom code. If the
custom code does not define these symbols, they are flagged in the Symbol
Wizard. The Symbol Wizard suggests scopes for unresolved data and event
symbols. This option is not available for charts that use MATLAB as the
action language.

• If you do not select the Parse custom code symbols check box, the parser
considers unresolved data symbols in the chart to be defined in the custom
code. If the custom code does not define these symbols, an error does not
appear until make time.

27-56

Resolve Undefined Symbols in Your Chart

Note When you parse a chart with Chart > Parse Chart Stateflow does
have access to all required information for detecting unresolved symbols, such
as enumerated data types and exported graphical functions from other charts.
However, there can be false alarms from data types inherited from Simulink.

For information about Simulink symbol resolution, see “Symbol Resolution”
and “Symbol Resolution Process” in the Simulink documentation.

Define Chart Symbols Using the Symbol Wizard
When you parse a chart, the Symbol Wizard flags unresolved symbols in
your chart. The Symbol Wizard infers the class and scope of unresolved data
and events.

If the inferred scope is incorrect for any events or data, you can change the
scope in the Symbol Wizard. You can also change the class of a symbol
between data and event.

27-57

27 Build Targets

To accept, reject, or change the scope of a recommended item, perform one of
these steps:

• To accept an item, select the check box in front of the item.

• To reject an item, clear the check box.

• To change the class or scope, select a different value from the drop-down
list under Class or Scope.

After you edit the symbol definitions, click OK to add the symbols to the
Stateflow hierarchy.

27-58

Resolve Undefined Symbols in Your Chart

Rules for Inferring the Scope of Unresolved Symbols
The Symbol Wizard follows these rules for inferring the scope of unresolved
data symbols.

Unresolved Data Symbol Inferred Scope

Written to and read from in the chart Local

Read from but not written to in the
chart

Input

Written to but not read from in the
chart

Output

Contains all capital letters in the
name and is only read from but not
written to in the chart

Parameter

The Symbol Wizard follows these rules for inferring the scope of unresolved
event symbols.

Unresolved Event Symbol Inferred Scope

Appears only in triggers Input

Appears only in send expressions Output

Appears in both triggers and send
expressions

Local

Inference of Size, Type, and Complexity
When the Symbol Wizard flags unresolved data in your chart, the following
properties are inferred along with the scope:

• Size is –1 (inherited).

• Type is Inherit: Same as Simulink or Inherit: From definition
in chart (for local data, and function inputs and outputs).

• Complexity is Inherited.

27-59

27 Build Targets

Generated Code Files for Targets You Build

In this section...

“S-Function MEX-Files” on page 27-60

“Folder Structure of Generated Files” on page 27-60

“Code Files for a Simulation Target” on page 27-61

“Code Files for an Embeddable Target” on page 27-63

“Makefiles” on page 27-63

S-Function MEX-Files
If you have a Simulink model named mainModel, which contains two Stateflow
blocks named chart1 and chart2, you have a machine named mainModel that
parents two charts named chart1 and chart2.

When you simulate the Stateflow chart for mainModel, you generate code for
mainModel that compiles into an S-function MEX-file. MEX-file extensions
are platform-specific, as described in the MATLAB software documentation.
For example, on 32-bit Windows PC platforms, you generate a MEX-file for
mainModel named mainModel_sfun.mexw32. On Linux® x86-64 platforms,
you generate mainModel_sfun.mexa64.

S-function MEX files appear in the current MATLAB folder. You can change
this location at the MATLAB command prompt with a cd command.

Folder Structure of Generated Files
Most of the code files that you generate reside in a subfolder of the current
MATLAB folder. This table summarizes the default folder structure for
different targets.

Target Type Model Type Folder Under
<pwd>/slprj/_sfprj/<mainModel>

Simulation Main
(nonlibrary)

/_self/sfun/src

Simulation Library /<libModel>/sfun/src

27-60

Generated Code Files for Targets You Build

Target Type Model Type Folder Under
<pwd>/slprj/_sfprj/<mainModel>

Embeddable Main
(nonlibrary)

/_self/rtw/<sys_targ>/src

Embeddable Library /<libModel>/rtw/<sys_targ>/src

These definitions apply to the table:

• <pwd> is the current working folder.

• <mainModel> is the name of the main model.

• <libModel> is the name of the library model.

• <sys_targ> is the type of embeddable target (for example, grt or ert).

For embeddable targets, the integrated C code for the entire model resides in
the subfolder <mainModel>_<sys_targ>_rtw of the current MATLAB folder.
The executable file generated for the entire model resides in the current
MATLAB folder.

Tip To use a root folder different from <pwd> for storing generated files, open
the Simulink Preferences Window and update the File generation control
section.

• For simulation targets, specify Simulation cache folder.

• For embeddable targets, specify Code generation folder.

For more information, see “File generation control” in the Simulink
documentation.

Code Files for a Simulation Target
For a simulation target, you generate these files:

• <model>_sfun.h is the machine header file. It contains:

- All the defined global variables needed for the generated code

27-61

27 Build Targets

- Type definition of the Stateflow machine-specific data structure that
holds machine-parented local data

- External declarations of any Stateflow machine-specific global variables
and functions

- Custom code strings that you specify

• <model>_sfun.c is the machine source file. It includes the machine header
file and all the chart header files (described below) and contains Simulink
interface code.

• <model>_sfun_registry.c is a machine registry file that contains
Simulink interface code.

• cn_<model>.h is the chart header file for the chart chartn, where n = 1, 2, 3,
and so on, depending on how many charts your model has (see the following
note). This header file contains type definitions of the chart-specific data
structures that hold chart-parented local data and states.

• cn_<model>.c is the chart source file for chartn, where n = 1, 2, 3, and so
on, depending on how many charts your model has (see the following note).
This source file includes the machine header file and the corresponding
chart header file and also contains:

- Chart-parented data initialization code

- Chart execution code (state entry, during, and exit actions, and so on)

- Chart-specific Simulink interface code

Note Every chart is assigned a unique number at creation time. This
number appears as a suffix for the chart source and chart header file
names for every chart (where n = 1, 2, 3, and so on, depending on how
many charts your model has).

For library models, a static library file named <libModel>_sfun resides in the
same folder as the source code. The file extension depends on the platform.
On a Windows operating system, the library file is <libModel>_sfun.lib,
but on a UNIX operating system, the library file is <libModel>_sfun.a.

27-62

Generated Code Files for Targets You Build

Code Files for an Embeddable Target
For an embeddable target, you generate integrated C code for the entire model:

• <model>.h

• <model>.c

You also generate intermediate code files during the target building process:

• <model>_rtw.tlh

• <model>_rtw.tlc

• cn_<model>.tlh, where n = 1, 2, 3, and so on, depending on how many
charts your model has

• cn_<model>.tlc, where n = 1, 2, 3, and so on, depending on how many
charts your model has

Other auxiliary files can appear depending on the type of embeddable target
you choose for code generation.

Makefiles
You generate makefiles for your model that are platform and compiler-specific.
On UNIX platforms, you generate a gmake-compatible makefile named
<mainModel>_sfun.mku that compiles all your generated code into an
executable. On PC platforms, you generate an ANSI-C compiler-specific
makefile based on your C-MEX setup:

Compiler Makefile Symbol Definition
File

Microsoft® Visual C++® <mainModel>_sfun.mak <mainModel>_sfun.def
(required to build
S-function MEX-files)

lcc-win32 (default
ANSI-C compiler)

<mainModel>_sfun.lmk None

27-63

27 Build Targets

Note For a list of supported compilers, see:

http://www.mathworks.com/support/compilers/current_release/

27-64

http://www.mathworks.com/support/compilers/current_release/

Traceability of Stateflow® Objects in Generated Code

Traceability of Stateflow Objects in Generated Code

In this section...

“What Is Traceability?” on page 27-65

“Traceability Requirements” on page 27-65

“Traceable Stateflow Objects” on page 27-65

“When to Use Traceability” on page 27-66

“Basic Workflow for Using Traceability” on page 27-67

“Examples of Using Traceability” on page 27-67

“Format of Traceability Comments” on page 27-77

What Is Traceability?
Traceability is the ability to navigate between a line of generated code and its
corresponding object. For example, you can click a hyperlink in a traceability
comment to go from that line of code to the object in the model. You can also
right-click an object in your model to find the line in the code that corresponds
to the object. This two-way navigation is known as bidirectional traceability.

Traceability Requirements
To enable traceability comments, you must have a license for Embedded
Coder software. These comments appear only in code that you generate for an
embedded real-time (ert) based target.

Traceable Stateflow Objects
Bidirectional traceability is supported for these Stateflow objects:

• States

• Transitions

• MATLAB functions

27-65

27 Build Targets

Note Traceability is not supported for external code that you call from
a MATLAB function.

• Truth Table blocks and truth table functions

• Graphical functions

• Simulink functions

• State transition tables

Traceability in one direction is supported for these Stateflow objects:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events.
Clicking a hyperlink for an explicit event in the generated code highlights
that item in the Contents pane of the Model Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing
transition. Right-clicking such a junction in the Stateflow Editor highlights
the line of code that corresponds to the first outgoing transition for that
junction.

Note MATLAB Function blocks that you insert directly in a Simulink model
are also traceable. For more information, see “Use Traceability in MATLAB
Function Blocks” in the Simulink documentation.

When to Use Traceability

Comments for Large-Scale Models
Use traceability when you want to generate commented code for a large-scale
model. You can identify chart objects in the code and avoid manually entering
comments or descriptions.

27-66

Traceability of Stateflow® Objects in Generated Code

Validation of Generated Code
Use traceability when you want to validate generated code. You can identify
which chart object corresponds to a particular line of code and keep track of
code from different objects that you have or have not reviewed.

Basic Workflow for Using Traceability
The basic workflow for using traceability is:

1 Open your model, if necessary.

2 Define your system target file to be an embedded real-time (ert) target.

3 Enable and configure the traceability options.

4 Generate the source code and header files for your model.

5 Do one or both of these steps:

• Trace a line of generated code to the model.

• Trace an object in the model to a line of code.

Examples of Using Traceability

Bidirectional Traceability for States and Transitions
You can see how bidirectional traceability works for states and transitions by
following these steps:

1 Type old_sf_car at the MATLAB prompt.

2 Open the Model Configuration Parameters dialog box.

3 In the Code Generation pane, go to the Target selection section and
enter ert.tlc for the system target file. Click Apply in the lower right
corner of the window.

Note Traceability comments appear in generated code only for embedded
real-time targets.

27-67

27 Build Targets

4 In the Code Generation > Report pane, select Create code generation
report.

This step automatically selects Open report automatically and
Code-to-model.

5 SelectModel-to-code in the Navigation section. Then click Apply.

This step automatically selects all check boxes in the Traceability Report
Contents section.

Tip For large models that contain over 1000 blocks, clear the
Model-to-code check box to speed up code generation.

6 Go to the Code Generation > Interface pane. In the Software
environment section, select continuous time. Then click Apply.

Note Because this model contains a block with a continuous sample time,
you must perform this step before generating code.

7 In the Code Generation pane, click Build in the lower right corner.

This step generates source code and header files for the old_sf_car model
that contains the shift_logic chart. After the code generation process is
complete, the code generation report appears automatically.

8 Click the old_sf_car.c hyperlink in the report.

9 Scroll down through the code to see the traceability comments.

27-68

Traceability of Stateflow® Objects in Generated Code

 �����	����
�������!��
��
��

 �����	����
�������!��
�����
����

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

10 Click the <S5>:2 hyperlink in this traceability comment:

/* During 'gear_state': '<S5>:2' */

The corresponding state appears highlighted in the chart.

11 Click the <S5>:12 hyperlink in this traceability comment:

/* Transition: '<S5>:12' */

The corresponding transition appears highlighted in the chart.

Tip To remove highlighting from an object in the chart, select
Display > Remove Highlighting.

12 You can also trace an object in the model to a line of generated code.
In the chart, right-click the object gear_state and select C/C++
Code > Navigate to C/C++ Code.

The code for that state appears highlighted in old_sf_car.c.

27-69

27 Build Targets

@��$���$��
������!�����

13 In the chart, right-click the transition with the condition [speed > up_th]
and select C/C++ Code > Navigate to C/C++ Code.

The code for that transition appears highlighted in old_sf_car.c.

@��$���$��
������!�����

Note For a list of all Stateflow objects in your model that are traceable, click
the Traceability Report hyperlink in the code generation report.

Bidirectional Traceability for Truth Table Blocks
You can see how bidirectional traceability works for a Truth Table block by
following these steps:

1 Type sf_climate_control at the MATLAB prompt.

2 Complete steps 2 through 5 in “Bidirectional Traceability for States and
Transitions” on page 27-67.

3 In the Code Generation pane of the Model Configuration Parameters
dialog box, click Build in the lower right corner.

The code generation report appears automatically.

4 Click the sf_climate_control.c hyperlink in the report.

5 Scroll down through the code to see the traceability comments.

27-70

Traceability of Stateflow® Objects in Generated Code

 �����	����
�������!����
��$��	�������
���

 �����	����
�������!����
��$��	��������

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

6 Click the <S1>:1:47 hyperlink in this traceability comment:

/* Action '3': '<S1>:1:47' */

In the Truth Table Editor, row 3 of the Action Table appears highlighted.

27-71

27 Build Targets

7 You can also trace a condition, decision, or action in the table to a line of
generated code. For example, right-click a cell in the column D2 and select
C/C++ Code > Navigate to C/C++ Code.

The code for that decision appears highlighted in sf_climate_control.c.

27-72

Traceability of Stateflow® Objects in Generated Code

@��$���$��
������!�����

Tip To select C/C++ Code > Navigate to C/C++ Code for a condition,
decision, or action, right-click a cell in the row or column that corresponds
to that truth table element.

Bidirectional Traceability for Graphical Functions
You can see how bidirectional traceability works for graphical functions by
following these steps:

1 Type sf_clutch at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 27-67.

3 Go to the Solver pane in the Model Configuration Parameters dialog box.
In the Solver options section, select Fixed-step in the Type field. Then
click Apply.

Note Because this model does not work with variable-step solvers, you
must perform this step before generating code.

4 In the Code Generation pane of the Model Configuration Parameters
dialog box, click Build in the lower right corner.

The code generation report appears automatically.

5 Click the sf_clutch.c hyperlink in the report.

6 Scroll down through the code to see the traceability comments.

27-73

27 Build Targets

 �����	����
�������!����
����$�����!������

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

7 Click the <S1>:3 hyperlink in this traceability comment:

/* Graphical Function 'getSlipTorque': '<S1>:3' */

In the chart, the graphical function getSlipTorque appears highlighted.

8 You can also trace a graphical function in the chart to a line of generated
code. For example, right-click the graphical function detectSlip and select
C/C++ Code > Navigate to C/C++ Code.

The code for that graphical function appears highlighted in sf_clutch.c.

@��$���$��
������!�����

Code-to-Model Traceability for Events
You can see how code-to-model traceability works for events by following
these steps:

1 Type sf_security at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 27-67.

3 In the Code Generation pane of the Model Configuration Parameters
dialog box, click Build in the lower right corner.

The code generation report appears automatically.

4 Click the sf_security.c hyperlink in the report.

27-74

Traceability of Stateflow® Objects in Generated Code

5 Scroll down through the code to see the following traceability comment.

 �����	����
�������!��
����%��

Note The line numbers shown above can differ from the numbers that
appear in your code generation report.

6 Click the <S8>:56 hyperlink in this traceability comment:

/* Event: '<S8>:56' */

In the Contents pane of the Model Explorer, the event Sound appears
highlighted.

27-75

27 Build Targets

Model-to-Code Traceability for Junctions
You can see how model-to-code traceability works for junctions by following
these steps:

1 Type sf_abs at the MATLAB prompt.

2 Complete steps 2 through 6 in “Bidirectional Traceability for States and
Transitions” on page 27-67.

3 Go to the Solver pane in the Model Configuration Parameters dialog box.
In the Solver options section, select Fixed-step in the Type field. Then
click Apply.

Note Because this model does not work with variable-step solvers, you
must perform this step before generating code.

4 In the Code Generation pane, click Build in the lower right corner.

The code generation report appears automatically.

5 Open the AbsoluteValue chart.

6 Right-click the left junction and select C/C++ Code > Navigate to C/C++
Code.

The code for the first outgoing transition of that junction appears
highlighted in sf_abs.c.

@��$���$��
������!�����

27-76

Traceability of Stateflow® Objects in Generated Code

Format of Traceability Comments
The format of a traceability comment depends on the Stateflow object type.

State

Syntax.

/* <ActionType> '<StateName>': '<ObjectHyperlink>' */

Example.

/* During 'gear_state': '<S5>:2' */

This comment refers to the during action of the state gear_state, which has
the hyperlink <S5>:2.

Transition

Syntax.

/* Transition: '<ObjectHyperlink>' */

Example.

/* Transition: '<S5>:12' */

This comment refers to a transition, which has the hyperlink <S5>:12.

MATLAB Function

Syntax.

/* MATLAB Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a MATLAB function, comments that link to
individual lines of the function have the following syntax:

/* '<ObjectHyperlink>' */

27-77

27 Build Targets

Examples.

/* MATLAB Function 'test_function': '<S50>:99' */

/* '<S50>:99:20' */

The first comment refers to the MATLAB function named test_function,
which has the hyperlink <S50>:99.

The second comment refers to line 20 of the MATLAB function in your chart.

Truth Table Block

Syntax.

/* Truth Table Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a Truth Table block, comments for conditions,
decisions, and actions have the following syntax:

/* Condition '#<Num>': '<ObjectHyperlink>' */
/* Decision 'D<Num>': '<ObjectHyperlink>' */
/* Action '<Num>': '<ObjectHyperlink>' */

<Num> is the row or column number that appears in the Truth Table Editor.

Examples.

/* Truth Table Function 'truth_table_default': '<S10>:100' */

/* Condition '#1': '<S10>:100:8' */
/* Decision 'D1': '<S10>:100:16' */
/* Action '1': '<S10>:100:31' */

The first comment refers to a Truth Table block named truth_table_default,
which has the hyperlink <S10>:100.

The other three comments refer to elements of that Truth Table block.
Each condition, decision, and action in the Truth Table block has a unique
hyperlink.

27-78

Traceability of Stateflow® Objects in Generated Code

Truth Table Function
See “Truth Table Block” on page 27-78 for syntax and examples.

Graphical Function

Syntax.

/* Graphical Function '<Name>': '<ObjectHyperlink>' */

Example.

/* Graphical Function 'hello': '<S1>:123' */

This comment refers to a graphical function named hello, which has the
hyperlink <S1>:123.

Simulink Function

Syntax.

/* Simulink Function '<Name>': '<ObjectHyperlink>' */

Example.

/* Simulink Function 'simfcn': '<S4>:10' */

This comment refers to a Simulink function named simfcn, which has the
hyperlink <S4>:10.

Event

Syntax.

/* Event: '<ObjectHyperlink>' */

Example.

/* Event: '<S3>:33' */

This comment refers to an event, which has the hyperlink <S3>:33.

27-79

27 Build Targets

Inline State Functions in Generated Code

In this section...

“How Stateflow Software Inlines Generated Code for State Functions” on
page 27-80

“How to Set the State Function Inline Option” on page 27-82

“Best Practices for Controlling State Function Inlining” on page 27-83

How Stateflow Software Inlines Generated Code for
State Functions
By default, Stateflow software uses an internal heuristic to determine
whether or not to inline state functions in code generated with Simulink
Coder software. The heuristic takes into consideration an inlining threshold,
so as your code grows and shrinks in size, the generated code for state
functions can be unpredictable.

However, if you have rigorous requirements for traceability between generated
code and the corresponding state functions, you can override this default
behavior. Stateflow software provides a state property Function Inline
Option that helps you explicitly force or prevent inlining of state functions.

What Happens When You Force Inlining
If you force inlining for a state, all code generated for its state actions will
be inlined into the parent function. The parent function contains code for
executing the state actions, outer transitions, and flow charts. It does not
include code for empty state actions.

What Happens When You Prevent Inlining
If you prevent inlining for a state, Simulink Coder software generates the
following static functions, as in this example for state foo:

27-80

Inline State Functions in Generated Code

Function Description

enter_atomic_foo Marks foo active and performs entry
actions

enter_internal_foo Calls default paths

inner_default_foo Executes flow charts that originate
when an inner transition and default
transition reach the same junction
inside a state.

Stateflow software generates this
function only when the flow chart
is complex enough to exceed the
inlining threshold.

In generated code, Stateflow
software calls this function from
both the enter_internal_foo and
foo functions.

foo Checks for valid outer transitions
and if none, performs during actions

exit_atomic_foo Performs exit actions and marks foo
inactive

exit_internal_foo Performs exit actions of the child
substates and then exits foo

27-81

27 Build Targets

Suppose that you explicitly prevent inlining for the following state A in model
M:

Stateflow software generates the following functions:

static void M_inner_default_A(void);
static void M_exit_atomic_A(void);
static void M_A(void);
static void M_enter_atomic_A(void);
static void M_enter_internal_A(void);

How to Set the State Function Inline Option
To set the function inlining property for a state:

1 Right-click inside the state and select Properties from the context menu.

The State properties dialog box opens.

2 In the Function Inline Option field, select one of these options:

27-82

Inline State Functions in Generated Code

Option Behavior

Inline Forces inlining of state functions into the parent function,
as long as the function is not part of a recursion. See “What
Happens When You Force Inlining” on page 27-80.

Function Prevents inlining of state functions. Generates up to six
static functions for the state. See “What Happens When
You Prevent Inlining” on page 27-80.

Auto Uses internal heuristics to determine whether or not to
inline the state functions.

3 Click Apply.

Best Practices for Controlling State Function Inlining

To... Set the Function Inline Option
property to...

Generate a separate function for
each action of a state and a separate
function for each action of its
substates

Function for the state and each
substate

Generate a separate function for
each action of a state, but include
code for the associated action of its
substates

Function for the state and Inline
for each substate

27-83

27 Build Targets

27-84

28

Debug and Test Stateflow
Charts

• “Basic Approach to Debugging Charts” on page 28-3

• “When to Use the Stateflow Debugger” on page 28-4

• “Open the Stateflow Debugger” on page 28-5

• “Animate Stateflow Charts” on page 28-6

• “Set Breakpoints to Debug Charts” on page 28-10

• “Relationship Between Breakpoints and the Debugger” on page 28-26

• “Enable Debugging for Charts” on page 28-27

• “Control Chart Execution in the Debugger” on page 28-32

• “Control Chart Execution from the Stateflow Editor” on page 28-37

• “Debug Run-Time Errors in a Chart” on page 28-39

• “Common Modeling Errors the Debugger Can Detect” on page 28-44

• “Guidelines for Avoiding Unwanted Recursion in a Chart” on page 28-53

• “Watch Data Values During Simulation” on page 28-55

• “Change Data Values During Simulation” on page 28-62

• “Monitor Test Points in Stateflow Charts” on page 28-68

• “What You Can Log During Chart Simulation” on page 28-75

• “Basic Approach to Logging States and Local Data” on page 28-76

• “Enable Signal Logging” on page 28-77

• “Configure States and Local Data for Logging” on page 28-78

28 Debug and Test Stateflow® Charts

• “Access Logged Data” on page 28-83

• “View Logged Data” on page 28-87

• “Log Data in Library Charts” on page 28-88

• “How Stateflow Logs Multidimensional Data” on page 28-94

• “Limitations on Logging Data” on page 28-95

28-2

Basic Approach to Debugging Charts

Basic Approach to Debugging Charts
You can perform most debugging tasks directly from the chart in the Stateflow
Editor.

1 Set breakpoints (see “Set Breakpoints to Debug Charts” on page 28-10).

Set: See:

Local breakpoints to halt
execution in specific objects, such
as charts, states, transitions,
graphical functions, truth table
functions, local events, and input
events.

“Set Local Breakpoints” on page
28-13.

Global breakpoints to halt
execution on any occurrence of the
breakpoint.

“Set Global Breakpoints” on page
28-16.

2 In the Stateflow Editor, start simulation by selecting Simulation > Run.

Execution stops at a breakpoint.

3 Hover over objects in the chart to view data values in the selected scope
(see “Watch Data Values During Simulation” on page 28-55).

4 Continue to step through the simulation (see “Control Chart Execution
from the Stateflow Editor” on page 28-37).

For tasks that require you to launch the Stateflow debugger, see “When to
Use the Stateflow Debugger” on page 28-4.

28-3

28 Debug and Test Stateflow® Charts

When to Use the Stateflow Debugger
Although you can perform most debugging tasks directly in the chart, you
need to launch the Stateflow debugger to:

• Set global breakpoints (see “Set Global Breakpoints” on page 28-16).

• Get a list of values of all variables in scope (see “Watch Data in the
Stateflow Debugger” on page 28-57).

28-4

Open the Stateflow® Debugger

Open the Stateflow Debugger

In this section...

“How to Open the Debugger Using the Editor” on page 28-5

“How to Open the Debugger at the Command Line” on page 28-5

How to Open the Debugger Using the Editor
In the editor, select Simulation > Debug > Debug Chart.

How to Open the Debugger at the Command Line
At the MATLAB command line, enter sfdebugger.

28-5

28 Debug and Test Stateflow® Charts

Animate Stateflow Charts

In this section...

“Animation Modes” on page 28-6

“Animate Stateflow Charts in Normal Mode” on page 28-6

“Animate Stateflow Charts in External Mode” on page 28-7

Animation Modes
During simulation, you can animate a chart in your model to provide visual
verification that your chart behaves as expected. Animation highlights objects
in a chart as execution progresses.

You can animate a chart during simulation in one of two contexts:

• In normalmode on the host machine where you run MATLAB and Simulink
software (see “Animate Stateflow Charts in Normal Mode” on page 28-6)

• In external mode on a target machine where your generated code runs (see
“Animate Stateflow Charts in External Mode” on page 28-7)

Animate Stateflow Charts in Normal Mode
During simulation in normal mode on a host machine, you can animate states
and transitions in a chart.

1 Open the chart you want to animate.

2 In the editor, select Simulation > Debug > Debug Chart to open the
debugger.

3 In the Animation section of the debugger, select Enabled.

4 Control the speed of animation by entering a value in the Delay field:

• For the fastest animation, select a value of 0 seconds.

• For the slowest animation, select a value of 1 second.

28-6

Animate Stateflow® Charts

5 To maintain highlighting of active states in the chart after simulation ends,
select the Maintain Highlighting check box.

By default, active state highlighting disappears after chart simulation ends.

6 Start simulation.

The chart highlights states and transitions as they execute.

7 To remove highlighting of active states after simulation ends, select
Display > Remove Highlighting in the chart.

Animate Stateflow Charts in External Mode
You can animate a chart in external mode — the mode in which Simulink
Coder code generation software establishes communication between a
Simulink model and code executing on a target system (see “Data Exchange”
in the Simulink Coder documentation). In external mode, you can animate
states in a chart, and view test point signals in a floating scope or signal
viewer.

• “Animate States During Simulation in External Mode” on page 28-7

• “View Test Point Data in Floating Scopes and Signal Viewers” on page 28-8

Animate States During Simulation in External Mode
To animate states in a chart in external mode:

1 Load the chart you want to animate to the target machine.

2 In the Stateflow Editor, select Simulation > Debug > Debug Chart to
open the debugger.

3 In the Animation section of the debugger, select Enabled.

4 Open the Model Configuration Parameters dialog box.

5 In the left Select pane, select Code Generation > Interface.

6 In the Data exchange section of the right pane, set Interface to External
mode and click OK.

28-7

28 Debug and Test Stateflow® Charts

7 In the Simulink Editor, select Code > External Mode Control Panel.

8 In the External Mode Control Panel dialog box, click Signal & Triggering.

9 In the External Signal & Triggering dialog box, set these parameters:

In: Select:

Signal selection
pane

Chart you want to animate

Trigger pane Arm when connecting to target check box

Trigger pane normal from drop-down menu in Mode field

10 Build the model to generate an executable file.

11 Start the target in the background by typing this command at the MATLAB
prompt:

!model_name.exe -w &

For example, if the name of your model is my_control_sys, enter this
command:

!my_control_sys.exe -w &

Note -w allows the target code to wait for the Simulink model connection.

12 In the Model Editor, select Simulation > Mode > External, and then
select Simulation > Connect to Target.

13 Start simulation.

The chart highlights states as they execute.

View Test Point Data in Floating Scopes and Signal Viewers
When you simulate a chart in external mode, you can view test point data in
floating scopes and signal viewers. You can designate local data and states
to be test points.

28-8

Animate Stateflow® Charts

To view test point data during simulation in external mode:

1 Open the Model Explorer and for each data you want to view, follow these
steps:

a In the middle Contents pane, select the state or local data of interest.

b In the right Dialog pane, select the Logging tab and select Test point
check box.

2 From a floating scope or signal viewer, click the signal selection button:

The Signal Selector dialog box opens.

3 In the Signal Selector Model hierarchy pane, select the chart.

4 In the Signal Selector List contents menu, select Testpointed/Logged
signals only and then select the signals you want to view.

5 Simulate the model in external mode as described in “Animate States
During Simulation in External Mode” on page 28-7.

The scope or viewer displays the values of the test point signals as the
simulation runs.

For more information, see “Behavior of Scopes and Viewers with Rapid
Accelerator Mode” in the Simulink documentation.

28-9

28 Debug and Test Stateflow® Charts

Set Breakpoints to Debug Charts

In this section...

“Types of Breakpoints” on page 28-10

“Set Local Breakpoints” on page 28-13

“Set Global Breakpoints” on page 28-16

“Edit Breakpoints” on page 28-16

“Disable Local Breakpoints” on page 28-19

“Disable All Breakpoints” on page 28-21

“Clear All Breakpoints” on page 28-21

“Visual Indication of Execution at Breakpoints” on page 28-23

Types of Breakpoints
A breakpoint indicates a point at which the Stateflow debugger halts
execution of a simulating chart. At this time, you can inspect Stateflow data
and the MATLAB workspace to examine the status of a simulating chart.

You can set global and local breakpoints. Global breakpoints halt execution
on any occurrence of the specific type of breakpoint. Local breakpoints halt
execution on a specific object.

Local breakpoints appears as a circular badge in the associated object. For
example, the following chart contains local breakpoints on state On and the
transition from On to Off.

28-10

Set Breakpoints to Debug Charts

The badge can represent one or more local breakpoints on an object. Hover
over the badge to see which local breakpoints are set. For example, the badge
on the transition represents one breakpoint: when transition is valid.

28-11

28 Debug and Test Stateflow® Charts

The badge on state On represents two breakpoints: on state entry and during
state.

28-12

Set Breakpoints to Debug Charts

Set Local Breakpoints
You can set local breakpoints for:

• Charts

• States

• Transitions

• Graphical functions

• Truth table functions

• Local events and input events

28-13

28 Debug and Test Stateflow® Charts

For graphical objects, you can set local breakpoints using the right-click
context menu in the chart or the properties dialog box for that object. To
set local breakpoints for events and objects in state transition tables, you
must use the properties dialog box. Local breakpoints appear as red badges
on graphical objects.

To set local breakpoints using the right-click context menu:

1 Right-click the graphical object (chart, state, transition, graphical function,
or truth table function) and select Set Breakpoints.

2 Depending on the object that you select, you can set different breakpoints:

For: Select:

Charts On Chart Entry — Stop execution before entering the
chart.

States On State Entry — Stop execution before performing
the state entry actions.

During State — Stop execution before performing the
state during actions.

On State Exit — Stop execution after performing the
state exit actions.

Transitions When Transition is Valid — Stop execution after the
transition tests valid, but before taking the transition.

When Transition is Tested — Stop execution before
testing the transition to see if it is a valid path. If no
condition exists on the transition, this breakpoint is not
available.

Graphical or
truth table
functions

During Function Call — Stop execution before calling
the function.

28-14

Set Breakpoints to Debug Charts

To set local breakpoints using the properties dialog box of the chart object:

1 Use one of the following tools to open the dialog box:

Tool Action

Stateflow
Editor

For a chart, select File > Model Properties > Chart
Properties.

For a state, transition, graphical function, or truth table
function, right-click the object and select Properties.

What if my chart objects are grouped?

Double-click the chart to ungroup objects so you can
access them individually.

Model
Explorer

1 Show all Stateflow objects by selecting View > Row
Filter > All Stateflow Objects.

2 Right-click a chart, state, transition, graphical
function, truth table function, or event and select
Properties.

2 In the properties dialog box, select from the following breakpoint options:

For: Select:

Charts On chart entry — Stop execution before entering the
chart.

States State During — Stop execution before performing the
state during actions.

State Entry — Stop execution before performing the
state entry actions.

State Exit— Stop execution after performing the state
exit actions.

28-15

28 Debug and Test Stateflow® Charts

For: Select:

Transitions When Tested — Stop execution before testing the
transition to see if it is a valid path. If no condition exists
on the transition, this breakpoint has no effect.

When Valid— Stop execution after the transition tests
valid, but before taking the transition.

Graphical or
truth table
functions

Function Call — Stop execution before calling the
function.

Events Start of Broadcast — Stop execution before
broadcasting the event.

End of Broadcast — Stop execution after a Stateflow
object reads the event.

You can set both types of breakpoints for local events, but
only Start of Broadcast for input events.

Set Global Breakpoints
Use the Breakpoint controls in the Stateflow debugger to specify global
breakpoints. When a global breakpoint occurs during simulation, execution
stops and the debugger takes control. Select any or all of these breakpoints:

• Chart Entry — Simulation halts on any chart entry.

• Event Broadcast— Simulation halts for any event broadcast.

• State Entry — Simulation halts for any state entry.

Global breakpoints can be changed during run time and are immediately
enforced. When you save the chart, all the Stateflow debugger settings
(including breakpoints) are saved, so that the next time you open the model,
the breakpoints are as you left them.

Edit Breakpoints
When you set local breakpoints in a chart, a circular badge appears over
their associated object in the Stateflow Editor. Hovering over an object’s
breakpoint badge displays the existing breakpoints for that object. Clicking

28-16

Set Breakpoints to Debug Charts

the breakpoint badge displays a dialog box of possible breakpoint options for
that object. The breakpoint badge appears red if the object’s breakpoints are
enabled, and gray if the object’s breakpoints are disabled.

For example, in the sf_aircraft model, the LO state in the Mode Logic chart
contains a breakpoint in the Off substate.

Note To open the model, type sf_aircraft at the MATLAB command
prompt.

The breakpoint is disabled, so the breakpoint badge is colored gray.

Hovering over the breakpoint badge displays a tooltip indicating that the
breakpoint is set to stop execution before entry to the Off state.

Clicking the breakpoint badge opens the Breakpoints dialog box for the off
state. Because the Disable breakpoints in Off check box is selected, check
boxes for setting the off state’s breakpoints are disabled.

28-17

28 Debug and Test Stateflow® Charts

To enable the preset On State Entry breakpoint for the Off state, clear the
Disable breakpoints in Off check box. The breakpoint setting check boxes
are now enabled, and you can change the breakpoints for the Off state. For
example, to add an additional breakpoint that stops execution after exiting
the state, select the On State Exit check box.

The breakpoint badge for the Off state appears red to indicate that
breakpoints are enabled for the object.

Hovering over the breakpoint badge for the Off state displays both breakpoints
for the object.

28-18

Set Breakpoints to Debug Charts

When debugging is disabled for a top-level model or chart, Stateflow objects
with breakpoints show gray breakpoint badges, but the breakpoint dialog
box is disabled. For example, the sf_clutch model contains a chart called
Friction Mode, which has a breakpoint set to stop execution when a specific
transition becomes valid.

Because model-wide debugging is disabled for sf_clutch, clicking on the
breakpoint badge for this transition does not open the Breakpoints dialog
box, and in the transition’s right-click context menu, the Set Breakpoints
item is disabled.

For information on enabling debugging for a model or chart, see How to
Enable Debugging for Charts.

Disable Local Breakpoints
Disable local breakpoints to prevent them from affecting chart execution.
The breakpoint settings are not deleted and are restored when you re-enable
the breakpoint. When you disable a breakpoint, its badge changes from red
to gray on graphical objects.

28-19

28 Debug and Test Stateflow® Charts

1 In the Stateflow Editor, click the red badge of the active breakpoint and
select the Disable breakpoints option in the breakpoint dialog box.

All other options appear gray and the breakpoint badge turns gray.

28-20

Set Breakpoints to Debug Charts

2 Close the breakpoint dialog box.

Disable All Breakpoints
To disable all breakpoints in a chart in the Stateflow Editor, in the
Simulation > Debug menu, clear Allow Breakpoints in this Chart.

To disable all breakpoints in a chart in the debugger, select the Disable
all check box.

Clear All Breakpoints
To find and clear all breakpoints without disabling them, use the
Simulation > Debug > Clear Breakpoints menu in the chart editor or
enter Stateflow API commands.

How to Clear Breakpoints Using the Editor
In the chart editor, select Simulation > Debug > Clear Breakpoints > All
Breakpoints in All Charts.

How to Clear Breakpoints at the Command Line
Define a function that contains the following Stateflow API commands. (For
more information, see “Create and Access Charts Using the Stateflow API”.)

% get a handle for the root object
% the argument "model" is a variable that corresponds
% to the string name of the model
rootObj = find(sfroot,'-isa','Stateflow.Machine','Name',model);
rootObj.Debug.BreakOn.ChartEntry = 0;
rootObj.Debug.BreakOn.EventBroadcast = 0;
rootObj.Debug.BreakOn.StateEntry = 0;

% find all states, transitions, data, events, and charts
stateObjects = rootObj.find('-isa','Stateflow.State');
transitionObjects =rootObj.find('-isa','Stateflow.Transition');
dataObjects = rootObj.find('-isa','Stateflow.Data');
eventObjects = rootObj.find('-isa', 'Stateflow.Event');
chartObjects = rootObj.find('-isa','Stateflow.Chart');

28-21

28 Debug and Test Stateflow® Charts

% for all states, clear their breakpoints
for i = 1:size(stateObjects,1)

stateObjects(i).Debug.Breakpoints.OnEntry = 0;
stateObjects(i).Debug.Breakpoints.OnDuring = 0;
stateObjects(i).Debug.Breakpoints.OnExit = 0;

end

% for all transitions, clear their breakpoints
for i = 1:size(transitionObjects,1)

transitionObjects(i).Debug.Breakpoints.WhenTested = 0;
transitionObjects(i).Debug.Breakpoints.WhenValid = 0;

end

% for all data, clear their breakpoints
for i = 1:size(dataObjects,1)

dataObjects(i).Debug.Watch = 0;
end

% for all events, clear their breakpoints
for i = 1:size(eventObjects,1)

eventObjects(i).Debug.Breakpoints.StartBroadcast = 0;
eventObjects(i).Debug.Breakpoints.EndBroadcast = 0;

end

% for all charts, clear their breakpoints
for i = 1:size(chartObjects,1)

chartObjects(i).Debug.Breakpoints.OnEntry = 0;
end

The first command returns a handle to the machine object that represents
the top level of the Stateflow hierarchy. The next five commands use the API
method find to specify the type of object to find. For example, the command

stateObjects = rootObj.find(`-isa','Stateflow.State')

searches through the rootObj and returns an array listing of all state objects
in your model. (See Finding Objects and Properties in the Stateflow API
documentation.)

28-22

Set Breakpoints to Debug Charts

You can also define the properties of Stateflow objects. For example, you can
clear all breakpoints in your model by setting those property values to zero for
all states, transitions, data, events, and charts as shown in the code.

Visual Indication of Execution at Breakpoints
When you enable animation, the chart provides visual indicators of active
elements and the currently executing object when simulation stops at a
breakpoint. The chart highlights active elements in blue and the currently
executing object in green. For example, the following chart contains a
breakpoint on entry in the HIGH state, a substate of On.

When simulation stops at the breakpoint:

• The active On state appears highlighted in blue.

28-23

28 Debug and Test Stateflow® Charts

• The currently executing HIGH substate appears highlighted in green,
along with an execution status badge , indicating execution stopped at
state entry.

28-24

Set Breakpoints to Debug Charts

When you hover over the badge, a tooltip appears, indicating:

- Where execution stopped

- Simulation time

- Current event, if the chart is processing a local or input event

28-25

28 Debug and Test Stateflow® Charts

Relationship Between Breakpoints and the Debugger
Local breakpoints on an object always stop chart execution during simulation,
even if you do not launch the Stateflow debugger. In this situation, you can
control chart execution directly from the Stateflow Editor (see “Control Chart
Execution from the Stateflow Editor” on page 28-37).

To retain breakpoint settings, but prevent them from stopping chart
execution, you can disable breakpoints, as described in “Disable Local
Breakpoints” on page 28-19.

28-26

Enable Debugging for Charts

Enable Debugging for Charts

In this section...

“Enable Debugging for Charts in a Model” on page 28-27

“Configure a Model to Debug a Single Chart” on page 28-27

Enable Debugging for Charts in a Model
To enable debugging for all charts in a model, in the Model Configurations
Parameters dialog box, on the Simulation Target pane, select Enable
debugging/animation.

To disable debugging in individual charts, open the chart and clear
Simulation > Debug > Allow Breakpoints in This Chart.

To control debugging for linked library charts, select
Simulation > Debug > Allow Breakpoints in This Chart of the chart in
the library model. The Enable debugging/animation parameter in the
Model Configuration Parameters dialog box does not control debugging
preferences for library link charts.

Configure a Model to Debug a Single Chart
The sf_cdplayer model contains three charts:

• UserRequest

• CdPlayerModeManager

• CdPlayerBehaviorModel

To enable debugging for only the CdPlayerModeManager chart:

28-27

28 Debug and Test Stateflow® Charts

1 Open the sf_cdplayer model.

28-28

Enable Debugging for Charts

2 Open the Model Configuration Parameters dialog box.

3 On the Simulation Target pane, select Enable debugging/animation.

This step enables debugging and animation for all charts in your model.

4 Disable debugging for the charts that you do not want to debug.

a Open the UserRequest chart.

b In the editor, clear Simulation > Debug > Allow Breakpoints in
This Chart.

28-29

28 Debug and Test Stateflow® Charts

c Open the CdPlayerBehaviorModel chart.

d In the editor, clear Simulation > Debug > Allow Breakpoints in
This Chart.

28-30

Enable Debugging for Charts

If you start simulation of sf_cdplayer in the Stateflow debugger, the
debugger ignores breakpoints in all charts except CdPlayerModeManager. For
more information, see “Start Simulation in the Debugger” on page 28-32.

28-31

28 Debug and Test Stateflow® Charts

Control Chart Execution in the Debugger

In this section...

“Start Simulation in the Debugger” on page 28-32

“Control Execution Rate in the Debugger” on page 28-33

“Error Checking in the Debugger” on page 28-34

“Control Chart Animation” on page 28-35

“Control the Output Display Pane” on page 28-35

Start Simulation in the Debugger
To debug the charts in a model, you start simulation in the debugger:

1 Click the Start button.

A debugging simulation session starts. When simulation reaches a
breakpoint that you set, the Stateflow debugger appears as follows:

28-32

Control Chart Execution in the Debugger

At the breakpoint, the following status items appear in the upper portion of
the Debugger window:

• Stopped— Displays the step executed just prior to breaking execution.

• Executing — Displays the currently executing chart.

• Current Event— Displays the event that the chart is processing.

• Simulink Time — Displays the current simulation time.

During simulation, the chart is in read-only mode. The toolbar and menus
change so that object creation is not possible. In this read-only mode, the
chart is iced.

Control Execution Rate in the Debugger
When the chart reaches a breakpoint, you can control the execution rate using
single-step mode or continuous execution until the chart reaches another

28-33

28 Debug and Test Stateflow® Charts

breakpoint. Use the following buttons in the Stateflow debugger to control
the execution rate:

• Continue — After simulation starts and the chart reaches a breakpoint,
the Start button becomes Continue. Click Continue to continue
simulation.

• Step In— Run the next execution step, and suspend the simulation.

• Step Over — Skip the entire execution of a function call, and suspend
the simulation.

• Step Out— Skip the rest of the execution for a function call, and suspend
the simulation.

• Break— Suspend the simulation and transfer control to the debugger.

• Stop Simulation — Stop simulation and relinquish debugging control.
When simulation stops, the Stateflow Editor toolbar and menus return to
their normal appearance and operation so that object creation is again
possible.

During single-step mode, the debugger does not zoom automatically to the
chart object that is executing. Instead, the debugger opens the subviewer that
contains that object. This behavior minimizes visual disruptions as you step
through your analysis of a simulation.

Error Checking in the Debugger
The options in the Error checking options section of the Stateflow debugger
insert generated code in the simulation target to provide breakpoints to catch
different types of errors that might occur during simulation. Select any of
the following error checking options:

• Transition Conflict — Check whether there are two equally valid
transition paths from the same source at any step in the simulation. This
option is only valid with C charts that have an implicit transition execution
order. See “Conflicting Transitions in a Chart” on page 28-46 for a complete
description and example.

• Data Range — Check whether the minimum and maximum values you
specified for a data in its properties dialog box are exceeded. Also check
whether fixed-point data overflows its base word size. See “Data Range

28-34

Control Chart Execution in the Debugger

Violations in a Chart” on page 28-48 for a complete description and
example.

• Detect Cycles — Check whether a step or sequence of steps indefinitely
repeats itself. See “Cyclic Behavior in a Chart” on page 28-49 for a complete
description and example.

To include the supporting code designated for these debugging options in
the simulation application, select the Enable debugging/animation check
box in the Simulation Target pane of the Model Configuration Parameters
dialog box. This option is described in “Speed Up Simulation” on page 27-16.

Note You must rebuild the target for any changes to the settings referenced
above to take effect.

Control Chart Animation
You can enable animation of the chart to show which states and transitions
execute during a particular time step. Use the following controls:

• Animation— Select Enabled to turn on animation for the chart.

• Delay— Enter the speed of animation for the chart: 0 for fastest animation
and 1 for slowest animation.

• Maintain Highlighting— Select this check box to maintain highlighting
of active states at the end of chart simulation.

The options for Delay andMaintain Highlighting are available only when
you enable animation. For more information, see “Animate Stateflow Charts”
on page 28-6.

Control the Output Display Pane
During simulation, the debugger monitors several execution indicators in the
output display in the bottom pane of the debugger. You select the contents
of this display with the following pull-down menus, which are available only
after chart execution reaches a breakpoint.

28-35

28 Debug and Test Stateflow® Charts

• Breakpoints — Display a list of the set breakpoints. You can set
breakpoints in the debugger and in the properties dialog boxes of individual
objects such as states, transitions, and functions. See “Set Breakpoints to
Debug Charts” on page 28-10 for details. This option lists breakpoints for
the currently executing chart or for all charts in the model.

• Browse Data — Display the current values of defined data objects. This
pull-down list lets you filter displayed data between all data and watched
data. Watched data has the Data property Watch in Debugger enabled
for it. Each of these categories is further filtered by data for the currently
executing chart, or all charts in the model. For more details see “Watch
Data in the Stateflow Debugger” on page 28-57.

• Active States — Display a list of active states in the display area.
Double-clicking any state causes the Stateflow Editor to display that state.
This pull-down menu lets you display active states in the current chart, or
active states for all charts in the model.

• Call Stack—Display a sequential list of the Stopped and Current Event
status items that occur with each single-step through the simulation.

After you make a selection, the pull-down menu for the current display
appears highlighted. When you select an output display button, that type of
output appears until you choose a different display type. You can clear the
display by selecting File > Clear Display in the Stateflow debugger.

28-36

Control Chart Execution from the Stateflow® Editor

Control Chart Execution from the Stateflow Editor
When you set local breakpoints on chart objects, you can control chart
execution directly from the Stateflow Editor.

1 In the editor, start simulation by selecting Simulation > Run.

When simulation stops at a breakpoint:

• An execution status badge appears in the graphical object where
execution pauses:

Badge Description

Execution stopped in a state’s during action, graphical
function, or truth table function.

Execution stopped before entering a chart or state.

Execution stopped after exiting a state.

Execution stopped before taking a valid transition.

Execution stopped before transition is tested.

• Options for controlling chart execution appear in the editor tool bar and
the Simulation menu.

28-37

28 Debug and Test Stateflow® Charts

Option Description Icon Keyboard
Shortcut

Step
Over

Skip the entire execution of
a function call and suspend
the simulation.

F10

Step In Run the next execution
step and suspend the
simulation.

F11

Step Out Skip the rest of the
execution of a function
call and suspend the
simulation.

Shift+F11

2 Hover over the badge to see execution status.

A tooltip indicates:

• Where execution stopped

• Simulation time

• Current event, if the chart is processing a local or input event

3 Hover over objects in the chart to view data values at the breakpoint.

4 Select options for continuing execution, such as Step Over, Step In, or Step
Out.

28-38

Debug Run-Time Errors in a Chart

Debug Run-Time Errors in a Chart

In this section...

“Create the Model and the Stateflow Chart” on page 28-39

“Debug the Stateflow Chart” on page 28-41

“Correct the Run-Time Error” on page 28-42

“Identify Stateflow Objects in Error Messages” on page 28-43

Create the Model and the Stateflow Chart
In this topic, you create a model with a Stateflow chart to debug. Follow
these steps:

1 Create the following Simulink model:

2 Add the following states and transitions to your chart:

28-39

28 Debug and Test Stateflow® Charts

3 In your chart, add an event Switch with a scope of Input from Simulink
and a Rising edge trigger.

4 Add a data Shift with a scope of Input from Simulink.

The chart has two states at the highest level in the hierarchy, Power_off
and Power_on. By default, Power_off is active. The event Switch toggles
the system between the Power_off and Power_on states. Power_on has
three substates: First, Second, and Third. By default, when Power_on
becomes active, First also becomes active. When Shift equals 1, the system
transitions from First to Second, Second to Third, Third to First, for each
occurrence of the event Switch, and then the pattern repeats.

In the model, there is an event input and a data input. A Sine Wave block
generates a repeating input event that corresponds with the Stateflow
event Switch. The Step block generates a repeating pattern of 1 and 0 that
corresponds with the Stateflow data object Shift. Ideally, the Switch event

28-40

Debug Run-Time Errors in a Chart

occurs at a frequency that allows at least one cycle through First, Second,
and Third.

Debug the Stateflow Chart
To debug the chart in “Create the Model and the Stateflow Chart” on page
28-39, follow these steps:

1 Open the Model Configuration Parameters dialog box.

2 In the Simulation Target pane, verify that Enable
debugging/animation is selected.

3 Click OK to close the Model Configuration Parameters dialog box.

4 Open the Stateflow debugger.

5 In the Breakpoints section, select the Chart Entry check box.

6 Under Animation, select Enabled to enable animation of the chart during
simulation.

7 Click Start to start the simulation.

Because you specified a breakpoint on chart entry, execution stops at that
point and the debugger shows you informational messages.

8 Click Step In.

The Step In button executes the next step and stops.

9 Continue clicking the Step In button and watching the animating chart.

After each step, watch the chart animation and the debugger status area to
see the sequence of execution.

Single-stepping shows that the chart does not exhibit the desired behavior.
The transitions from First to Second to Third inside the state Power_on
are not occurring because the transition from Power_on to Power_off takes
priority. The output display of code coverage also confirms this observation.

28-41

28 Debug and Test Stateflow® Charts

Correct the Run-Time Error
In “Debug the Stateflow Chart” on page 28-41, you step through a simulation
of a chart and find an error: the event Switch drives the simulation but the
simulation time passes too quickly for the input data object Shift to have
an effect.

Correct this error as follows:

1 Stop the simulation so that you can edit the chart.

2 Add the condition [t > 20.0] to the transition from Power_on to
Power_off.

Now the transition from Power_on to Power_off does not occur until
simulation time is greater than 20.0.

3 In the Stateflow debugger, click Start to begin simulation again.

28-42

Debug Run-Time Errors in a Chart

4 Click Step In repeatedly to observe the new behavior.

Identify Stateflow Objects in Error Messages
When an error message appears during simulation, the error refers to the
relevant Stateflow object using its name and ID number. An example of an
error message is: Unresolved event 'Switch' in transition Switch
(#100).

The ID number of a Stateflow object is unique, but not its name. To identify
an object using its ID number, enter the following Stateflow API commands at
the MATLAB prompt:

theObject = find(sfroot, 'Id', <id number>);
theObject.view

The first command finds the Stateflow object that matches the <id number>
you specify. The second command highlights the chosen object in your chart.
(See the Stateflow API documentation for information about the find and
view methods.)

28-43

28 Debug and Test Stateflow® Charts

Common Modeling Errors the Debugger Can Detect

In this section...

“State Inconsistencies in a Chart” on page 28-44

“Conflicting Transitions in a Chart” on page 28-46

“Data Range Violations in a Chart” on page 28-48

“Cyclic Behavior in a Chart” on page 28-49

State Inconsistencies in a Chart

Definition of State Inconsistency
States in a Stateflow chart are inconsistent if they violate any of these rules:

• An active state (consisting of at least one substate) with exclusive (OR)
decomposition has exactly one active substate.

• All substates of an active state with parallel (AND) decomposition are
active.

• All substates of an inactive state with either exclusive (OR) or parallel
(AND) decomposition are inactive.

Causes of State Inconsistency
An error occurs at compile time when the following conditions are all true:

• A transition leads to a state that has exclusive (OR) decomposition and
multiple substates. There are no default paths that lead to the entry of any
substate. This condition results in a state inconsistency error. (However, if
all transitions into that state are supertransitions leading directly to the
substates, there is no error.)

• The state with multiple substates does not contain a history junction.

You can control the level of diagnostic action that occurs due to omission
of a default transition in the Diagnostics > Stateflow pane of the Model
Configuration Parameters dialog box. For more information, see the
documentation for the “No unconditional default transitions” diagnostic.

28-44

Common Modeling Errors the Debugger Can Detect

State Inconsistency Example
The following chart has a state inconsistency.

In the absence of a default transition indicating which substate is to become
active, the chart has a state inconsistency error.

Adding a default transition to one of the substates resolves the state
inconsistency.

28-45

28 Debug and Test Stateflow® Charts

Conflicting Transitions in a Chart

What Are Conflicting Transitions?
Conflicting transitions are two equally valid paths from the same source
in a Stateflow chart during simulation. In the case of a conflict, Stateflow
software evaluates equally valid transitions based on ordering mode in the
chart: explicit or implicit.

• For explicit ordering (the default mode), evaluation of conflicting transitions
occurs based on the order you specify for each transition. For details, see
“Explicit Ordering of Outgoing Transitions” on page 3-55.

• For implicit ordering in C charts, evaluation of conflicting transitions
occurs based on internal rules described in “Implicit Ordering of Outgoing
Transitions” on page 3-59.

Detect Conflicting Transitions
To detect conflicting transitions in a C chart with implicit ordering during a
simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Transition Conflict.

3 Start the simulation.

Example of Conflicting Transitions
The following chart has two conflicting transitions:

28-46

Common Modeling Errors the Debugger Can Detect

How the Transition Conflict Occurs. The default transition to state A
assigns data a equal to 1 and data b equal to 10. The during action of state A
increments a and decrements b during each time step. The transition from
state A to state B is valid if the condition [a > 4] is true. The transition from
state A to state C is valid if the condition [b < 7] is true. During simulation,
there is a time step where state A is active and both conditions are true. This
issue is a transition conflict.

Conflict Resolution for Explicit Ordering. For explicit ordering, the chart
resolves the conflict by evaluating outgoing transitions in the order that you
specify explicitly. For example, if you right-click the transition from state
A to state C and select Execution Order > 1 from the context menu, the
chart evaluates that transition first. In this case, the transition from state A
to state C occurs.

Conflict Resolution for Implicit Ordering When Check Box Is Not
Selected. For implicit ordering, the chart evaluates multiple outgoing
transitions with equal label priority in a clockwise progression starting from
the twelve o’clock position on the state. In this case, the transition from state
A to state B occurs.

28-47

28 Debug and Test Stateflow® Charts

Data Range Violations in a Chart

Types of Data Range Violations
The Stateflow debugger detects the following data range violations during
simulation:

• When a data object equals a value outside the range of the values set in
the Initial value, Minimum, and Maximum fields specified in the Data
properties dialog box

See “Set Data Properties” on page 8-5 for a description of the Initial value,
Minimum, andMaximum fields in the Data properties dialog box.

• When the result of a fixed-point operation overflows its bit size

See “Detect Overflow for Fixed-Point Types” on page 19-11 for a description
of the overflow condition in fixed-point numbers.

When you select Saturate on integer overflow for your chart, the
debugger does not flag any cases of integer overflow during simulation.
However, the debugger continues to flag out-of-range data violations based on
minimum-and-maximum range checks. For more information, see “Impact
of Saturation on Debugger Checks” on page 8-61.

Detect Data Range Violations
To detect data range violations during a simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Data Range.

3 Start the simulation.

Data Range Violation Example
The following chart has a data range violation.

28-48

Common Modeling Errors the Debugger Can Detect

Assume that the data a has an Initial value andMinimum value of 0 and a
Maximum value of 2. Each time an event awakens this chart and state A is
active, a increments. The value of a quickly becomes a data range violation.

Cyclic Behavior in a Chart

What Is Cyclic Behavior?
Cyclic behavior is a step or sequence of steps that is repeated indefinitely
(recursive). The Stateflow debugger uses cycle detection algorithms to detect
a class of infinite recursions caused by event broadcasts.

Detect Cyclic Behavior During Simulation
To detect cyclic behavior during a simulation:

1 Build the target with debugging enabled.

2 Open the debugger and select Detect Cycles.

3 Start the simulation.

Cyclic Behavior Example
This chart shows how an event broadcast can cause infinite recursive cycles.

28-49

28 Debug and Test Stateflow® Charts

When the state C during action executes, event E1 is broadcast. The transition
from state A.A1 to state A.A2 becomes valid when event E1 is broadcast. Event
E2 is broadcast as a condition action of that transition. The transition from
state B.B1 to state B.B2 becomes valid when event E2 is broadcast. Event E1
is broadcast as a condition action of the transition from state B.B1 to state
B.B2. Because these event broadcasts of E1 and E2 are in condition actions, a
recursive event broadcast situation occurs. Neither transition can complete.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

28-50

Common Modeling Errors the Debugger Can Detect

Flow Cyclic Behavior Not Detected Example
This chart shows an example of cyclic behavior in a flow chart that the
debugger cannot detect.

The data object i is set to 0 in the condition action of the default transition. i
increments in the next transition segment condition action. The transition to
the third connective junction is valid only when the condition [i < 0] is true.
This condition is never true in this flow chart, resulting in a cycle.

The debugger cannot detect this cycle because it does not involve recursion
due to event broadcasts. Although the debugger cannot detect cycles that
depend on data values, a separate diagnostic error does appear during
simulation, for example:

Junction is part of a cycle and does not have an
unconditional path leading to termination.

For information on fixing cyclic behavior in flow charts, type the following
at the MATLAB command prompt:

sfhelp('cycle_error');

Noncyclic Behavior Flagged as a Cycle Example
This chart shows an example of noncyclic behavior that the debugger flags as
being cyclic.

28-51

28 Debug and Test Stateflow® Charts

State A becomes active and i is initialized to 0. When the transition is tested,
the condition [i < 5] is true. The condition actions that increment i and
broadcast the event E are executed. The broadcast of E when state A is active
causes a repetitive testing (and incrementing of i) until the condition is no
longer true. The debugger flags this behavior as a cycle, but the so-called cycle
breaks when i becomes greater than 5.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

28-52

Guidelines for Avoiding Unwanted Recursion in a Chart

Guidelines for Avoiding Unwanted Recursion in a Chart
Recursion can be useful for controlling substate transitions among parallel
states at the same level of the chart hierarchy. For example, you can send a
directed event broadcast from one parallel state to a sibling parallel state to
specify a substate transition. (For details, see “Directed Event Broadcasting”
on page 10-57.) This type of recursive behavior is desirable and efficient.

However, unwanted recursion can also occur during chart execution. To avoid
unwanted recursion, follow these guidelines:

Do not call functions recursively

Suppose that you have functions named f, g, and h in a chart. These functions
can be any combination of graphical functions, truth table functions, MATLAB
functions, or Simulink functions.

To avoid recursive behavior, do not:

• Have f calling g calling h calling f

• Have f, g, or h calling itself

Do not use undirected local event broadcasts

Follow these rules:

• Use directed local event broadcasts with the syntax send(event,state).
The event is a local event in the chart and the state is the destination
state that you want to wake up using the event broadcast.

• If the source of the local event broadcast is a state action, ensure that
the destination state is not an ancestor of the source state in the chart
hierarchy.

• If the source of the local event broadcast is a transition, ensure that the
destination state is not an ancestor of the transition in the chart hierarchy.

Also, ensure that the transition does not connect to the destination state.

28-53

28 Debug and Test Stateflow® Charts

If you have undirected local event broadcasts in state actions or condition
actions in your chart, a warning appears by default during simulation.
Examples of state actions with undirected local event broadcasts include:

• entry: send(E1), where E1 is a local event in the chart

• exit: E2, where E2 is a local event in the chart

You can control the level of diagnostic action for undirected local event
broadcasts in the Diagnostics > Stateflow pane of the Configuration
Parameters dialog box. Set the Undirected event broadcasts diagnostic
to none, warning, or error.

28-54

Watch Data Values During Simulation

Watch Data Values During Simulation

In this section...

“Watch Data in the Stateflow Chart” on page 28-55

“Watch Data in the Stateflow Debugger” on page 28-57

“Watch Stateflow Data in the MATLAB Command Window” on page 28-59

Watch Data in the Stateflow Chart
During simulation you can hover over objects in the chart to view the value
of data used by the selected object. You can watch data whether simulation
runs or pauses. Hovering over objects in the chart provides the following
information:

For: Tooltip Shows:

States and transitions Values of data used by the object

Graphical, truth table, and
MATLAB functions

Values of local data, and of inputs and
outputs in the scope of the function

For example, the following chart stops execution before entering the Debounce
state. Hovering over the transition from the Normal state to the On state
shows that the value of sw is 3.6333.

28-55

28 Debug and Test Stateflow® Charts

Because the value of sw is greater than zero, the chart takes the transition
from Normal to enter the Debounce state.

28-56

Watch Data Values During Simulation

Watch Data in the Stateflow Debugger
To see a list of all data values in scope, use the Browse Data pull-down
menu in the Stateflow debugger. You can display selected data in the bottom
output display pane of the debugger during simulation, after a breakpoint is
reached. The debugger can filter the display between:

• Watched data and all data

• Watched data in the currently executing chart and watched data for all
charts in a model

Note You designate Stateflow data to be watched data by enabling the
property “Watch in debugger” on page 8-14, as described in “Properties You
Can Set in the General Pane” on page 8-8.

The following example displays All Data (All Charts) for a chart named Air
Controller. This chart has two data values: airflow and temp.

28-57

28 Debug and Test Stateflow® Charts

Each displayed object (chart, state, data, and so on) appears with a unique
identifier of the form (#id(xx:yy:zz)), which links the listed object to its
appearance in the chart. In the Browse Data section, data appears in
alphabetical order, regardless of its scope in a chart.

28-58

Watch Data Values During Simulation

Note Fixed-point data appears with two values: the quantized integer
value (stored integer) and the scaled real-world (actual) value. For more
information, see “How Fixed-Point Data Works in Stateflow Charts” on page
19-6.

Watch Stateflow Data in the MATLAB Command
Window
When simulation reaches a breakpoint, you can view the values of Stateflow
data in the MATLAB Command Window. In the following chart, a default
transition calls a MATLAB function:

A breakpoint is set at the last executable line of the function:

function stats(vals)
%#codegen

% calculates a statistical mean and standard deviation
% for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
coder.extrinsic('plot');
plot(vals,'-+'); % Breakpoint set at this line

When simulation reaches the breakpoint, you can display Stateflow data
in the MATLAB Command Window.

1 At the MATLAB prompt, press Enter.

A debug>> prompt appears.

28-59

28 Debug and Test Stateflow® Charts

2 Type whos to view the data that is visible at the current scope.

3 Enter the name of data array vals at the prompt to display its value.

4 Enter vals(2:3) to view specific values of that array.

The Command Line Debugger provides these commands during simulation:

Command Description

dbstep Advance to next executable line of code.

dbstep
[in/out]

When debugging MATLAB functions in a chart:

• dbstep [in] advances to the next executable line of
code. If that line contains a call to another function,
execution continues to the first executable line of the
function.

• dbstep [out] executes the rest of the function and
stops just after leaving the function.

dbcont Continue execution to next breakpoint.

dbquit
(ctrl-c)

Stop simulation of the model. Press Enter after this
command to return to the command prompt.

help Display help for command-line debugging.

print var

...or...

var

Display the value of the variable var.

var (i) Display the value of the ith element of the vector or
matrix var.

var (i:j) Display the value of a submatrix of the vector or matrix
var.

28-60

Watch Data Values During Simulation

Command Description

save Saves all variables to the specified file. Follows the syntax
of the MATLAB save command. To retrieve variables in
the MATLAB base workspace, use the load command
after simulation has ended.

whos Display the size and class (type) of all variables in the
scope of the halted MATLAB function in your chart.

You can issue any other MATLAB command at the debug>> prompt but the
results are executed in the Stateflow workspace. For example, you can issue
the MATLAB command plot(var) to plot the values of the variable var.

To issue a command in the MATLAB base workspace at the debug>> prompt,
use the evalin command with the first argument 'base' followed by the
second argument command string, for example, evalin('base','whos').

Note To return to the MATLAB base workspace, use the dbquit command.

28-61

28 Debug and Test Stateflow® Charts

Change Data Values During Simulation

In this section...

“How to Change Values of Stateflow Data” on page 28-62

“Examples of Changing Data Values” on page 28-62

“Limitations on Changing Data Values” on page 28-65

How to Change Values of Stateflow Data
When your chart is in debug mode, you can test the simulation by changing
the values of data in the chart. After the debug>> prompt appears, as
described in “Watch Stateflow Data in the MATLAB Command Window” on
page 28-59, you can assign a different value to your data. To change a data
value, enter the new value at the prompt using the following format:

data_name = new_value

For a list of data that you cannot change, see “Data That Is Read-Only During
Simulation” on page 28-65.

Examples of Changing Data Values

Scalar Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

airflow 1x1 1 uint8 array
temp 1x1 8 double array

To change... To this value... Enter...

airflow 2 airflow = uint8(2)

temp 68.75 temp = 68.75

28-62

Change Data Values During Simulation

If you try to enter airflow = 2, you get an error message because MATLAB
interprets that expression as the assignment of a double value to data of
uint8 type. For reference, see “Cases When Casting Is Necessary” on page
28-66.

Multidimensional Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

ball_interaction 16x16 256 int8 array
last_vel 16x2 256 double array
stopped 16x1 16 int16 array

To change... To this value... Enter...

The element in
row 8, column 8 of
ball_interaction

1 ball_interaction(8,8)
= int8(1)

The element in row 16,
column 1 of last_vel

120.52 last_vel(16,1) =
120.52

The last element in
stopped

0 stopped(16) =
int16(0)

One-based indexing applies when you change values of Stateflow data while
the chart is in debug mode.

Variable-Size Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

y1 1x1 8 double array (variable sized: MAX 16x16)
y2 1x1 8 double array (variable sized: MAX 16x4)

28-63

28 Debug and Test Stateflow® Charts

To change... To... Enter...

y1 A 10-by-5 array of ones y1 = ones(10,5)

y2 A 6-by-4 array of zeros y2 = zeros(6,4)

Changing the dimensions of variable-size data works only when the new size
does not exceed the dimension bounds.

Fixed-Point Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

y_n1 1x1 2 fixpt (int16 array (2^-10)*SI)
x_n1 1x1 2 fixpt (int16 array (2^-12)*SI)

Both y_n1 and x_n1 have signed fixed-point types, with a word length of 16.
y_n1 has a fraction length of 10 and x_n1 has a fraction length of 12.

To change... To this fixed-point
value...

Enter...

y_n1 0.5410 y_n1 =
fi(0.5412,1,16,10)

x_n1 0.4143 x_n1 =
fi(0.4142,1,16,12)

For more information about using fi objects, see the Fixed-Point Designer
documentation.

28-64

Change Data Values During Simulation

Enumerated Example
Suppose that, after the debug>> prompt appears, you enter whos at the
prompt and see the following data:

Name Size Bytes Class

CurrentRadioMode 1x1 4 int32 array
MechCmd 1x1 4 int32 array

Assume that CurrentRadioMode and MechCmd use the enumerated types
RadioRequestMode and CdRequestMode, respectively.

To change... To this enumerated
value...

Enter...

CurrentRadioMode CD CurrentRadioMode =
RadioRequestMode.CD

MechCmd PLAY MechCmd =
CdRequestMode.PLAY

You must include the enumerated type explicitly in the assignment.
Otherwise, an error appears at the debug>> prompt.

Limitations on Changing Data Values

Data That Is Read-Only During Simulation
You cannot change data of the following scopes while the chart is in debug
mode:

• Constant

• Input

Limitations on Changing Type and Size
The following data properties cannot change:

• Data type

• Size

28-65

28 Debug and Test Stateflow® Charts

However, for variable-size data, you can change the dimensions of the
data as long as the size falls within the dimension bounds. For example,
varsizedData = ones(5,7); is a valid assignment for a variable-size
10-by-10 array.

Limitations for Fixed-Point Data

• Do not assign a value that falls outside the range of values that the
fixed-point type can represent. Avoid selecting a value that causes overflow.

• Sign, word length, fraction length, slope, and bias cannot change.

Limitations for Structures

• You cannot change the data type or size of any fields.

• Addition or deletion of fields does not work because the size of the structure
cannot change.

Cases When Casting Is Necessary
When you change a data value, you must explicitly cast values for data of
the following built-in types:

• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

For example, the following assignments are valid:

• my_data1 = uint8(2)

• my_data2 = single(5.3)

28-66

Change Data Values During Simulation

Casting is not necessary when you change the value of data that is of type
double.

28-67

28 Debug and Test Stateflow® Charts

Monitor Test Points in Stateflow Charts

In this section...

“About Test Points in Stateflow Charts” on page 28-68

“Set Test Points for Stateflow States and Local Data with the Model
Explorer” on page 28-69

“Monitor Data Values and State Self Activity Using a Floating Scope” on
page 28-71

About Test Points in Stateflow Charts
A Stateflow test point is a signal that you can observe during simulation —
for example, by using a Floating Scope block. You can designate the following
Stateflow objects as test points:

• Any state

• Local data with the following characteristics:

- Can be scalar, one-dimensional, or two-dimensional in size

- Can be any data type except ml

- Must be a descendant of a Stateflow chart

You can specify individual data or states as test points by setting their
TestPoint property via the Stateflow API or in the Model Explorer (see “Set
Test Points for Stateflow States and Local Data with the Model Explorer”
on page 28-69).

You can monitor individual Stateflow test points with a floating scope during
model simulation. You can also log test point values into MATLAB workspace
objects.

You can also use active state output to view or log state activity data in
Simulink. For more information, see “About Active State Output” on page
21-38.

28-68

Monitor Test Points in Stateflow® Charts

Set Test Points for Stateflow States and Local Data
with the Model Explorer
You can explicitly set individual states or local data as test points in the
Model Explorer. The following procedure shows how to set individual test
points for Stateflow states and data.

1 Create this model:

The model consists of a Sine Wave block that triggers a Stateflow chart
using the input trigger event tic.

2 Add the following states and transitions to your chart:

The state A and its substate X are entered on the first tic event. State A
and substate X stay active until 10 tic events have occurred, and then

28-69

28 Debug and Test Stateflow® Charts

state B is entered. On the next event, state A and substate X are entered
and the cycle continues.

The data x belongs to substate X. The entry and during actions for substate
X increment x while X is active for 10 tic events. When state B is entered, x
reinitializes to zero, and then the cycle repeats.

3 Save the model with the name myModel.

4 Open the Model Configuration Parameters dialog box.

5 In the Solver pane, specify solver options:

a Set Type to Fixed-step.

b Set Solver to discrete (no continuous states).

c Set Fixed-step size (fundamental sample time) to 0.1.

d Click OK.

6 Open the Model Explorer.

7 In the Model Explorer, expand the myModel node and then the Chart1 node.

8 Right-click A and select Properties.

9 In the Logging pane of the properties dialog box, select the Test point
check box and then click OK.

This step creates a test point for the state A.

10 Repeat the previous step for states A.X and B.

11 In the Model Explorer, select state X again.

12 Right-click the local data x and select Properties.

13 In the properties dialog box, select the Test point check box and then
click OK.

14 Close the Model Explorer and save the model.

28-70

Monitor Test Points in Stateflow® Charts

You can also log these test points. See “Log Multiple Signals At Once” on
page 28-80 for instructions on using the Signal Logging dialog box. See “Log
Chart Signals Using the Command-Line API” on page 28-81 for instructions
on logging signals at the MATLAB command line.

Monitor Data Values and State Self Activity Using a
Floating Scope
In this section, you configure a Floating Scope block to monitor a data value
and the self activity of a state.

1 Create this model:

The model consists of a Floating Scope block and a Stateflow chart.

2 Add the following states and transitions to your chart:

The chart starts by adding an increment of 0.02 for 10 samples to the data
x1. For the next 10 samples, x1 increments by 0.2, and then the cycle
repeats.

3 Save the model.

28-71

28 Debug and Test Stateflow® Charts

4 Open the Model Configuration Parameters dialog box.

5 In the Solver pane, specify solver options:

a Set Type to Fixed-step.

b Set Solver to discrete (no continuous states).

c Set Fixed-step size (fundamental sample time) to 0.1.

d Click OK.

6 Specify states A and B as test points:

a In the chart, right-click each state and select Properties.

b In the Logging pane of the State properties dialog box, select Test point.

c Click OK.

7 Add x1 as local data:

a Select Chart > Add Other Elements > Local Data .

b Change the name to x1.

c Click OK.

8 Specify data x1 as a test point:

a Open the Model Explorer.

b In the Model Hierarchy pane, navigate to the chart.

c In the Contents pane, right-click x1 and select Properties.

d In the Logging pane of the Data properties dialog box, select Test point.

e Click OK.

f Close the Model Explorer.

9 Double-click the Floating Scope block to open the window.

10 In the Floating Scope window, click the Signal Selection icon .

The Signal Selector dialog box appears with a hierarchy of Simulink blocks
for the model.

28-72

Monitor Test Points in Stateflow® Charts

11 In theModel hierarchy pane, select the chart whose signals you want to
monitor and in the List contents pane, select the signals.

12 Simulate the model.

You see a signal trace for x1 and the activity of state A.

28-73

28 Debug and Test Stateflow® Charts

When state A is active, the signal value is 1. When that state is inactive,
the signal value is 0. Because this value can be very low or high compared
to other data, you might want to add a second Floating Scope block to
compare the activity signal with other data.

28-74

What You Can Log During Chart Simulation

What You Can Log During Chart Simulation
When you simulate a chart, you can log values for local data and state self
activity into Simulink objects. After simulation, you can access these objects
in the MATLAB workspace and use them to report and analyze the values.

When you log a state, its value is 1 when active and 0 when inactive.

Logging Stateflow data and state self activity follows the same general
guidelines as for logging signals in Simulink models.

See Also

• “Export Signal Data Using Signal Logging” in the Simulink documentation.

• “About Active State Output” on page 21-38

28-75

28 Debug and Test Stateflow® Charts

Basic Approach to Logging States and Local Data
The workflow for logging chart local data and state self activity is similar to
the workflow for logging signals in a model:

1 Enable signal logging for the chart and choose a logging format.

See “Enable Signal Logging” on page 28-77.

2 Configure states and local data for signal logging, which includes
controlling how much output the simulation generates.

See “Configure States and Local Data for Logging” on page 28-78.

3 Simulate the chart.

4 Access the logged data.

See “Access Logged Data” on page 28-83.

You can also use active state output to view or log state activity data in
Simulink. For more information, see “About Active State Output” on page
21-38.

28-76

Enable Signal Logging

Enable Signal Logging
The following procedure explains how to enable signal logging for any model.
For example, try the procedure with the sf_semantics_hotel_checkin
model, which uses a chart to simulate a hotel check-in process. To open
the model, type sf_semantics_hotel_checkin at the MATLAB command
prompt.

1 Open the Model Configuration Parameters dialog box.

2 Select Data Import/Export.

3 In the Signals pane, select the Signal logging check box to enable logging
for the chart.

Signal logging is enabled by default for models and charts. To disable
logging, clear the check box.

4 Optionally, specify a custom name for the signal logging object.

The default name is logsout. Using this object, you can access the logging
data in a MATLAB workspace variable (see “Signal Logging Object” on
page 28-83).

5 Click OK.

28-77

28 Debug and Test Stateflow® Charts

Configure States and Local Data for Logging

In this section...

“Properties to Configure for Logging” on page 28-78

“Choose a Configuration Method for Logging” on page 28-79

“Log Individual States and Data” on page 28-79

“Log Multiple Signals At Once” on page 28-80

“Log Chart Signals Using the Command-Line API” on page 28-81

Properties to Configure for Logging
You can configure the same properties for logging states and local data in a
chart as you can for logging signals in a model:

Property Description

Log signal
data (for
data) or Log
self data (for
states)

Saves the signal or state’s value to the MATLAB workspace
during simulation.

Logging
name

Name of the logged signal. Defaults to the original name
of the state or local data. To rename the logged signal,
select Custom and enter a new name. For guidance on
when to use a different name for a logged signal, see
“Specify Signal-Level Logging Name” in the Simulink
documentation.

Limit data
points to last

Limits the amount of data logged to the most recent
samples. See “Limit Data Points to Last” in the Simulink
documentation.

Decimation
value

Limits the amount of data logged by skipping samples. For
example, a decimation factor of 2 saves every other sample.
See “Decimation” in the Simulink documentation.

28-78

Configure States and Local Data for Logging

See Also

• “Logging and Accessibility Options” in the Simulink documentation

Choose a Configuration Method for Logging
There are several ways to configure states and local data for logging:

Method When to Use

“Log Individual States and Data” on
page 28-79

Configure states or local data for
logging one at a time from inside the
chart.

“Log Multiple Signals At Once” on
page 28-80

Configure multiple signals for
logging from a list of all states and
local data.

“Log Chart Signals Using the
Command-Line API” on page 28-81

Configure logging properties
programmatically.

Log Individual States and Data
The following procedure explains how to log individual states and data for any
chart. For example, try the procedure with the sf_semantics_hotel_checkin
model, which uses a chart to simulate a hotel check-in process. To open
the model, type sf_semantics_hotel_checkin at the MATLAB command
prompt.

1 Open the properties dialog box for the state or local data.

For: Do This:

States Right-click the state and select Properties.

Local data Right-click the state or transition that uses the local data
and select Explore > (data) variable_name.

2 In the properties dialog box, click the Logging tab.

3 Modify properties as needed, as described in “Properties to Configure for
Logging” on page 28-78.

28-79

28 Debug and Test Stateflow® Charts

For example, from the Hotel chart of the sf_semantics_hotel_checkin
model:

1 Open the properties dialog box for the service local data and select the
Log signal data check box.

2 Open the properties dialog box for the Dining_area state, select the Log
self activity check box, and change the logging name to Dining_Room.

See Also

• “Set Data Properties” on page 8-5

• “Change State Properties” on page 4-10

Log Multiple Signals At Once
The following procedure explains how to log multiple signals at once for any
chart. For example, try the procedure with the sf_semantics_hotel_checkin
model, which uses a chart to simulate a hotel check-in process. To open
the model, type sf_semantics_hotel_checkin at the MATLAB command
prompt.

1 In the chart, select Simulation > Output > Log Chart Signals.

The Stateflow Signal Logging dialog box opens, showing all states and local
data. These chart objects are the signals you can log.

2 Select the check box next to each signal you want to log.

The Log signal data check box is selected automatically for each signal you
log. For example, in the Hotel chart of the sf_semantics_hotel_checkin
model, log the Check_in.Checked_in.Executive_suite.Dining_area
state and local variable service:

28-80

Configure States and Local Data for Logging

3 For each signal you select, modify the properties of what gets captured in
the log.

For example, change the logging name of
Check_in.Checked_in.Executive_suite.Dining_area to Dining_Room.

For a description of each property, see “Properties to Configure for Logging”
on page 28-78.

Log Chart Signals Using the Command-Line API
The following procedure explains how to log chart signals from the command
line.

1 Open the model that contains the chart.

For example, open the sf_semantics_hotel_checkin model, which has
a chart called Hotel.

2 Get the states whose activity you want to log.

28-81

28 Debug and Test Stateflow® Charts

For example, get the Dining_area state in the Hotel chart:

rt = sfroot;

da_state = rt.find('-isa','Stateflow.State','Name','Dining_area');

Get the local data you want to log.

For example, get the service local data in the Hotel chart:

svc_data = rt.find('-isa','Stateflow.Data','Name','service');

3 Enable logging for states and data.

For example, enable logging for the Dining_area state and the service
data:

da_state.LoggingInfo.DataLogging = 1;

svc_data.LoggingInfo.DataLogging = 1;

4 Modify logging properties as needed.

For example, change the logged name of the Dining_area state. By
default, the logged name is the hierarchical signal name, which is
Check_in.Checked_in.Executive_suite.Dining_area. To assign the
shorter, custom name of Dining_Room:

% Enable custom naming

da_state.LoggingInfo.NameMode = 'Custom';

% Enter the custom name

da_state.LoggingInfo.UserSpecifiedLogName = 'Dining_Room';

See Also
“Log Multiple Signals At Once” on page 28-80

28-82

Access Logged Data

Access Logged Data

In this section...

“Signal Logging Object” on page 28-83

“Access Logged Data Saved in Dataset Format” on page 28-83

Signal Logging Object
During simulation, Stateflow saves logged data in a signal logging object,
which you can access in the MATLAB workspace. The type of signal logging
object depends on the signal logging format that you choose.

Format Signal Logging Object

Dataset Simulink.SimulationData.Dataset

ModelDataLogs Simulink.ModelDataLogs

The default name of the signal logging object is logsout.

See Also

• “Enable Signal Logging” on page 28-77 to learn how to change the name
of the signal logging object

• Simulink.SimulationData.Dataset reference page in the Simulink
documentation

• Simulink.ModelDataLogs reference page in the Simulink documentation

Access Logged Data Saved in Dataset Format
The following procedure explains how to access logged data in Dataset
format for any chart. For example, try the procedure with the
sf_semantics_hotel_checkin model, which uses a chart to simulate a hotel
check-in process. To open the model, type sf_semantics_hotel_checkin at
the MATLAB command prompt. Enable logging as described in “Configure
States and Local Data for Logging” on page 28-78.

1 View the signal logging object in the MATLAB environment.

28-83

28 Debug and Test Stateflow® Charts

For example:

a Start simulating the sf_semantics_hotel_checkin model using the
Dataset signal logging format.

b When the Front_desk state becomes active, check in to the hotel by
toggling the first switch.

c When the Bedroom state in the Executive_suite state becomes active,
order room service multiple times, for example, by toggling the second
switch 10 times.

d Stop simulation.

e Enter:

logsout

Result:

Simulink.SimulationData.Dataset
Package: Simulink.SimulationData

Characteristics:
Name: 'logsout'

Total Elements: 2

Elements:
1: 'Dining_Room'
2: 'service'

The output indicates:

• logsout is a Simulink object of type SimulationData.Dataset.

• Two elements were logged.

2 Use the getElement method to access logged elements by index and by
name.

For example:

• To access logged activity for the
Check_in.Checked_in.Executive_suite.Dining_area state:

28-84

Access Logged Data

By: Enter:

Index logsout.getElement(1)

Name logsout.getElement('Dining_Room')

Block path 1 logsout.getElement(1).BlockPath

Returns:

• Block Path: 'sf_semantics_hotel_checkin/Hotel'

• SubPath: 'Check_in.Checked_in.Executive_suite.Dining_area'
2 bp = Simulink.BlockPath('sf_semantics_hotel_checkin/Hotel');
3 bp.SubPath = 'Check_in.Checked_in.Executive_suite.Dining_area';
4 logsout.getElement(bp)

The result is a Stateflow.SimulationData.State object:

Stateflow.SimulationData.State
Package: Stateflow.SimulationData

Properties:
Name: 'Dining_Room'

BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]

• To access logged activity for the service local data:

By: Enter:

Index logsout.getElement(2)

Name logsout.getElement('service')

Block path 1 logsout.getElement(2).BlockPath

Returns:

• Block Path: 'sf_semantics_hotel_checkin/Hotel'

• SubPath: 'service'
2 bp = Simulink.BlockPath('sf_semantics_hotel_checkin/Hotel');
3 bp.SubPath = 'service';
4 logsout.getElement(bp)

28-85

28 Debug and Test Stateflow® Charts

The result is a Stateflow.SimulationData.Data object:

Stateflow.SimulationData.Data
Package: Stateflow.SimulationData

Properties:
Name: 'service'

BlockPath: [1x1 Simulink.SimulationData.BlockPath]
Values: [1x1 timeseries]

The logged values for Stateflow.SimulationData.State and
Stateflow.SimulationData.Data objects are stored in the Values
property as Simulink objects of type Timeseries.

3 Access logged data and time through the Values property.

For example:

For: Enter:

Data logsout.getElement(1).Values.Data;

Time logsout.getElement(1).Values.Time;

4 View the logged data.

See “View Logged Data” on page 28-87.

28-86

View Logged Data

View Logged Data
You can view logged data in a figure window, for example, by using the plot
function.

You can also view logged data in a spreadsheet. For example, pass a numeric,
cell, or logical array of logged values to the xlswrite function.

Try this approach with the sf_semantics_hotel_checkin model, which
uses a chart to simulate a hotel check-in process. To open the model, type
sf_semantics_hotel_checkin at the MATLAB command prompt. Enable
logging as described in “Configure States and Local Data for Logging” on
page 28-78 and simulate the model.

View logged activity over time in Dataset format for the
Check_in.Checked_in.Executive_suite.Dining_area state:

1 Assign logged Dining_Room time and data values to an array A:

A = [logsout.getElement('Dining_Room').Values.Time ...
logsout.getElement('Dining_Room').Values.Data];

2 Export the data to an Excel® file named dining_log.xls:

xlswrite('dining_log.xls',A);

3 Open dining_log.xls in Excel.

28-87

28 Debug and Test Stateflow® Charts

Log Data in Library Charts

In this section...

“How Library Log Settings Influence Linked Instances” on page 28-88

“Override Logging Properties in Chart Instances” on page 28-88

“Override Logging Properties in Atomic Subcharts” on page 28-88

How Library Log Settings Influence Linked Instances
Chart instances inherit logging properties from the library chart to which
they are linked. You can override logging properties in the instance, but only
for signals you select in the library. You cannot select additional signals to
log from the instance.

Override Logging Properties in Chart Instances
To override properties of logged signals in chart instances, use one of the
following approaches.

Approach How To Use

Simulink Signal
Logging Selector
dialog box

See “Override Logging Properties with the Logging
Selector” on page 28-89

Command-line
interface

See “Override Logging Properties with the
Command-Line API” on page 28-90

Override Logging Properties in Atomic Subcharts
This example uses sf_atomic_sensor_pair. This model simulates a
redundant sensor pair as atomic subcharts Sensor1 and Sensor2 in the chart
RedundantSensors. Each atomic subchart contains instances of the states
Fail, FailOnce, and OK from the library chart sf_atomic_sensor_lib.

28-88

Log Data in Library Charts

Override Logging Properties with the Logging Selector

1 Open the example library by typing sf_atomic_sensor_lib at the
MATLAB command prompt.

2 Unlock the library by selecting Diagram > Unlock Library.

3 In the SingleSensor chart, select Simulation > Output > Log Chart
Signals.

4 In Stateflow Signal Logging dialog box, set the following logging properties,
then click OK.

For
Signal:

What to Specify:

Fail • Select the Log signal data check box.

• Change Logging name to the custom name LogFail.

• Click Apply.

FailOnce • Select the Log signal data check box.

• Change Logging name to the custom name
LogFailOnce.

• Click Apply.

OK • Select the Log signal data check box.

• Change Logging name to the custom name LogOK.

• Click Apply.

5 Open the model that contains instances of the library chart by typing
sf_atomic_sensor_pair at the MATLAB command prompt.

6 Open the Model Configuration Parameters dialog box.

7 In the Data Import/Export pane, click Configure Signals to Log to
open the Simulink Signal Logging Selector.

8 In the Model Hierarchy pane, expand RedundantSensors, and click
Sensor1 and Sensor2.

28-89

28 Debug and Test Stateflow® Charts

Each instance inherits logging properties from the library chart. For
example:

9 Now, override some logging properties for Sensor1:

a In the Model Hierarchy pane, select Sensor1.

b Change Logging Mode to Override signals.

The selector clears all DataLogging check boxes for the model.

c Enable logging only for the Fail and FailOnce states in Sensor1:

Select DataLogging for these two signals. Leave DataLogging cleared
for the OK signal.

d Append the string Sensor1 to the logging names for Fail and FailOnce:

Double-click the logging names for signals Fail and FailOnce, and
rename them LogFailSensor1 and LogFailOnceSensor1, respectively.

The settings should look like this:

Override Logging Properties with the Command-Line API

1 Open the example library by typing sf_atomic_sensor_lib at the
MATLAB command prompt.

28-90

Log Data in Library Charts

2 Log the signals Fail, FailOnce, and OK in the SingleSensor chart using
these commands:

% Get states in the SingleSensor chart

rt=sfroot;

states = rt.find('-isa', 'Stateflow.State');

% Enable logging for each state

for i = 1: length(states)

states(i).LoggingInfo.DataLogging = 1;

end

3 Open the model that contains instances of the library chart by typing
sf_atomic_sensor_pair at the MATLAB command prompt.

4 Create a ModelLoggingInfo object for the model.

This object contains a vector Signals that stores all logged signals.

mi = Simulink.SimulationData.ModelLoggingInfo. ...

createFromModel('sf_atomic_sensor_pair')

The result is:

mi =

Simulink.SimulationData.ModelLoggingInfo

Package: Simulink.SimulationData

Properties:

Model: 'sf_atomic_sensor_pair'

LoggingMode: 'OverrideSignals'

LogAsSpecifiedByModels: {}

Signals: [1x6 Simulink.SimulationData.SignalLoggingInfo]

28-91

28 Debug and Test Stateflow® Charts

The Signals vector contains the signals marked for logging in the library
chart:

• Library instances of Fail, FailOnce, and OK states in atomic subchart
Sensor1

• Library instances of Fail, FailOnce, and OK states in atomic subchart
Sensor2

5 Make sure that LoggingMode equals 'OverrideSignals'.

6 Create a block path to each logged signal whose properties you want to
override.

To access signals inside Stateflow charts, use
Simulink.SimulationData.BlockPath(paths, subpath), where subpath
represents a signal inside the chart.

To create block paths for the signals Fail, FailOnce, and OK in the atomic
subchart Sensor1 in the RedundantSensors chart:

failPath = Simulink.SimulationData. ...

BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','Fail')

failOncePath = Simulink.SimulationData. ...

BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','FailOnce')

OKPath = Simulink.SimulationData. ...

BlockPath('sf_atomic_sensor_pair/RedundantSensors/Sensor1','OK')

7 Get the index of each logged signal in the
Simulink.SimulationData.BlockPath object.

To get the index for the signals Fail, FailOnce, and OK:

failidx = mi.findSignal(failPath);

failOnceidx = mi.findSignal(failOncePath);

OKidx = mi.findSignal(OKPath);

8 Override some logging properties for the signals in Sensor1:

28-92

Log Data in Library Charts

a Disable logging for signal OK:

mi.Signals(OKidx).LoggingInfo.DataLogging = 0;

b Append the string Sensor1 to the logging names for Fail and FailOnce:

% Enable custom naming

mi.Signals(failidx).LoggingInfo.NameMode = 1;

mi.Signals(failOnceidx).LoggingInfo.NameMode = 1;

% Enter the custom name

mi.Signals(failidx).LoggingInfo.LoggingName = 'LogFailSensor1';

mi.Signals(failOnceidx).LoggingInfo.LoggingName = 'LogFailOnceSensor1';

9 Apply the changes:

set_param(bdroot, 'DataLoggingOverride', mi);

See Also.

• Simulink.SimulationData.ModelLoggingInfo

• Simulink.SimulationData.BlockPath

28-93

28 Debug and Test Stateflow® Charts

How Stateflow Logs Multidimensional Data
Stateflow logs each update to a multidimensional signal as a single change.
For example, an update to a 2-by-2 matrix A during simulation is logged as a
single change, not as four changes (one for each element):

Update Is Logged As

A = 1; A single change, even though the statement
implies all A[i] = 1

A[1][1] = 1;
A[1][2] = 1;

Two different changes

28-94

Limitations on Logging Data

Limitations on Logging Data
If active state output is enabled for a state, then logging through Stateflow is
unavailable. The state activity data will be output to Simulink, and it can be
logged in Simulink instead. For more information, see “About Active State
Output” on page 21-38 and “Signal Logging”.

Use the DataSet format to log bus data in Stateflow. Do not use the
ModelDataLogs format for bus data.

28-95

28 Debug and Test Stateflow® Charts

28-96

29

Explore and Modify Charts

• “Use the Model Explorer with Stateflow Objects” on page 29-2

• “Use the Search & Replace Tool” on page 29-8

• “Find Stateflow Objects” on page 29-21

29 Explore and Modify Charts

Use the Model Explorer with Stateflow Objects

In this section...

“View Stateflow Objects in the Model Explorer” on page 29-2

“Edit Chart Objects in the Model Explorer” on page 29-4

“Add Data and Events in the Model Explorer” on page 29-4

“Rename Objects in the Model Explorer” on page 29-4

“Set Properties for Chart Objects in the Model Explorer” on page 29-5

“Move and Copy Data and Events in the Model Explorer” on page 29-6

“Change the Port Order of Input and Output Data and Events” on page 29-7

“Delete Data and Events in the Model Explorer” on page 29-7

View Stateflow Objects in the Model Explorer
You can use one of these methods for opening the Model Explorer:

• In the Stateflow Editor, select View > Model Explorer.

• Right-click an empty area in the chart and select Explore.

29-2

Use the Model Explorer with Stateflow® Objects

The Model Explorer appears something like this:

The main window has two panes: a Model Hierarchy pane on the left
and a Contents pane on the right. When you open the Model Explorer, the
Stateflow object you are editing appears highlighted in theModel Hierarchy
pane and its objects appear in the Contents pane. This example shows how
the Model Explorer appears when opened from the chart.

The Model Hierarchy pane displays the elements of all loaded Simulink
models, which includes Stateflow charts. A preceding plus (+) character for
an object indicates that you can expand the display of its child objects by
double-clicking the entry or by clicking the plus (+). A preceding minus (-)
character for an object indicates that it has no child objects.

Clicking an entry in the Model Hierarchy pane selects that entry and
displays its child objects in the Contents pane. A hypertext link to the
currently selected object in the Model Hierarchy pane appears after the
Contents of: label at the top of the Contents pane. Click this link to display

29-3

29 Explore and Modify Charts

that object in its native editor. In the preceding example, clicking the link
sfbus_demo/Chart displays the contents of the chart in its editor.

Each type of object, whether in the Model Hierarchy or Contents pane,
appears with an adjacent icon. Subcharted objects (states, boxes, or graphical
functions) appear altered with shading.

The display of child objects in the Contents pane includes properties for each
object, most of which are directly editable. You can also access the properties
dialog box for an object from the Model Explorer. See “Set Properties for
Chart Objects in the Model Explorer” on page 29-5 for more details.

Edit Chart Objects in the Model Explorer
To edit a chart object that appears in the Model Hierarchy pane of the
Model Explorer:

1 Right-click the object.

2 Select Open from the context menu.

The selected object appears highlighted in the chart.

Add Data and Events in the Model Explorer
To add data or events using the Model Explorer, see the following links:

• “How to Add Data Using the Model Explorer” on page 8-3

• “How to Add Events Using the Model Explorer” on page 9-5

Rename Objects in the Model Explorer
To rename a chart object in the Model Explorer:

1 Right-click the object row in the Contents pane of the Model Explorer
and select Rename.

The name of the selected object appears in a text edit box.

2 Change the name of the object and click outside the edit box.

29-4

Use the Model Explorer with Stateflow® Objects

Set Properties for Chart Objects in the Model Explorer
To change the property of an object in the Contents pane of the Model
Explorer:

1 In the Contents pane, click in the row of the displayed object.

2 Click an individual entry for a property column in the highlighted row.

• For text properties, such as the Name property, a text editing field with
the current text value overlays the displayed value. Edit the field and
press the Return key or click anywhere outside the edit field to apply
the changes.

• For properties with enumerated entries, such as the Scope, Trigger, or
Type properties, select from a drop-down combo box that overlays the
displayed value.

• For Boolean properties (properties that are set on or off), select or clear
the box that appears in place of the displayed value.

To set all the properties for an object displayed in the Model Hierarchy or
Contents pane of the Model Explorer:

1 Right-click the object and select Properties.

The properties dialog box for the object appears.

2 Edit the appropriate properties and click Apply or OK.

To display the properties dialog box dynamically for the selected object in the
Model Hierarchy or Contents pane of the Model Explorer:

1 Select View > Show Dialog Pane.

The properties dialog box for the selected object appears in the far right
pane of the Model Explorer.

29-5

29 Explore and Modify Charts

Move and Copy Data and Events in the Model
Explorer

Note If you move an object to a level in the hierarchy that does not support
the Scope property for that object, the Scope automatically changes to Local.

To move data and event objects to another parent:

1 Select the data or event to move in the Contents pane of the Model
Explorer.

You can select a contiguous block of items by highlighting the first (or
last) item in the block and then using Shift + click for highlighting the
last (or first) item.

2 Click and drag the highlighted objects from the Contents pane to a new
location in the Model Hierarchy pane to change its parent.

A shadow copy of the selected objects accompanies the mouse cursor during
dragging. If no parent is chosen or the parent chosen is the current parent,
the mouse cursor changes to an X enclosed in a circle, indicating an invalid
choice.

To cut or copy the selected data or event:

1 Select the event or data to cut or copy in the Contents pane of the Model
Explorer.

2 In the Model Explorer, select Edit > Cut or Edit > Copy.

If you select Cut, the selected items are deleted and then copied to the
clipboard for copying elsewhere. If you select Copy, the selected items
are left unchanged.

You can also right-click a single selection and select Cut or Copy from the
context menu. The Model Explorer also uses the keyboard equivalents
of Ctrl+X (Cut) and Ctrl+C (Copy) on a computer running the UNIX or
Windows operating system.

29-6

Use the Model Explorer with Stateflow® Objects

3 Select a new parent object in the Model Hierarchy pane of the Model
Explorer.

4 Select Edit > Paste. The cut items appear in the Contents pane of the
Model Explorer.

You can also paste the cut items by right-clicking an empty part of the
Contents pane and selecting Paste from the context menu. The Model
Explorer also uses the keyboard equivalent of Ctrl+V (Paste) on a computer
running the UNIX or Windows operating system.

Change the Port Order of Input and Output Data
and Events
Input data, output data, input events, and output events each have numerical
sequences of port index numbers. You can change the order of indexing
for event or data objects with a scope of Input to Simulink or Output to
Simulink in the Contents pane of the Model Explorer as follows:

1 Select one of the input or output data or event objects.

2 Click the Port property for the object.

3 Enter a new value for the Port property for the object.

The remaining objects in the affected sequence are automatically assigned
a new value for their Port property.

Delete Data and Events in the Model Explorer
Delete data and event objects in the Contents pane of the Model Explorer as
follows:

1 Select the object.

2 Press the Delete key.

You can also select Edit > Cut or Ctrl+X from the keyboard to delete an
object.

29-7

29 Explore and Modify Charts

Use the Search & Replace Tool

In this section...

“Open the Search & Replace Tool” on page 29-8

“Refine Searches” on page 29-11

“Specify the Search Scope” on page 29-13

“Use the Search Button and View Area” on page 29-14

“Specify the Replacement Text” on page 29-17

“Use Replace Buttons” on page 29-18

“Search and Replace Messages” on page 29-19

Open the Search & Replace Tool
To open the Search & Replace dialog box:

1 Open a chart.

2 Select Edit > Find & Replace in Chart.

29-8

Use the Search & Replace Tool

The Search & Replace dialog box contains the following fields:

• Search for

Enter search pattern text in the Search for text box. You can select the
interpretation of the search pattern with the Match case check box and
the Match options field (unlabeled and just to the right of the Search
in field).

29-9

29 Explore and Modify Charts

• Match case

If you select this check box, the search is case sensitive and the Search &
Replace tool finds only text matching the search pattern exactly.

• Replace with

Specify the text to replace the text found when you select any of the
Replace buttons (Replace, Replace All, Replace All in This Object).
See “Use Replace Buttons” on page 29-18.

• Preserve case

This option modifies replacement text. For an understanding of this option,
see “Replacing with Case Preservation” on page 29-17.

• Search in

By default, the Search & Replace tool searches for and replaces text only
within the current Stateflow chart that you are editing in the Stateflow
Editor. You can select to search the machine owning the current Stateflow
chart or any other loaded machine or chart by accessing this selection box.

• Match options

This field is unlabeled and just to the right of the Search in field. You can
modify the meaning of your search text by entering one of the selectable
search options. See “Refine Searches” on page 29-11.

• Object types and Field types

Under the Search in field are the selection boxes for Object types and
Field types. These selections further refine your search and are described
below.

29-10

Use the Search & Replace Tool

• Search and Replace buttons

These are described in “Use the Search Button and View Area” on page
29-14 and “Use Replace Buttons” on page 29-18.

• View Area

The bottom half of the Search & Replace dialog box displays the result of
a search. This area is described in “A Breakdown of the View Area” on
page 29-16.

Refine Searches
Enter search pattern text in the Search for text box. You can use one of the
following settings to further refine the meaning of the text entered.

Match case
By selecting the Match case option, you enable case-sensitive searching.
In this case, the Search & Replace tool finds only text matching the search
pattern exactly.

By clearing the Match case option, you enable case-insensitive searching.
In this case, search pattern characters entered in lower- or uppercase find
matching text strings with the same sequence of base characters in lower- or
uppercase. For example, the search string "AnDrEw" finds the matching text
"andrew" or "Andrew" or "ANDREW".

Preserve case
This option modifies replacement text and not search text. For details, see
“Replacing with Case Preservation” on page 29-17.

Contains word
Select this option to specify that the search pattern text is a whole word
expression used in a Stateflow chart with no specific beginning and end
delimiters. In other words, find the specified text in any setting.

Suppose that you have a state with this label and entry action:

throt_fail
entry: fail_state[THROT] = 1;

29-11

29 Explore and Modify Charts

Searching for the string fail with the Contains word option finds two
occurrences of the string fail.

Match whole word
Select this option to specify that the search pattern text in the Search for
field is a whole word expression used in a Stateflow chart with beginning
and end delimiters consisting of a blank space or a character that is not
alphanumeric and not an underscore character (_).

In the previous example of a state named throt_fail, if Match whole
word is selected, searching for the string fail finds no text within that
state. However, searching for the string "fail_state" does find the text
"fail_state" as part of the second line since it is delimited by a space at the
beginning and a left square bracket ([) at the end.

Regular expression
Set theMatch options field to Regular expression to search for text that
varies from character to character within defined limits.

A regular expression is a string composed of letters, numbers, and special
symbols that defines one or more string candidates. Some characters have
special meaning when used in a regular expression, while other characters
are interpreted as themselves. Any other character appearing in a regular
expression is ordinary, unless a back slash (\) character precedes it.

If the Match options field is set to Regular expression in the previous
example of a state named throt_fail, searching for the string "fail_"
matches the "fail_" string that is part of the second line, character for
character. Searching with the regular expression "\w*_" also finds the string
"fail_". This search string uses the regular expression shorthand "\w" that
represents any part-of-word character, an asterisk (*) that represents any
number of any characters, and an underscore (_) that represents itself.

For a list of regular expression meta characters, see “Regular Expressions” in
the MATLAB software documentation.

29-12

Use the Search & Replace Tool

Specify the Search Scope
You specify the scope of your search by selecting from the field regions
discussed in the topics that follow.

Search in
You can select a whole machine or individual chart for searching in the
Search in field. By default, the current chart in which you opened the Search
& Replace tool is selected.

To select a machine, follow these steps:

1 Select the down arrow of the Search in field.

A list of the currently loaded machines appears with the current machine
expanded to reveal its Stateflow charts.

2 Select a machine.

To select a Stateflow chart for searching, follow these steps:

1 Select the down arrow of the Search in field again.

This list contains the previously selected machine expanded to reveal its
Stateflow charts.

2 Select a chart from the expanded machine.

Object Types
Limit your search by deselecting one ore more object types.

Note You can not search in state transition tables with this tool.

Field Types
Limit your search by deselecting one ore more field types.

Available field types are as follows.

29-13

29 Explore and Modify Charts

Names. Machines, charts, data, and events have valid Name fields. States
have a Name defined as the top line of their labels. You can search and
replace text belonging to the Name field of a state in this sense. However, if
the Search & Replace tool finds matching text in a state’s Name field, the rest
of the label is subject to later searches for the specified text whether or not
the label is chosen as a search target.

Note The Name field of machines and charts is an invalid target for the
Search & Replace tool. Use the Simulink model window to change the names
of machines and charts.

Labels. Only states and transitions have labels.

Descriptions. All objects have searchable Description fields.

Document links. All objects have searchable Link fields.

Use the Search Button and View Area
This topic contains the following subtopics:

• “A Breakdown of the View Area” on page 29-16

• “The Search Order” on page 29-16

Click Search to initiate a single-search operation. If an object match is
made, its text fields appear in the Viewer pane in the middle of the Search
& Replace dialog box. If the object is graphical (state, transition, junction,
chart), the matching object appears highlighted in a Portal pane below the
Viewer pane.

29-14

Use the Search & Replace Tool

29-15

29 Explore and Modify Charts

A Breakdown of the View Area
The view area of the Search & Replace dialog box displays matching text and
its containing object, if viewable. In the previous example, taken from the
sf_pool model, a search for the word "friction" finds the Description field
for the state TotalDynamics. The resulting view area consists of these parts:

Icon. Displays an icon appropriate to the object containing the matching text.
These icons are identical to the icons in the Model Explorer that represent
Stateflow objects displayed in “View Stateflow Objects in the Model Explorer”
on page 29-2.

Full Path Name of Containing Object. This area displays the full path
name for the object that contains the matching text:

(<type>) <machine name>/<subsystem>/<chart
name>.[p1]...[pn].<object name> (<id>)

where p1 through pn denote the object’s parent states.

Viewer. This area displays the matching text as a highlighted part of all
search-qualified text fields for the owner object. If other occurrences exist in
these fields, they too are highlighted, but in lighter shades.

To invoke the properties dialog box for the owner object, double-click
anywhere in the Viewer pane.

Portal. This area contains a graphic display of the object that contains the
matching text. That object appears highlighted.

To display the highlighted object in the Stateflow Editor, double-click
anywhere in the Portal pane.

The Search Order
If you specify an entire machine as your search scope in the Search in field,
the Search & Replace tool starts searching at the beginning of the first chart
of the model, regardless of the Stateflow chart that appears in the Stateflow
Editor when you begin your search. After searching the first chart, the Search
& Replace tool continues searching each chart in model order until all charts
for the model have been searched.

29-16

Use the Search & Replace Tool

If you specify a Stateflow chart as your search scope, the Search & Replace
tool begins searching at the beginning of the chart. The Search & Replace tool
continues searching the chart until all the chart objects have been searched.

The search order when searching an individual chart for matching text
is equivalent to a depth-first search of the Model Explorer. Starting at
the highest level of the chart, the Model Explorer hierarchy is traversed
downward from parent to child until an object with no child is encountered.
At this point, the hierarchy is traversed upward through objects already
searched until an unsearched sibling is found and the process repeats.

Specify the Replacement Text
The Search & Replace tool replaces matching text with the exact
(case-sensitive) text you entered in the Replace With field unless you
selected the Preserve case option.

Replacing with Case Preservation
If you choose the Preserve case option, matching text is replaced based
on one of these conditions:

• Whisper

Matching text has only lowercase characters. Matching text is replaced
entirely with the lowercase equivalent of all replacement characters. For
example, if the replacement text is "ANDREW", the matching text "bill" is
replaced by "andrew".

• Shout

Matching text has only uppercase characters. Matching text is replaced
entirely with the uppercase equivalent of all replacement characters. For
example, if the replacement text is "Andrew", the matching text "BILL" is
replaced by "ANDREW".

• Proper

Matching text has uppercase characters in the first character position of
each word. Matching text is replaced entirely with the case equivalent
of all replacement characters. For example, if the replacement text is
"andrew johnson", the matching text "Bill Monroe" is replaced by
"Andrew Johnson".

29-17

29 Explore and Modify Charts

• Sentence

Matching text has an uppercase character in the first character position of
a sentence with all other sentence characters in lowercase. Matching text
is replaced in like manner, with the first character of the sentence given an
uppercase equivalent and all other sentence characters set to lowercase.
For example, if the replacement text is "andrew is tall.", the matching
text "Bill is tall." is replaced by "Andrew is tall.".

Use Replace Buttons
You can activate the replace buttons (Replace, Replace All, Replace All in
This Object) only after a search that finds text.

Replace
When you select the Replace button, the current instance of text matching
the text string in the Search for field is replaced by the text string you
entered in the Replace with field. The Search & Replace tool then searches
for the next occurrence of the Search for text string.

Replace All
When you select the Replace All button, all instances of text matching the
Search for field are replaced by the text string entered in the Replace
with field. Replacement starts at the point of invocation to the end of the
current Stateflow chart. If you initially skip through some search matches
with the Search button, these matches are also skipped when you select the
Replace All button.

If the search scope is set to Search Whole Machine, then after finishing
the current Stateflow chart, replacement continues to the completion of all
other charts in your Simulink model.

Replace All in This Object
When you select the Replace All in This Object button, all instances of
text matching the Search for field are replaced by text you entered in the
Replace with field everywhere in the current Stateflow object regardless
of previous searches.

29-18

Use the Search & Replace Tool

Search and Replace Messages
Informational and warning messages appear in the Full Path Name
Containing Object field along with a defining icon.

– Informational Messages

– Warnings

The following messages are informational:

Please specify a search string
A search was attempted without a search string specified.

No Matches Found
No matches exist in the selected search scope.

Search Completed
No more matches exist in the selected search scope.

The following warnings refer to invalid conditions for searching or replacing:

Invalid option set
The object types and field types that you selected are incompatible.

Match object not currently editable
The matching object is not editable by replacement due to one of these
problems.

29-19

29 Explore and Modify Charts

Problem Solution

A simulation is running. Stop the simulation.

You are editing a locked library
block.

Unlock the library.

The current object or its parent has
been manually locked.

Unlock the object or its parent.

The following warnings appear if the Search & Replace tool must find the
object again and its matching text field. If the original matching object is
deleted or changed before an ensuing search or replacement, the Search &
Replace tool cannot continue.

Search object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you continue to search.

Match object not found
If you search for text, find it, and then delete the containing object, this
warning appears if you perform a replacement.

Match not found
If you search for text, find it, and then change the object containing the text,
this warning appears if you perform a replacement.

Search string changed
If you search for text, find it, and then change the Search For field, this
warning appears if you perform a replacement.

29-20

Find Stateflow® Objects

Find Stateflow Objects
Use the Finder to locate objects in a Stateflow chart.

1 From the Stateflow Editor, select Edit > Find or press Ctrl+F.

2 In the Filter options area, specify the kinds of objects to look for, and
where to search for them. See “Filter Options”.

3 In the Search criteria area, specify the criteria that objects must meet to
satisfy your search request. See “Search Criteria”.

4 If you have more than one system or subsystem open, click the Start in
system list. From this list, select the system or subsystem where you want
the search to begin.

5 Click Find.

29-21

29 Explore and Modify Charts

The Finder searches the selected system for objects that meet the criteria that
you have specified. Any objects that satisfy the criteria appear in a results
panel at the bottom of the dialog box. For more information, see “Finder” in
the Simulink documentation.

29-22

A

Semantic Rules Summary

A Semantic Rules Summary

Summary of Chart Semantic Rules

In this section...

“Enter a Chart” on page A-2

“Execute an Active Chart” on page A-2

“Enter a State” on page A-2

“Execute an Active State” on page A-3

“Exit an Active State” on page A-4

“Execute a Set of Flow Charts” on page A-4

“Execute an Event Broadcast” on page A-5

Enter a Chart
The set of default flow paths execute (see “Execute a Set of Flow Charts”
on page A-4). If this action does not cause a state entry and the chart has
parallel decomposition, then each parallel state becomes active (see “Enter a
State” on page A-2).

If executing the default flow paths does not cause state entry, a state
inconsistency error occurs.

Execute an Active Chart
If the chart has no states, each execution is equivalent to initializing a chart.
Otherwise, the active children execute. Parallel states execute in the same
order that they become active.

Enter a State

1 If the parent of the state is not active, perform steps 1 through 4 for the
parent.

2 If this state is a parallel state, check that all siblings with a higher (that
is, earlier) entry order are active. If not, perform steps 1 through 5 for
these states first.

A-2

Summary of Chart Semantic Rules

Parallel (AND) states are ordered for entry based on whether you use
explicit ordering (default) or implicit ordering. For details, see “Explicit
Ordering of Parallel States” on page 3-74 and “Implicit Ordering of Parallel
States” on page 3-75.

3 Mark the state active.

4 Perform any entry actions.

5 Enter children, if needed:

a If the state contains a history junction and there was an active child
of this state at some point after the most recent chart initialization,
perform the entry actions for that child. Otherwise, execute the default
flow paths for the state.

b If this state has children that are parallel states (parallel decomposition),
perform entry steps 1 through 5 for each state according to its entry
order.

c If this state has only one child substate, the substate becomes active
when the parent becomes active, regardless of whether a default
transition is present. Entering the parent state automatically makes the
substate active. The presence of any inner transition has no effect on
determining the active substate.

6 If this state is a parallel state, perform all entry steps for the sibling state
next in entry order if one exists.

7 If the transition path parent is not the same as the parent of the current
state, perform entry steps 6 and 7 for the immediate parent of this state.

Execute an Active State

1 The set of outer flow charts execute (see “Execute a Set of Flow Charts” on
page A-4). If this action causes a state transition, execution stops. (Note
that this step never occurs for parallel states.)

2 During actions and valid on-event actions are performed.

A-3

A Semantic Rules Summary

3 The set of inner flow charts execute. If this action does not cause a state
transition, the active children execute, starting at step 1. Parallel states
execute in the same order that they become active.

Exit an Active State

1 If this is a parallel state, make sure that all sibling states that became
active after this state have already become inactive. Otherwise, perform all
exiting steps on those sibling states.

2 If there are any active children, perform the exit steps on these states in
the reverse order that they became active.

3 Perform any exit actions.

4 Mark the state as inactive.

Execute a Set of Flow Charts
Flow charts execute by starting at step 1 below with a set of starting
transitions. The starting transitions for inner flow charts are all transition
segments that originate on the respective state and reside entirely within
that state. The starting transitions for outer flow charts are all transition
segments that originate on the respective state but reside at least partially
outside that state. The starting transitions for default flow charts are all
default transition segments that have starting points with the same parent:

1 Ordering of a set of transition segments occurs.

2 While there are remaining segments to test, testing a segment for validity
occurs. If the segment is invalid, testing of the next segment occurs. If the
segment is valid, execution depends on the destination:

States

a Testing of transition segments stops and a transition path forms by
backing up and including the transition segment from each preceding
junction until the respective starting transition.

b The states that are the immediate children of the parent of the transition
path exit (see “Exit an Active State” on page A-4).

A-4

Summary of Chart Semantic Rules

c The transition action from the final transition segment executes.

d The destination state becomes active (see “Enter a State” on page A-2).

Junctions with no outgoing transition segments

Testing stops without any state exits or entries.

Junctions with outgoing transition segments

Step 1 is repeated with the set of outgoing segments from the junction.

3 After testing all outgoing transition segments at a junction, backtrack
the incoming transition segment that brought you to the junction and
continue at step 2, starting with the next transition segment after the
backtrack segment. The set of flow charts finishes execution when testing
of all starting transitions is complete.

Execute an Event Broadcast
Output edge-trigger event execution is equivalent to changing the value of an
output data value. All other events have the following execution:

1 If the receiver of the event is active, then it executes (see “Execute an Active
Chart” on page A-2 and “Execute an Active State” on page A-3). (The event
receiver is the parent of the event unless a direct event broadcast occurs
using the send() function.)

If the receiver of the event is not active, nothing happens.

2 After broadcasting the event, the broadcaster performs early return logic
based on the type of action statement that caused the event.

Action Type Early Return Logic

State Entry If the state is no longer active at the end of the event
broadcast, any remaining steps in entering a state do
not occur.

State Exit If the state is no longer active at the end of the event
broadcast, any remaining exit actions and steps in
state transitioning do not occur.

A-5

A Semantic Rules Summary

Action Type Early Return Logic

State During If the state is no longer active at the end of the event
broadcast, any remaining steps in executing an active
state do not occur.

Condition If the origin state of the inner or outer flow chart or
parent state of the default flow chart is no longer active
at the end of the event broadcast, the remaining steps
in the execution of the set of flow charts do not occur.

Transition If the parent of the transition path is not active or
if that parent has an active child, the remaining
transition actions and state entry do not occur.

A-6

B

Semantic Examples

• “Categories of Semantic Examples” on page B-2

• “Transition to and from Exclusive (OR) States” on page B-4

• “Control Chart Execution Using Condition Actions” on page B-10

• “Control Chart Execution Using Default Transitions” on page B-17

• “Process Events Using Inner Transitions” on page B-23

• “Use Connective Junctions to Represent Multiple Paths” on page B-31

• “Control Chart Execution Using Event Actions in a Superstate” on page
B-44

• “Broadcast Events in Parallel (AND) States” on page B-45

• “Directly Broadcast Events” on page B-55

B Semantic Examples

Categories of Semantic Examples
The following examples show the detailed semantics (behavior) of Stateflow
charts.

“Transition to and from Exclusive (OR) States” on page B-4

• “Transition from State to State with Events” on page B-5

• “Transition from a Substate to a Substate with Events” on page B-8

“Control Chart Execution Using Condition Actions” on page B-10

• “Condition Action Behavior” on page B-10

• “Condition and Transition Action Behavior” on page B-11

• “Create Condition Actions Using a For-Loop” on page B-13

• “Broadcast Events to Parallel (AND) States Using Condition Actions” on
page B-14

• “Avoid Cyclic Behavior” on page B-15

“Control Chart Execution Using Default Transitions” on page B-17

• “Default Transition in Exclusive (OR) Decomposition” on page B-17

• “Default Transition to a Junction” on page B-18

• “Default Transition and a History Junction” on page B-19

• “Labeled Default Transitions” on page B-20

“Process Events Using Inner Transitions” on page B-23

• “Process One Event in an Exclusive (OR) State” on page B-23

• “Process a Second Event in an Exclusive (OR) State” on page B-24

• “Process a Third Event in an Exclusive (OR) State” on page B-25

• “Process the First Event with an Inner Transition to a Connective Junction”
on page B-26

B-2

Categories of Semantic Examples

• “Process a Second Event with an Inner Transition to a Connective Junction”
on page B-28

• “Inner Transition to a History Junction” on page B-29

“Use Connective Junctions to Represent Multiple Paths” on page B-31

• “If-Then-Else Decision Construct” on page B-32

• “Self-Loop Transition” on page B-34

• “For-Loop Construct” on page B-35

• “Flow Chart Notation” on page B-36

• “Transition from a Common Source to Multiple Destinations” on page B-38

• “Transition from Multiple Sources to a Common Destination” on page B-39

• “Transition from a Source to a Destination Based on a Common Event”
on page B-40

“Control Chart Execution Using Event Actions in a Superstate” on
page B-44

“Broadcast Events in Parallel (AND) States” on page B-45

• “Broadcast Events in Parallel States” on page B-45

• “Broadcast Events in a Transition Action with a Nested Event Broadcast”
on page B-48

• “Broadcast Condition Action Event in Parallel State” on page B-51

“Directly Broadcast Events” on page B-55

• “Directed Event Broadcast Using Send” on page B-55

• “Directed Event Broadcast Using Qualified Event Name” on page B-56

B-3

B Semantic Examples

Transition to and from Exclusive (OR) States

In this section...

“Label Format for a State-to-State Transition” on page B-4

“Transition from State to State with Events” on page B-5

“Transition from a Substate to a Substate with Events” on page B-8

Label Format for a State-to-State Transition
The following example shows the general label format for a transition
entering a state.

A chart executes this transition as follows:

1 When an event occurs, state S1 checks for an outgoing transition with a
matching event specified.

2 If a transition with a matching event is found, the condition for that
transition ([condition]) is evaluated.

3 If the condition is true, condition_action is executed.

4 If there is a valid transition to the destination state, the transition is taken.

B-4

Transition to and from Exclusive (OR) States

5 State S1 is exited.

6 The transition_action is executed when the transition is taken.

7 State S2 is entered.

Transition from State to State with Events
The following example shows the behavior of a simple transition focusing on
the implications of whether states are active or inactive.

Process a First Event
Initially, the chart is asleep. State On and state Off are OR states. State On is
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state On to state Off is detected.

2 State On exit actions (exitOn()) execute and complete.

3 State On is marked inactive.

4 The event E_one is broadcast as the transition action.

B-5

B Semantic Examples

This second event E_one is processed, but because neither state is active, it
has no effect. If the second broadcast of E_one resulted in a valid transition,
it would preempt the processing of the first broadcast of E_one. See “Early
Return Logic for Event Broadcasts” on page 3-81.

5 State Off is marked active.

6 State Off entry actions (entOff()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with
event E_one when state On is initially active.

Process a Second Event
Using the same example, what happens when the next event, E_one, occurs
while state Off is active?

Initially, the chart is asleep. State Off is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

B-6

Transition to and from Exclusive (OR) States

A valid transition from state Off to state On is detected.

2 State Off exit actions (exitOff()) execute and complete.

3 State Off is marked inactive.

4 State On is marked active.

5 State On entry actions (entOn()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with
the second event E_one when state Off is initially active.

Process a Third Event
Using the same example, what happens when a third event, E_two, occurs?

Notice that the event E_two is not used explicitly in this example. However,
its occurrence (or the occurrence of any event) does result in behavior.
Initially, the chart is asleep and state On is active.

1 Event E_two occurs and awakens the chart.

B-7

B Semantic Examples

Event E_two is processed from the root of the chart down through the
hierarchy of the chart.

2 The chart root checks to see if there is a valid transition as a result of
E_two. There is none.

3 State On during actions (durOn()) execute and complete.

4 The chart goes back to sleep.

This sequence completes the execution of the Stateflow chart associated with
event E_two when state On is initially active.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

Transition from a Substate to a Substate with Events
This example shows the behavior of a transition from an OR substate to an
OR substate.

B-8

Transition to and from Exclusive (OR) States

Initially, the chart is asleep. State A.A1 is active. Condition C_one is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is a valid transition from state A.A1 to state B.B1. (Condition
C_one is true.)

2 State A during actions (durA()) execute and complete.

3 State A.A1 exit actions (exitA1()) execute and complete.

4 State A.A1 is marked inactive.

5 State A exit actions (exitA()) execute and complete.

6 State A is marked inactive.

7 The transition action, A, is executed and completed.

8 State B is marked active.

9 State B entry actions (entB()) execute and complete.

10 State B.B1 is marked active.

11 State B.B1 entry actions (entB1()) execute and complete.

12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

B-9

B Semantic Examples

Control Chart Execution Using Condition Actions

In this section...

“Condition Action Behavior” on page B-10

“Condition and Transition Action Behavior” on page B-11

“Create Condition Actions Using a For-Loop” on page B-13

“Broadcast Events to Parallel (AND) States Using Condition Actions” on
page B-14

“Avoid Cyclic Behavior” on page B-15

Condition Action Behavior
This example shows the behavior of a simple condition action in a transition
path with multiple segments. The chart uses implicit ordering of outgoing
transitions (see “Implicit Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A is active. Conditions C_one and C_two
are false. Event E_one occurs and awakens the chart, which processes the
event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment from state A to a connective junction is

B-10

Control Chart Execution Using Condition Actions

detected. The condition action A_one is detected on the valid transition
segment and is immediately executed and completed. State A is still active.

2 Because the conditions on the transition segments to possible destinations
are false, none of the complete transitions is valid.

3 State A during actions (durA()) execute and complete.

State A remains active.

4 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Condition and Transition Action Behavior
This example shows the behavior of a simple condition and transition action
specified on a transition from one exclusive (OR) state to another.

Initially, the chart is asleep. State A is active. Condition C_one is true. Event
E_one occurs and awakens the chart, which processes the event from the root
down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition from state A to state B is detected. The condition

B-11

B Semantic Examples

C_one is true. The condition action A_one is detected on the valid transition
and is immediately executed and completed. State A is still active.

2 State A exit actions (ExitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

B-12

Control Chart Execution Using Condition Actions

Create Condition Actions Using a For-Loop
Condition actions and connective junctions are used to design a for loop
construct. This example shows the use of a condition action and connective
junction to create a for loop construct. The chart uses implicit ordering of
outgoing transitions (see “Implicit Ordering of Outgoing Transitions” on page
3-59).

See “For-Loop Construct” on page B-35 to see the behavior of this example.

B-13

B Semantic Examples

Broadcast Events to Parallel (AND) States Using
Condition Actions
This example shows how to use condition actions to broadcast events
immediately to parallel (AND) states. The chart uses implicit ordering of
parallel states (see “Implicit Ordering of Parallel States” on page 3-75).

See “Broadcast Condition Action Event in Parallel State” on page B-51 to see
the behavior of this example.

B-14

Control Chart Execution Using Condition Actions

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

Avoid Cyclic Behavior
This example shows a notation to avoid when using event broadcasts as
condition actions because the semantics results in cyclic behavior.

Initially, the chart is asleep. State On is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition from state On to state Off is detected.

2 The condition action on the transition broadcasts event E_one.

3 Event E_one is detected on the valid transition, which is immediately
executed. State On is still active.

4 The broadcast of event E_one awakens the chart a second time.

5 Go to step 1.

B-15

B Semantic Examples

Steps 1 through 5 continue to execute in a cyclical manner. The transition
label indicating a trigger on the same event as the condition action broadcast
event results in unrecoverable cyclic behavior. This sequence never completes
when event E_one is broadcast and state On is active.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

B-16

Control Chart Execution Using Default Transitions

Control Chart Execution Using Default Transitions

In this section...

“Default Transition in Exclusive (OR) Decomposition” on page B-17

“Default Transition to a Junction” on page B-18

“Default Transition and a History Junction” on page B-19

“Labeled Default Transitions” on page B-20

Default Transition in Exclusive (OR) Decomposition
This example shows a transition from an OR state to a superstate with
exclusive (OR) decomposition, where a default transition to a substate is
defined.

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is a valid transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

B-17

B Semantic Examples

4 The transition action, A, is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 State B detects a valid default transition to state B.B1.

8 State B.B1 is marked active.

9 State B.B1 entry actions (entB1()) execute and complete.

10 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

Default Transition to a Junction
The following example shows the behavior of a default transition to a
connective junction. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State B.B1 is active. Condition [C_two] is true.
An event occurs and awakens the chart, which processes the event from the
root down through the hierarchy:

B-18

Control Chart Execution Using Default Transitions

1 State B checks to see if there is a valid transition as a result of any event.
There is none.

2 State B1 during actions (durB1()) execute and complete.

This sequence completes the execution of this Stateflow chart associated with
the occurrence of any event.

Default Transition and a History Junction
This example shows the behavior of a superstate with a default transition and
a history junction. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A is active. A history junction records the
fact that state B4 is the previously active substate of superstate B. Event

B-19

B Semantic Examples

E_one occurs and awakens the chart, which processes the event from the root
down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions (entB()) execute and complete.

6 State B uses the history junction to determine the substate destination of
the transition into the superstate.

The history junction indicates that substate B.B4 was the last active
substate, which becomes the destination of the transition.

7 State B.B4 is marked active.

8 State B.B4 entry actions (entB4()) execute and complete.

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Labeled Default Transitions
This example shows the use of a default transition with a label. The chart
uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-59).

B-20

Control Chart Execution Using Default Transitions

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

There is a valid transition from state A to superstate B. The transition is
valid if event E_one or E_two occurs.

2 State A exit actions execute and complete (exitA()).

3 State A is marked inactive.

4 State B is marked active.

5 State B entry actions execute and complete (entB()).

6 State B detects a valid default transition to state B.B1. The default
transition is valid as a result of E_one.

B-21

B Semantic Examples

7 State B.B1 is marked active.

8 State B.B1 entry actions execute and complete (entB1()).

9 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A is initially active.

B-22

Process Events Using Inner Transitions

Process Events Using Inner Transitions

In this section...

“Process Events with an Inner Transition in an Exclusive (OR) State” on
page B-23

“Process Events with an Inner Transition to a Connective Junction” on
page B-26

“Inner Transition to a History Junction” on page B-29

Process Events with an Inner Transition in an
Exclusive (OR) State
This example shows what happens when processing three events using an
inner transition in an exclusive (OR) state.

Process One Event in an Exclusive (OR) State
This example shows the behavior of an inner transition. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-59).

Initially, the chart is asleep. State A is active. Condition [C_one] is false.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

B-23

B Semantic Examples

1 The chart root checks to see if there is a valid transition as a result of
E_one. A potentially valid transition from state A to state B is detected.
However, the transition is not valid, because [C_one] is false.

2 State A during actions (durA()) execute and complete.

3 State A checks its children for a valid transition and detects a valid inner
transition.

4 State A remains active. The inner transition action A_two is executed and
completed. Because it is an inner transition, state A’s exit and entry actions
are not executed.

5 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Process a Second Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a second
event E_one occurs. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A is still active. Condition [C_one] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

B-24

Process Events Using Inner Transitions

1 The chart root checks to see if there is a valid transition as a result of E_one.

The transition from state A to state B is now valid because [C_one] is true.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_one is executed and completed.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Process a Third Event in an Exclusive (OR) State
Using the previous example, this example shows what happens when a third
event, E_two, occurs. The chart uses implicit ordering of outgoing transitions
(see “Implicit Ordering of Outgoing Transitions” on page 3-59).

B-25

B Semantic Examples

Initially, the chart is asleep. State B is now active. Condition [C_two] is false.
Event E_two occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_two.

A potentially valid transition from state B to state A is detected. The
transition is not valid because [C_two] is false. However, active state B has
a valid self-loop transition.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 The self-loop transition action, A_four, executes and completes.

5 State B is marked active.

6 State B entry actions (entB()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_two. This example shows the difference in behavior between inner
and self-loop transitions.

Process Events with an Inner Transition to a
Connective Junction
This example shows the behavior of handling repeated events using an inner
transition to a connective junction.

Process the First Event with an Inner Transition to a Connective
Junction
This example shows the behavior of an inner transition to a connective
junction for the first event. The chart uses implicit ordering of outgoing
transitions (see “Implicit Ordering of Outgoing Transitions” on page 3-59).

B-26

Process Events Using Inner Transitions

Initially, the chart is asleep. State A1 is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a connective junction.

The conditions are evaluated to determine whether one of the transitions
is valid. Because implicit ordering applies, the segments labeled with a
condition are evaluated before the unlabeled segment. The evaluation
starts from a 12 o’clock position on the junction and progresses in a
clockwise manner. Because [C_two] is true, the inner transition to the
junction and then to state A.A2 is valid.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 is marked inactive.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

B-27

B Semantic Examples

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A1 is active and condition [C_two] is true.

Process a Second Event with an Inner Transition to a Connective
Junction
Continuing the previous example, this example shows the behavior of an
inner transition to a junction when a second event E_one occurs. The chart
uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A2 is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level as
a result of E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

B-28

Process Events Using Inner Transitions

The conditions are evaluated to determine whether one of the transitions
is valid. Because implicit ordering applies, the segments labeled with a
condition are evaluated before the unlabeled segment. The evaluation
starts from a 12 o’clock position on the junction and progresses in a
clockwise manner. Because [C_two] is true, the inner transition to the
junction and then to state A.A2 is valid.

4 State A.A2 exit actions (exitA2()) execute and complete.

5 State A.A2 is marked inactive.

6 State A.A2 is marked active.

7 State A.A2 entry actions (entA2()) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when state A2 is active and condition [C_two] is true. For a state
with a valid inner transition, an active substate can be exited and reentered
immediately.

Inner Transition to a History Junction
This example shows the behavior of an inner transition to a history junction.

B-29

B Semantic Examples

Initially, the chart is asleep. State A.A1 is active. History information exists
because superstate A is active. Event E_one occurs and awakens the chart,
which processes the event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A during actions execute and complete.

3 State A checks itself for valid transitions and detects that there is a valid
inner transition to a history junction. Based on the history information, the
last active state, A.A1, is the destination state.

4 State A.A1 exit actions execute and complete.

5 State A.A1 is marked inactive.

6 State A.A1 is marked active.

7 State A.A1 entry actions execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one when there is an inner transition to a history junction and state
A.A1 is active. For a state with a valid inner transition, an active substate can
be exited and reentered immediately.

B-30

Use Connective Junctions to Represent Multiple Paths

Use Connective Junctions to Represent Multiple Paths

In this section...

“Label Format for Transition Segments” on page B-31

“If-Then-Else Decision Construct” on page B-32

“Self-Loop Transition” on page B-34

“For-Loop Construct” on page B-35

“Flow Chart Notation” on page B-36

“Transition from a Common Source to Multiple Destinations” on page B-38

“Transition from Multiple Sources to a Common Destination” on page B-39

“Transition from a Source to a Destination Based on a Common Event”
on page B-40

“Backtrack in Flow Charts” on page B-41

Label Format for Transition Segments
The label format for a transition segment entering a junction is the same
as for transitions entering states, as shown in the following example. The
chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-59).

B-31

B Semantic Examples

Execution of a transition in this example occurs as follows:

1 When an event occurs, state S1 is checked for an outgoing transition with
a matching event specified.

2 If a transition with a matching event is found, the transition condition for
that transition (in brackets) is evaluated.

3 If condition_1 evaluates to true, the condition action condition_action
(in braces) is executed.

4 The outgoing transitions from the junction are checked for a valid
transition. Since condition_2 is true, a valid state-to-state transition
from S1 to S2 exists.

5 State S1 exit actions execute and complete.

6 State S1 is marked inactive.

7 The transition action transition_action executes and completes.

8 The completed state-to-state transition from S1 to S2 occurs.

9 State S2 is marked active.

10 State S2 entry actions execute and complete.

If-Then-Else Decision Construct
This example shows the behavior of an if-then-else decision construct. The
chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of
Outgoing Transitions” on page 3-59).

B-32

Use Connective Junctions to Represent Multiple Paths

Initially, the chart is asleep. State A is active. Condition [C_two] is true.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.

A valid transition segment from state A to the connective junction exists.
Because implicit ordering applies, the transition segments beginning from
a 12 o’clock position on the connective junction are evaluated for validity.
The first transition segment, labeled with condition [C_one], is not valid.
The next transition segment, labeled with the condition [C_two], is valid.
The complete transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

B-33

B Semantic Examples

Self-Loop Transition
This example shows the behavior of a self-loop transition using a connective
junction. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A is active. Condition [C_one] is false.
Event E_one occurs and awakens the chart, which processes the event from
the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment from state A to the connective junction
exists. Because implicit ordering applies, the transition segment labeled
with a condition is evaluated for validity. Because the condition [C_one] is
not valid, the complete transition from state A to state B is not valid. The
transition segment from the connective junction back to state A is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 The transition action A_two is executed and completed.

5 State A is marked active.

B-34

Use Connective Junctions to Represent Multiple Paths

6 State A entry actions (entA()) execute and complete.

7 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

For-Loop Construct
This example shows the behavior of a for loop using a connective junction.
The chart uses implicit ordering of outgoing transitions (see “Implicit
Ordering of Outgoing Transitions” on page 3-59).

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_one.
There is a valid transition segment from state A to the connective junction.
The transition segment condition action, i = 0, executes and completes. Of
the two transition segments leaving the connective junction, the transition
segment that is a self-loop back to the connective junction evaluates next

B-35

B Semantic Examples

for validity. That segment takes priority in evaluation because it has
a condition, whereas the other segment is unlabeled. This evaluation
behavior reflects implicit ordering of outgoing transitions in the chart.

2 The condition [i < 10] evaluates as true. The condition actions i++ and
a call to func1 execute and complete until the condition becomes false.
Because a connective junction is not a final destination, the transition
destination is still unknown.

3 The unconditional segment to state B is now valid. The complete transition
from state A to state B is valid.

4 State A exit actions (exitA()) execute and complete.

5 State A is marked inactive.

6 State B is marked active.

7 State B entry actions (entB()) execute and complete.

8 The chart goes back to sleep.

This sequence completes the execution of this chart associated with event
E_one.

Flow Chart Notation
This example shows the behavior of a Stateflow chart that uses flow chart
notation. The chart uses implicit ordering of outgoing transitions (see
“Implicit Ordering of Outgoing Transitions” on page 3-59).

B-36

Use Connective Junctions to Represent Multiple Paths

Initially, the chart is asleep. State A.A1 is active. The condition [C_one()] is
initially true. Event E_one occurs and awakens the chart, which processes the
event from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A checks itself for valid transitions and detects a valid inner
transition to a connective junction.

3 The next possible segments of the transition are evaluated. Only one
outgoing transition exists, and it has a condition action defined. The
condition action executes and completes.

4 The next possible segments are evaluated. Two outgoing transitions exist:
a conditional self-loop transition and an unconditional transition segment.
Because implicit ordering applies, the conditional transition segment takes
precedence. Since the condition [C_one()] is true, the self-loop transition
is taken. Since a final transition destination has not been reached, this
self-loop continues until [C_one()] is false.

Assume that after five iterations, [C_one()] is false.

B-37

B Semantic Examples

5 The next possible transition segment (to the next connective junction) is
evaluated. It is an unconditional transition segment with a condition
action. The transition segment is taken and the condition action,
{d=my_func()}, executes and completes. The returned value of d is 84.

6 The next possible transition segment is evaluated. Three outgoing
transition segments exist: two conditional and one unconditional. Because
implicit ordering applies, the segment labeled with the condition [d <
100] evaluates first based on the geometry of the two outgoing conditional
transition segments. Because the returned value of d is 84, the condition [d
< 100] is true and this transition to the destination state A.A1 is valid.

7 State A.A1 exit actions (exitA1()) execute and complete.

8 State A.A1 is marked inactive.

9 State A.A1 is marked active.

10 State A.A1 entry actions (entA1()) execute and complete.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Transition from a Common Source to Multiple
Destinations
This example shows the behavior of transitions from a common source to
multiple conditional destinations using a connective junction. The chart uses
implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions” on page 3-59).

B-38

Use Connective Junctions to Represent Multiple Paths

Initially, the chart is asleep. State A is active. Event E_two occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of E_two.
A valid transition segment exists from state A to the connective junction.
Because implicit ordering applies, evaluation of segments with equivalent
label priority begins from a 12 o’clock position on the connective junction
and progresses clockwise. The first transition segment, labeled with event
E_one, is not valid. The next transition segment, labeled with event E_two,
is valid. The complete transition from state A to state C is valid.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_two.

Transition from Multiple Sources to a Common
Destination
This example shows the behavior of transitions from multiple sources to a
single destination using a connective junction.

B-39

B Semantic Examples

Initially, the chart is asleep. State A is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment exists from state A to the connective
junction and from the junction to state C.

2 State A exit actions (exitA()) execute and complete.

3 State A is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Transition from a Source to a Destination Based on a
Common Event
This example shows the behavior of transitions from multiple sources to a
single destination based on the same event using a connective junction.

B-40

Use Connective Junctions to Represent Multiple Paths

Initially, the chart is asleep. State B is active. Event E_one occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. A valid transition segment exists from state B to the connective
junction and from the junction to state C.

2 State B exit actions (exitB()) execute and complete.

3 State B is marked inactive.

4 State C is marked active.

5 State C entry actions (entC()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one.

Backtrack in Flow Charts
This example shows the behavior of transitions with junctions that force
backtracking behavior in flow charts. The chart uses implicit ordering of
outgoing transitions (see “Implicit Ordering of Outgoing Transitions” on page
3-59).

B-41

B Semantic Examples

Initially, state A is active and conditions c1, c2, and c3 are true:

1 The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the condition c1 from
state A to a connective junction.

2 Condition c1 is true and action a1 executes.

3 Condition c3 is true and action a3 executes.

4 Condition c4 is not true and control flow backtracks to state A.

5 The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the condition c2 from
state A to a connective junction.

6 Condition c2 is true and action a2 executes.

7 Condition c3 is true and action a3 executes.

8 Condition c4 is not true and control flow backtracks to state A.

9 The chart goes to sleep.

The preceding example shows the unexpected behavior of executing both
actions a1 and a2. Another unexpected behavior is the execution of action a3
twice. To resolve this problem, consider adding unconditional transitions to
terminating junctions.

B-42

Use Connective Junctions to Represent Multiple Paths

The terminating junctions allow flow to end if either c3 or c4 is not true. This
design leaves state A active without executing unnecessary actions.

B-43

B Semantic Examples

Control Chart Execution Using Event Actions in a
Superstate

The following example shows the use of event actions in a superstate.

Initially, the chart is asleep. State A.A1 is active. Event E_three occurs and
awakens the chart, which processes the event from the root down through
the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_three. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 State A executes and completes the on event E_three action (A_one).

4 State A checks its children for valid transitions. No valid transitions exist.

5 State A1 during actions (durA1()) execute and complete.

6 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated
with event E_three.

B-44

Broadcast Events in Parallel (AND) States

Broadcast Events in Parallel (AND) States

In this section...

“Broadcast Events in Parallel States” on page B-45

“Broadcast Events in a Transition Action with a Nested Event Broadcast”
on page B-48

“Broadcast Condition Action Event in Parallel State” on page B-51

Broadcast Events in Parallel States
This example shows the behavior of event broadcast actions in parallel states.
The chart uses implicit ordering of parallel states (see “Implicit Ordering of
Parallel States” on page 3-75).

B-45

B Semantic Examples

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition at the root level
as a result of E_one. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 The children of state A are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from left to right and top to
bottom. State A.A1 is evaluated first. State A.A1 during actions (durA1())
execute and complete. State A.A1 executes and completes the on E_one

B-46

Broadcast Events in Parallel (AND) States

action and broadcasts event E_two. The during and on event_name actions
are processed based on their order of appearance in the state label:

a The broadcast of event E_two awakens the chart a second time. The
chart root checks to see if there is a valid transition as a result of E_two.
No valid transition exists.

b State A during actions (durA()) execute and complete.

c State A checks its children for valid transitions. No valid transitions
exist.

d State A’s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

e State A1a’s during actions (durA1a()) execute.

f State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

g State A.A2.A2a exit actions (exitA2a()) execute and complete.

h State A.A2.A2a is marked inactive.

i State A.A2.A2b is marked active.

j State A.A2.A2b entry actions (entA2b()) execute and complete.

4 State A.A1.A1a executes and completes exit actions (exitA1a).

5 The processing of E_one continues once the on event broadcast of E_two
has been processed. State A.A1 checks for any valid transitions as a result
of event E_one. A valid transition exists from state A.A1.A1a to state
A.A1.A1b.

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b is marked active.

8 State A.A1.A1b entry actions (entA1b()) execute and complete.

B-47

B Semantic Examples

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the on event
broadcast of E_two.

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the on event broadcast to a parallel state of event E_two.
The final chart activity is that parallel substates A.A1.A1b and A.A2.A2b
are active.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

Broadcast Events in a Transition Action with a Nested
Event Broadcast
This example shows the behavior of an event broadcast transition action
that includes a nested event broadcast in a parallel state. The chart uses
implicit ordering of parallel states (see “Implicit Ordering of Parallel States”
on page 3-75).

B-48

Broadcast Events in Parallel (AND) States

Start of Event E_one Processing
Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. There is no valid transition.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from left to right and top to

B-49

B Semantic Examples

bottom. State A.A1 is evaluated first. State A.A1during actions (durA1())
execute and complete.

4 State A.A1 checks for any valid transitions as a result of event E_one.
There is a valid transition from state A.A1.A1a to state A.A1.A1b.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

Event E_two Preempts E_one

7 The transition action that broadcasts event E_two executes and completes:

a The broadcast of event E_two now preempts the transition from state
A1a to state A1b that event E_one triggers.

b The broadcast of event E_two awakens the chart a second time. The
chart root checks to see if there is a valid transition as a result of E_two.
No valid transition exists.

c State A during actions (durA()) execute and complete.

d State A’s children are evaluated starting with state A.A1. State
A.A1during actions (durA1()) execute and complete. State A.A1 is
evaluated for valid transitions. There are no valid transitions as a result
of E_two within state A1.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute and
complete. State A.A2 checks for valid transitions. State A.A2 has a valid
transition as a result of E_two from state A.A2.A2a to state A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b()) execute and complete.

Event E_one Processing Resumes

8 State A.A1.A1b is marked active.

B-50

Broadcast Events in Parallel (AND) States

9 State A.A1.A1b entry actions (entA1b()) execute and complete.

10 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

11 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of event
broadcast E_two.

12 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the event broadcast on a transition action to a parallel state
of event E_two. The final chart activity is that parallel substates A.A1.A1b
and A.A2.A2b are active.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

Broadcast Condition Action Event in Parallel State
This example shows the behavior of a condition action event broadcast in a
parallel (AND) state. The chart uses implicit ordering of parallel states (see
“Implicit Ordering of Parallel States” on page 3-75).

B-51

B Semantic Examples

Initially, the chart is asleep. Parallel substates A.A1.A1a and A.A2.A2a are
active. Event E_one occurs and awakens the chart, which processes the event
from the root down through the hierarchy:

1 The chart root checks to see if there is a valid transition as a result of
E_one. No valid transition exists.

2 State A during actions (durA()) execute and complete.

3 State A’s children are parallel (AND) states. Because implicit ordering
applies, the states are evaluated and executed from top to bottom, and
from left to right. State A.A1 is evaluated first. State A.A1 during actions
(durA1()) execute and complete.

B-52

Broadcast Events in Parallel (AND) States

4 State A.A1 checks for any valid transitions as a result of event E_one. A
valid transition from state A.A1.A1a to state A.A1.A1b exists. A valid
condition action also exists. The condition action event broadcast of E_two
executes and completes. State A.A1.A1a is still active:

a The broadcast of event E_two awakens the Stateflow chart a second
time. The chart root checks to see if there is a valid transition as a result
of E_two. There is no valid transition.

b State A during actions (durA()) execute and complete.

c State A’s children are evaluated starting with state A.A1. State A.A1
during actions (durA1()) execute and complete. State A.A1 is evaluated
for valid transitions. There are no valid transitions as a result of E_two
within state A1.

d State A1a during actions (durA1a()) execute.

e State A.A2 is evaluated. State A.A2 during actions (durA2()) execute
and complete. State A.A2 checks for valid transitions. State A.A2 has
a valid transition as a result of E_two from state A.A2.A2a to state
A.A2.A2b.

f State A.A2.A2a exit actions (exitA2a()) execute and complete.

g State A.A2.A2a is marked inactive.

h State A.A2.A2b is marked active.

i State A.A2.A2b entry actions (entA2b()) execute and complete.

5 State A.A1.A1a executes and completes exit actions (exitA1a).

6 State A.A1.A1a is marked inactive.

7 State A.A1.A1b is marked active.

8 State A.A1.A1b entry actions (entA1b()) execute and complete.

9 Parallel state A.A2 is evaluated next. State A.A2 during actions (durA2())
execute and complete. There are no valid transitions as a result of E_one.

10 State A.A2.A2b during actions (durA2b()) execute and complete.

State A.A2.A2b is now active as a result of the processing of the condition
action event broadcast of E_two.

B-53

B Semantic Examples

11 The chart goes back to sleep.

This sequence completes the execution of this Stateflow chart associated with
event E_one and the event broadcast on a condition action to a parallel state
of event E_two. The final chart activity is that parallel substates A.A1.A1b
and A.A2.A2b are active.

Tip Avoid using undirected local event broadcasts, which can cause unwanted
recursive behavior in your chart. Use the send operator for directed
local event broadcasts. For more information, see “Broadcast Events to
Synchronize States” on page 10-57.

You can set the diagnostic level for detecting undirected local event
broadcasts. In the Model Configuration Parameters dialog box, go to the
Diagnostics > Stateflow pane and set the Undirected event broadcasts
diagnostic to none, warning, or error. The default setting is warning.

B-54

Directly Broadcast Events

Directly Broadcast Events

In this section...

“Directed Event Broadcast Using Send” on page B-55

“Directed Event Broadcast Using Qualified Event Name” on page B-56

Directed Event Broadcast Using Send
This example shows the behavior of directed event broadcast using the
send(event_name,state_name) syntax on a transition. The chart uses
implicit ordering of parallel states (see “Implicit Ordering of Parallel States”
on page 3-75).

Initially, the chart is asleep. Parallel substates A.A1 and B.B1 are active,
which implies that parallel (AND) superstates A and B are also active. The

B-55

B Semantic Examples

condition [data1==1] is true. The event E_one belongs to the chart and is
visible to both A and B.

After waking up, the chart checks for valid transitions at every level of the
hierarchy:

1 The chart root checks to see if there is a valid transition as a result of the
event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

3 The action send(E_one,B) executes:

a The broadcast of event E_one reaches state B. Because state B is active,
that state receives the event broadcast and checks to see if there is a
valid transition. There is a valid transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 becomes inactive.

d State B.B2 becomes active.

e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 becomes inactive.

6 State A.A2 becomes active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast
to a parallel state.

Directed Event Broadcast Using Qualified Event Name
This example shows the behavior of directed event broadcast using a qualified
event name on a transition. The chart uses implicit ordering of parallel states
(see “Implicit Ordering of Parallel States” on page 3-75).

B-56

Directly Broadcast Events

The only differences from the chart in “Directed Event Broadcast Using Send”
on page B-55 are:

• The event E_one belongs to state B and is visible only to that state.

• The action send(E_one,B) is now send(B.E_one).

Using a qualified event name is necessary because E_one is not visible to
state A.

After waking up, the chart checks for valid transitions at every level of the
hierarchy:

1 The chart root checks to see if there is a valid transition as a result of the
event. There is no valid transition.

2 State A checks for any valid transitions as a result of the event. Because
the condition [data1==1] is true, there is a valid transition from state
A.A1 to state A.A2.

B-57

B Semantic Examples

3 The action send(B.E_one) executes and completes:

a The broadcast of event E_one reaches state B. Because state B is active,
that state receives the event broadcast and checks to see if there is a
valid transition. There is a valid transition from B.B1 to B.B2.

b State B.B1 exit actions (exitB1()) execute and complete.

c State B.B1 becomes inactive.

d State B.B2 becomes active.

e State B.B2 entry actions (entB2()) execute and complete.

4 State A.A1 exit actions (exitA1()) execute and complete.

5 State A.A1 becomes inactive.

6 State A.A2 becomes active.

7 State A.A2 entry actions (entA2()) execute and complete.

This sequence completes execution of a chart with a directed event broadcast
using a qualified event name to a parallel state.

B-58

Glossary

Glossary

actions
Actions take place as part of Stateflow chart execution. The action can
execute as part of a transition from one state to another, or depending
on the activity status of a state. Transitions can contain condition
actions and transition actions.

Action language defines the categories of actions you can specify and
their associated notations. For example, states can have entry, during,
exit, and on event_name actions.

API (application programming interface)
Format you can use to access and communicate with an application
program from a programming or script environment.

atomic box
Graphical object that enables you to reuse functions across multiple
charts. For more information, see “Rationale for Using an Atomic Box”
on page 7-51.

atomic subchart
Graphical object that enables you to reuse states and subcharts across
multiple charts. For more information, see “When to Use Atomic
Subcharts” on page 13-4.

box
Graphical object that groups together other graphical objects in your
chart. For details about how a box affects chart execution, see “Group
Chart Objects Using Boxes” on page 7-44.

chart instance
Link from a model to a chart stored in a Simulink library. A chart in
a library can have many chart instances. Updating the chart in the
library automatically updates all instances of that chart.

condition
Boolean expression to specify that a transition occurs when the specified
expression is true.

Glossary-1

Glossary

connective junction
Illustrates decision points in the system. A connective junction is a
graphical object that simplifies Stateflow chart representations and
facilitates generation of efficient code. Connective junctions provide
different ways to represent desired system behavior.

See “Connective Junctions” on page 2-35 for more information.

data
Data objects store numerical values for reference in the Stateflow chart.

decomposition
A state has a decomposition when it consists of one or more substates.
A chart that contains at least one state also has decomposition. Rules
govern how you can group states in the hierarchy. A superstate has
either parallel (AND) or exclusive (OR) decomposition. All substates at
a particular level in the hierarchy must have the same decomposition.

• Parallel (AND) State Decomposition

Parallel (AND) state decomposition applies when states have dashed
borders. This decomposition describes states at that same level in the
hierarchy that can be active at the same time. The activity within
parallel states is essentially independent.

• Exclusive (OR) State Decomposition

Exclusive (OR) state decomposition applies when states have solid
borders. This decomposition describes states that are mutually
exclusive. Only one state at the same level in the hierarchy can be
active at a time.

default transition
Primarily used to specify which exclusive (OR) state is to be entered
when there is ambiguity among two or more neighboring exclusive
(OR) states. For example, default transitions specify which substate of
a superstate with exclusive (OR) decomposition the system enters by
default in the absence of any other information. Default transitions can
also specify that a junction should be entered by default. The default
transition object is a transition with a destination but no source object.

See “Default Transitions” on page 2-30 for more information.

Glossary-2

Glossary

events
Events drive chart execution. All events that affect the chart must be
defined. The occurrence of an event causes the status of states in a
chart to be evaluated. The broadcast of an event can trigger a transition
to occur or an action to execute. Events are broadcast in a top-down
manner starting from the event’s parent in the hierarchy.

Finder
Tool to search for objects in Stateflow charts on platforms that do not
support the Simulink Find tool.

finite state machine (FSM)
Representation of an event-driven system. FSMs are also used to
describe reactive systems. In an event-driven or reactive system, the
system transitions from one mode or state to another prescribed mode
or state, provided that the condition defining the change is true.

flow chart
Set of decision flow paths that start from a transition segment that, in
turn, starts from a state or a default transition segment.

flow path
Ordered sequence of transition segments and junctions where each
succeeding segment starts on the junction that terminated the previous
segment.

flow subgraph
Set of decision flow paths that start on the same transition segment.

graphical function
A chart function whose logic is defined by a flow chart. See “Reuse Logic
Patterns Using Graphical Functions” on page 7-35.

hierarchy
Hierarchy enables you to organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable charts.
See “Stateflow Hierarchy of Objects” on page 1-9 for more information.

Glossary-3

Glossary

history junction
Specifies the destination substate of a transition based on historical
information. If a superstate has a history junction, the transition to
the destination substate is the substate that was most recently active.
The history junction applies only to the level of the hierarchy in which
it appears.

See the following sections for more information:

• “History Junctions” on page 2-42

• “Default Transition and a History Junction” on page B-19

• “Labeled Default Transitions” on page B-20

• “Inner Transition to a History Junction” on page B-29

inner transitions
Transition that does not exit the source state. Inner transitions are
useful when defined for superstates with exclusive (OR) decomposition.
Use of inner transitions can greatly simplify chart layout.

See “Inner Transitions” on page 2-25 and “Inner Transition to a History
Junction” on page B-29 for more information.

library link
Link to a chart that is stored in a library model.

library model
Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy a
chart from a library into your model, you create only a link to the library
chart. You can create multiple links to a single chart. Each link is called
a chart instance. When you include a chart from a library in your model,
you also include its Stateflow machine. Therefore, a Stateflow model
that includes links to library charts has multiple Stateflow machines.

When you simulate a model that includes charts from a library model,
you include all charts from the library model even if links exist only for
some of its models. You can simulate a model that includes links to a
library model only when all charts in the library model are free of parse
and compile errors.

Glossary-4

Glossary

machine
Collection of all Stateflow blocks defined by a Simulink model. This
collection excludes chart instances from library links. If a model
includes any library links, it also includes the Stateflow machines
defined by the models from which the links originate.

MATLAB function
A chart function that works with a subset of the MATLAB programming
language.

Mealy machine
An industry-standard paradigm for modeling finite-state machines,
where output is a function of both inputs and state.

Model Explorer
Use to add, remove, and modify data, event, and target objects in the
Stateflow hierarchy. See “Use the Model Explorer with Stateflow
Objects” on page 29-2 for more information.

Moore machine
An industry-standard paradigm for modeling finite-state machines,
where output is a function only of state.

notation
Defines a set of objects and the rules that govern the relationships
between those objects. Stateflow chart notation provides a way to
communicate the design information in a Stateflow chart.

Stateflow chart notation includes:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is essentially
independent. Parallelism is represented with a parallel (AND) state
decomposition.

Glossary-5

Glossary

See “State Decomposition” on page 2-9 for more information.

S-function
When you simulate a Simulink model containing Stateflow charts, you
generate an S-function (MEX-file) for each Stateflow machine. This
generated code is a simulation target.

For more information, see “S-Function MEX-Files” on page 27-60.

semantics
Semantics describe how the notation is interpreted and implemented
behind the scenes. A completed Stateflow chart communicates how the
system will behave. A chart contains actions associated with transitions
and states. The semantics describe in what sequence these actions take
place during chart execution.

Simulink function
A chart function that you fill with Simulink blocks and call in the
actions of states and transitions. This function provides an efficient
model design and improves readability by minimizing the graphical and
nongraphical objects required in a model. In a Stateflow chart, this
function acts like a function-call subsystem block of a Simulink model.

state
A state describes a mode of a reactive system. A reactive system
has many possible states. States in a chart represent these modes.
The activity or inactivity of the states dynamically changes based on
transitions among events and conditions.

Every state has hierarchy. In a chart consisting of a single state, the
parent of that state is the Stateflow chart itself. A state also has history
that applies to its level of hierarchy in the chart. States can have actions
that execute in a sequence based upon action type. The action types are
entry, during, exit, or on event_name actions.

Stateflow block
Masked Simulink model that is equivalent to an empty, untitled
Stateflow chart. Use the Stateflow block to include a chart in a Simulink
model.

Glossary-6

Glossary

The control behavior modeled by a Stateflow block complements
the algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and decision flow by combining
Stateflow blocks with the standard Simulink and toolbox block libraries.

Stateflow chart
A Stateflow chart is a graphical representation of a finite state machine
where states and transitions form the basic building blocks of the
system. See “Stateflow Charts and Simulink Models” on page 1-4 for
more information.

Stateflow Debugger
Tool for debugging and animating your Stateflow charts. Each state
in the chart simulation is evaluated for overall code coverage. This
coverage analysis is done automatically when the target is compiled and
built with the debug options. The Debugger can also be used to perform
dynamic checking. The Debugger operates on the Stateflow machine.

Stateflow Finder
Use to display a list of objects based on search criteria you specify. You
can directly access the properties dialog box of any object in the search
output display by clicking that object. See “Find Stateflow Objects” on
page 29-21 for more information.

subchart
Chart contained by another chart. See “Encapsulate Modal Logic Using
Subcharts” on page 7-6.

substate
A state is a substate if it is contained by a superstate.

superstate
A state is a superstate if it contains other states, called substates.

supertransition
Transition between objects residing in different subcharts. See “Move
Between Levels of Hierarchy Using Supertransitions” on page 7-12 for
more information.

Glossary-7

Glossary

target
A container object for the generated code from the Stateflow charts in a
model. The collection of all charts for a model appears as a Stateflow
machine. Therefore, target objects belong to the Stateflow machine.

The code generation process can produce these target types: simulation,
embeddable, and custom.

transition
The circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a
destination object. The source is where the transition begins and the
destination is where the transition ends. Usually, the occurrence of an
event causes a transition to take place.

transition path
Flow path that starts and ends on a state.

transition segment
A state-to-junction, junction-to-junction, or junction-to-state part of a
complete state-to-state transition.

truth table function
A chart function that specifies logical behavior with conditions,
decisions, and actions. Truth tables are easier to program and maintain
than graphical functions.

Glossary-8

	toc
	Stateflow Chart Concepts
	Finite State Machine Concepts
	What Is a Finite State Machine?
	Finite State Machine Representations
	Stateflow Chart Representations
	Notation
	Semantics

	Stateflow Charts and Simulink Models
	The Simulink Model and the Stateflow Machine
	Overview of Defining Stateflow Block Interfaces to Simulink Mode

	Stateflow Chart Objects
	Stateflow Hierarchy of Objects
	Bibliography

	Stateflow Chart Notation
	Overview of Stateflow Objects
	Graphical Objects
	Nongraphical Objects
	Data Objects
	Event Objects

	Rules for Naming Stateflow Objects
	Characters You Can Use
	Restriction on Name Length
	Keywords to Avoid When Naming Chart Objects

	States
	What Is a State?
	State Hierarchy
	State Hierarchy Example
	Objects That a State Can Contain

	State Decomposition
	Exclusive (OR) State Decomposition
	Parallel (AND) State Decomposition

	State Labels
	State Name
	State Actions

	Transitions
	What Is a Transition?
	Transition Hierarchy
	Transition Label Notation
	Transition Label Example

	Valid Transitions

	Transition Connections
	Transitions to and from Exclusive (OR) States
	Transitions to and from Junctions
	Transitions to and from Exclusive (OR) Superstates
	Transitions to and from Substates
	Self-Loop Transitions
	Inner Transitions
	Before Using an Inner Transition
	After Using an Inner Transition to a Connective Junction
	Using an Inner Transition to a History Junction

	Default Transitions
	What Is a Default Transition?
	Drawing Default Transitions
	Label Default Transitions
	Default Transition Examples
	Default Transition to a State Example
	Default Transition to a Junction Example
	Default Transition with a Label Example

	Connective Junctions
	What Is a Connective Junction?
	Flow Chart Notation with Connective Junctions
	Connective Junction with All Conditions Specified Example
	Connective Junction with One Unconditional Transition Example
	Connective Junction and For Loops Example
	Flow Chart Notation Example
	Connective Junction from a Common Source to Multiple Destination
	Connective Junction Common Events Example

	History Junctions
	What Is a History Junction?
	Use of History Junctions Example

	History Junctions and Inner Transitions

	Boxes
	What Is a Box?
	Example of Using a Box

	When to Use Reusable Functions in Charts

	Stateflow Chart Semantics
	What Do Semantics Mean for Stateflow Charts?
	What Are Chart Semantics?
	Graphical Constructs
	Nongraphical Constructs

	Common Graphical and Nongraphical Constructs
	References for Chart Semantics

	How Chart Constructs Interact During Execution
	Overview of the Example Model
	Model of the Check-In Process for a Hotel
	How the Chart Interacts with Simulink Blocks
	Chart Initialization
	Chart Interaction with Other Blocks
	Chart Inactivity

	Phases of Chart Execution
	Phase: Chart Initialization
	Phase: Evaluation of Outgoing Transitions from a Single Junction
	What happens if room_type has a value other than 1, 2, or 3?
	Phase: Execution of State Actions for a Superstate
	Phase: Function Call from a State Action
	Phase: Execution of State with Exclusive Substates
	Phase: Execution of State with Parallel Substates
	Phase: Events Guard Transitions Between States

	Modeling Guidelines for Stateflow Charts
	Use signals of the same data type for input events
	Use a default transition to mark the first state to become activ
	Use condition actions instead of transition actions whenever pos
	Use explicit ordering to control the testing order of a group of
	Verify intended backtracking behavior in flow charts
	Use a superstate to enclose substates that share the same state
	Use MATLAB functions for performing numerical computations in a
	Use descriptive names in function signatures
	Use history junctions to record state history
	Do not use history junctions in states with parallel (AND) decom
	Use explicit ordering to control the execution order of parallel
	How Events Drive Chart Execution
	How Stateflow Charts Respond to Events
	Sources for Stateflow Events
	How Charts Process Events

	Types of Chart Execution
	Lifecycle of a Stateflow Chart
	Execution of an Inactive Chart
	Execution of an Active Chart
	Execution of a Chart with Super Step Semantics
	What Is Super Step Semantics?
	What Is Maximum Number of Iterations?
	Enable Super Step Semantics
	Super Step Example
	How Super Step Semantics Works with Multiple Input Events
	Detection of Infinite Loops in Transition Cycles

	Execution of a Chart at Initialization

	Process for Grouping and Executing Transitions
	Transition Flow Chart Types
	Order of Execution for a Set of Flow Charts

	Evaluation Order for Outgoing Transitions
	What Does Ordering Mean for Outgoing Transitions?
	Detection of Transition Shadowing
	Explicit Ordering of Outgoing Transitions
	How Explicit Ordering Works
	Order Transitions Explicitly

	Implicit Ordering of Outgoing Transitions
	How Implicit Ordering Works
	Order by Hierarchy
	Order by Label
	Order by Angular Position of Source
	Using Implicit Ordering for Transitions

	What Happens When You Switch Between Explicit and Implicit Order
	Transition Testing Order in Multilevel State Hierarchy
	How Multilevel Transition Testing Order Works
	Example Model with Multilevel Transition Testing

	Process for Entering, Executing, and Exiting States
	Steps for Entering a State
	Steps for Executing an Active State
	Steps for Exiting an Active State
	State Execution Example
	Inactive Chart Event Reaction
	Sleeping Chart Event Reaction

	Execution Order for Parallel States
	Ordering for Parallel States
	Explicit Ordering of Parallel States
	How Explicit Ordering Works
	Order Parallel States Explicitly

	Implicit Ordering of Parallel States
	Rules of Implicit Ordering for Parallel States
	Order Parallel States Implicitly

	Order Maintenance for Parallel States
	How a Chart Preserves Relative Priorities in Explicit Mode
	How a Chart Preserves Relative Priorities in Implicit Mode

	Execution Priorities in Restored States
	Switching Between Explicit and Implicit Ordering
	Execution Order of Parallel States in Boxes and Subcharts

	Early Return Logic for Event Broadcasts
	Guidelines for Proper Chart Behavior
	How Early Return Logic Works
	Example of Early Return Logic

	Create Stateflow Charts
	Basic Approach for Modeling Event-Driven Systems
	Identify System Attributes
	Select a State Machine Type
	Specify State Actions and Transition Conditions
	Define Persistent Data to Store State Variables
	Simplify State Actions and Transition Conditions with Function C
	Check That Your System Representation Is Complete

	Represent Operating Modes Using States
	Create a State
	Move and Resize States
	Create Substates and Superstates
	Group States
	When to Group a State
	How to Group a State
	When to Ungroup a State
	How to Ungroup a State

	Specify Substate Decomposition
	Specify Activation Order for Parallel States
	Change State Properties
	Properties You Can Set in the General Pane
	Properties You Can Set in the Logging Pane
	Properties You Can Set in the Documentation Pane

	Label States
	Enter the Name
	Enter Actions

	Transition Between Operating Modes
	Create a Transition
	Label Transitions
	Edit Transition Labels
	Transition Label Format

	Move Transitions
	Bow the Transition Line
	Move Transition Attach Points
	Move Transition Labels

	Change Transition Arrowhead Size
	Create Self-Loop Transitions
	Create Default Transitions
	Change Transition Properties

	Stateflow Editor Operations
	Stateflow Editor
	Undo and Redo Editor Operations
	Exceptions for Undo

	Specify Colors and Fonts in a Chart
	Change Fonts for a Single Item
	Colors & Fonts Dialog Box

	Content Preview for Stateflow Objects
	Intelligent Tab Completion for Stateflow Charts
	Differentiate Elements of Action Language Syntax
	Default Syntax Highlighting
	Edit Syntax Highlighting
	Enable and Disable Syntax Highlighting

	Select and Deselect Graphical Objects
	Cut and Paste Graphical Objects
	Copy Graphical Objects
	Format Chart Objects
	Align, Distribute, and Resize Chart Objects
	Options for Distributing Chart Objects
	Example of Aligning Chart Objects
	Example of Distributing Chart Objects
	Example of Resizing Chart Objects

	Generate a Model Report
	System Report Options
	Report Format

	Model Logic Patterns and Iterative Loops Using Flow Charts
	What Is a Flow Chart?
	Difference Between Flow Charts and State Transition Diagrams
	When to Use Flow Charts
	Create Flow Charts with the Pattern Wizard
	Why Use the Pattern Wizard?
	How to Create Reusable Flow Charts
	How do I create and open a new Stateflow chart?
	Insert a Logic Pattern Using the Pattern Wizard
	Insert a Pattern

	Save and Reuse Flow Chart Patterns
	Guidelines for Creating a Pattern Folder
	How to Save Flow Chart Patterns for Easy Retrieval
	How to Change Your Pattern Folder
	How to Add Flow Chart Patterns in Graphical Functions
	Why does my dialog box not display any patterns?
	How to Add Flow Chart Patterns in Charts

	MAAB-Compliant Patterns from the Pattern Wizard
	Decision Logic Patterns in Flow Charts
	Iterative Loop Patterns in Flow Charts
	Switch Patterns in Flow Charts

	Create and Reuse a Custom Pattern with the Pattern Wizard
	Create the Upper Triangle Iterator Pattern
	Save the Upper Triangle Iterator Pattern for Reuse
	Add the Upper Triangle Iterator Pattern to a Graphical Function

	Draw and Customize Flow Charts By Hand
	How to Draw a Flow Chart
	How to Change Connective Junction Size
	How to Modify Junction Properties

	Best Practices for Creating Flow Charts
	Use only one default transition
	Provide only one terminating junction
	Converge all transition paths to the terminating junction
	Provide an unconditional transition from every junction except t
	Use condition actions to process updates, not transition actions
	Enhance Readability of Code for Flow Charts
	Appearance of Generated Code for Flow Charts
	Convert If-Elseif-Else Code to Switch-Case Statements
	How to Convert If-Elseif-Else Code to Switch-Case Statements
	Rules of Conversion
	How the Conversion Handles Duplicate Conditions

	Example of Converting Code to Switch-Case Statements
	Verify the Contents of the Flow Chart
	Enable the Conversion
	Generate Code for Your Model
	Troubleshoot the Generated Code

	Build Mealy and Moore Charts
	Overview of Mealy and Moore Machines
	Semantics of Mealy and Moore Machines
	Model with Mealy and Moore Machines
	Default State Machine Type
	Availability of Output
	Advantages of Mealy and Moore Charts

	Create Mealy and Moore Charts
	Model a Vending Machine Using Mealy Semantics
	Open the Model
	Logic of the Mealy Vending Machine
	Design Rules in Mealy Vending Machine

	Design Considerations for Mealy Charts
	Mealy Semantics
	Design Rules for Mealy Charts
	Compute Outputs in Condition Actions Only
	Do Not Use State Actions or Transition Actions
	Restrict Use of Data
	Restrict Use of Events
	Calculate Output and State Using One Time Base

	Design Considerations for Moore Charts
	Moore Semantics
	Design Rules for Moore Charts
	Compute Outputs in State Actions, Not on Transitions
	Restrict Data to Inputs, Outputs, and Constants
	Reference Input Only in Conditions
	Do Not Use Actions on Transitions
	Do Not Use Graphical Functions
	Do Not Use Truth Tables, MATLAB Functions, or Simulink Functions
	Restrict Use of Events

	Model a Traffic Light Using Moore Semantics
	Open the Model
	Logic of the Moore Traffic Light
	Design Rules in Moore Traffic Light

	Effects of Changing the Chart Type
	Debug Mealy and Moore Charts

	Techniques for Streamlining Chart Design
	Record State Activity Using History Junctions
	What Is a History Junction?
	Create a History Junction
	Change History Junction Size
	Change History Junction Properties

	Encapsulate Modal Logic Using Subcharts
	What Is a Subchart?
	Create a Subchart
	Rules of Subchart Conversion
	Convert a State to a Subchart
	Manipulate Subcharts as Objects
	Open a Subchart
	Edit a Subchart
	Navigate Subcharts

	Move Between Levels of Hierarchy Using Supertransitions
	What Is a Supertransition?
	Draw a Supertransition Into a Subchart
	Draw a Supertransition Out of a Subchart
	Label Supertransitions

	Define a Graphical Function
	Create a Graphical Function
	Program a Graphical Function
	Define Graphical Function Data

	Manage Large Graphical Functions
	Call Graphical Functions in States and Transitions
	Syntax
	Example

	Specify Graphical Function Properties
	Reuse Logic Patterns Using Graphical Functions
	What Is a Graphical Function?
	Why Use a Graphical Function in a Stateflow Chart?
	Where to Use a Graphical Function

	Export Functions for Reuse in Other Charts
	Why Export Chart-Level Functions?
	How to Export Chart-Level Functions
	Rules for Exporting Chart-Level Functions
	Link library charts to your main model to export chart-level fun
	Do not export chart-level functions that contain unsupported inp
	Do not export Simulink functions
	Export Chart-Level Functions
	What Happens During Simulation
	How to View the Simulation Results

	Group Chart Objects Using Boxes
	When to Use Boxes
	Semantics of Stateflow Boxes
	Visibility of Graphical Objects in Boxes
	Activation Order of Parallel States

	Rules for Using Boxes
	Draw and Edit a Box
	Create a Box
	Delete a Box

	Examples of Using Boxes
	Group Functions Using a Box
	Group States Using a Box

	Reuse Functions with an Atomic Box
	What Is an Atomic Box?
	Rationale for Using an Atomic Box
	How to Reuse Functions with an Atomic Box
	Example of Reusing a Timer Function Multiple Times

	Add Descriptive Comments in a Chart
	Create Notes
	Change Note Properties
	Change Note Font and Color
	TeX Instructions

	Define Data
	Add Data
	When to Add Data
	Where You Can Use Data
	Diagnostic for Detecting Unused Data
	Add Data Using the Stateflow Editor
	How to Add Data Using the Model Explorer

	Set Data Properties
	What Is the Data Properties Dialog Box?
	When to Use the Data Properties Dialog Box
	Open the Data Properties Dialog Box
	Properties You Can Set in the General Pane
	Name
	Scope
	Port
	Data must resolve to Simulink signal object
	Size
	Variable size
	Complexity
	Type
	Lock data type setting against changes by the fixed-point tools
	Initial value
	Limit range properties
	Watch in debugger
	Fixed-Point Data Properties

	Properties You Can Set in the Logging Pane
	Log signal data
	Test point
	Logging name
	Limit data points to last
	Decimation

	Properties You Can Set in the Description Pane
	Save final value to base workspace
	First index
	Units
	Description
	Document link

	Enter Expressions and Parameters for Data Properties
	Default Data Property Values
	Use Parameters in Expressions
	Use Constants in Expressions
	Use Arithmetic Operators in Expressions
	Call Functions in Expressions

	Share Data with Simulink and MATLAB Workspace
	Share Input Data with Simulink
	Share Output Data with Simulink
	Share Simulink Parameters with Charts
	When to Share Simulink Parameters
	How to Share Simulink Parameters

	Initialize Data from the MATLAB Base Workspace
	Time of Initialization

	Save Data to the MATLAB Workspace

	Share Global Data with Multiple Charts
	About Data Stores
	How Charts Work with Local and Global Data Stores
	Access Data Store Memory from a Chart
	Bind a Stateflow Data Object to Data Store Memory
	Use the Stateflow Editor to Bind a Data Object
	Use the Model Explorer to Bind a Data Object
	Resolve Data Store Bindings
	Read and Write Global Data Programmatically

	Diagnostics for Sharing Data Between Charts and Simulink Blocks
	Errors to Check For
	When to Enable Diagnostics
	When to Disable Diagnostics
	How to Set Diagnostics for Shared Data

	Create a Global Data Store Across Multiple Models
	Best Practices for Using Data Stores in Charts
	When Binding to Data Stores in Charts
	When Enforcing Writes Before Reads in Unconnected Blocks

	Type Stateflow Data
	What Is Data Type?
	Specify Data Type and Mode
	Built-In Data Types
	Inherit Data Types from Simulink Objects
	Derive Data Types from Previously Defined Data
	Type Data by Using an Alias
	Strong Data Typing with Simulink I/O

	Size Stateflow Data
	Methods for Sizing Stateflow Data
	How to Specify Data Size
	Use the Size Field of the Data Properties Dialog Box
	Set the Stateflow.Data Object Property

	Inherit Input or Output Size from Simulink Signals
	Guidelines for Sizing Data with Numeric Values
	Guidelines for Sizing Data with MATLAB Expressions
	Examples of Valid Data Size Expressions
	Name Conflict Resolution for Variables in Size Expressions
	Best Practices for Sizing Stateflow Data
	Avoid use of variables that can lead to naming conflicts
	Avoid use of size(u) expressions

	Handle Integer Overflow for Chart Data
	When Integer Overflow Can Occur
	Support for Handling Integer Overflow in Charts
	Effect of Integer Promotion Rules on Saturation
	Impact of Saturation on Debugger Checks

	Define Temporary Data
	When to Define Temporary Data
	How to Define Temporary Data

	Identify Data Using Dot Notation
	What Is Dot Notation?
	Resolution of Qualified Data Names with Dot Notation
	Best Practices for Using Dot Notation in Qualified Data Names
	Use a Specific Path in the Qualified Data Name
	Use Unique State Names

	Resolve Data Properties from Simulink Signal Objects
	About Explicit Signal Resolution
	Inherited Properties
	Enable Explicit Signal Resolution
	A Simple Example

	Best Practices for Using Data in Charts
	Avoid inheriting output data properties from Simulink blocks
	Restrict use of machine-parented data

	Transfer Data Across Models
	Copy Data Objects
	Move Data Objects

	Define Events
	How Events Work in Stateflow Charts
	What Is an Event?
	When to Use Events
	When should I use conditions instead of events?
	Types of Events
	Where You Can Use Events
	Diagnostic for Detecting Unused Events

	Define Events
	How to Add Events Using the Stateflow Editor
	How to Add Events Using the Model Explorer

	Set Properties for an Event
	When to Use the Event Properties Dialog Box
	Access the Event Properties Dialog Box
	Property Fields
	Name
	Scope
	Port
	Trigger
	Debugger Breakpoints
	Description
	Document Link

	Activate a Stateflow Chart Using Input Events
	What Is an Input Event?
	Activate a Stateflow Chart Using Edge Triggers
	When to Use an Edge-Triggered Input Event
	How to Define an Edge-Triggered Input Event
	Example of Using an Edge-Triggered Input Event

	Activate a Stateflow Chart Using Function Calls
	When to Use a Function-Call Input Event
	How to Define a Function-Call Input Event
	Example of Using a Function-Call Input Event

	Association of Input Events with Control Signals
	Data Types Allowed for Input Events
	Behavior of Edge-Triggered Input Events
	Behavior of Function-Call Input Events

	Control States When Function-Call Inputs Reenable Charts
	Set Behavior for a Reenabled Chart
	Behavior When the Parent Is the Model Root
	What Happens When the Setting Is Inherit or Held
	What Happens When the Setting Is Reset

	Behavior When the Chart Is Inside a Model Block
	What Happens When the Setting Is Inherit or Reset
	What Happens When the Setting Is Held

	Activate a Simulink Block Using Output Events
	What Is an Output Event?
	Activate a Simulink Block Using Edge Triggers
	When to Use an Edge-Triggered Output Event
	How to Define an Edge-Triggered Output Event
	Example of Using an Edge-Triggered Output Event
	Queuing Behavior for Broadcasting an Edge-Triggered Output Event
	Queue Edge-Triggered Output Event Broadcasts
	Approximate a Function Call Using Queuing Behavior

	Activate a Simulink Block Using Function Calls
	When to Use a Function-Call Output Event
	How to Define a Function-Call Output Event
	Example of Using a Function-Call Output Event
	Interleaving Behavior for Broadcasting a Function-Call Output Ev
	Interleave Function-Call Output Event Broadcasts

	Association of Output Events with Output Ports
	Access Simulink Subsystems Triggered By Output Events

	Control Chart Execution Using Implicit Events
	What Are Implicit Events?
	Keywords for Implicit Events
	Transition Between States Using Implicit Events
	Execution Order of Transitions with Implicit Events

	Count Events
	When to Count Events
	How to Count Events
	Collect and Store Input Data in a Vector
	Stage 1: Observation of Input Data
	Stage 2: Storage of Input Data
	Stage 3: Display of Data Stored in the Vector

	Best Practices for Using Events in Stateflow Charts
	Use the send command to broadcast explicit events in actions
	Do not mix edge-triggered input events and function-call input e
	Avoid using the enter implicit event to check state activity

	Use Actions in Charts
	Supported Action Types for States and Transitions
	State Action Types
	Entry Actions
	Exit Actions
	During Actions
	Bind Actions
	On Event_Name Actions

	Transition Action Types
	Event Triggers
	Conditions
	Condition Actions
	Transition Actions

	Execution of Actions in States and Transitions

	Combine State Actions to Eliminate Redundant Code
	State Actions You Can Combine
	Why Combine State Actions
	See Also

	How to Combine State Actions
	Valid Combinations
	Invalid Combinations

	Order of Execution of Combined Actions
	Rules for Combining State Actions

	Supported Operations on Chart Data
	Binary and Bitwise Operations
	Unary Operations
	Unary Actions
	Assignment Operations
	Pointer and Address Operations
	Type Cast Operations
	MATLAB Form Type Cast Operators
	Explicit Type Cast Operator
	type Operator

	Replace Operators with Target-Specific Implementations

	Supported Symbols in Actions
	Boolean Symbols, true and false
	Comment Symbols, %, //, /*
	Hexadecimal Notation Symbols, 0xFF
	Infinity Symbol, inf
	Line Continuation Symbol, ...
	Literal Code Symbol, $
	MATLAB Display Symbol, ;
	Single-Precision Floating-Point Number Symbol, F
	Time Symbol, t

	Call C Functions in C Charts
	Call C Library Functions
	Call the abs Function
	Call min and max Functions
	Replacement of C Math Library Functions with Target-Specific Imp
	Use of Code Replacement Libraries
	Supported Functions for Code Replacement
	Replacement of Calls to abs

	Call Custom C Code Functions
	Specify Custom C Functions for Simulation
	Specify Custom C Functions for Code Generation
	Guidelines for Calling Custom C Functions in Your Chart
	Guidelines for Writing Custom C Functions That Access Input Vect
	Function Call in Transition Action
	Function Call in State Action
	Pass Arguments by Reference

	Access Built-In MATLAB Functions and Workspace Data
	MATLAB Functions and Stateflow Code Generation
	ml Namespace Operator
	Examples

	ml Function
	Examples

	ml Expressions
	Which ml Should I Use?
	ml Data Type
	Rules for Using ml Data Type
	Place Holder for Workspace Data

	How Charts Infer the Return Size for ml Expressions

	Use Data and Event Arguments in Actions
	Use Arrays in Actions
	Array Notation
	Arrays and Custom Code

	Broadcast Events to Synchronize States
	Directed Event Broadcasting
	Directed Local Event Broadcast Using send
	Directed Local Event Broadcast Using Qualified Event Names
	Diagnostic for Detecting Undirected Local Event Broadcasts

	Control Chart Execution Using Temporal Logic
	What Is Temporal Logic?
	Rules for Using Temporal Logic Operators
	Operators for Event-Based Temporal Logic
	Examples of Event-Based Temporal Logic
	Notations for Event-Based Temporal Logic
	Event Notation
	Conditional Notation
	Examples of Event and Conditional Notation

	Operators for Absolute-Time Temporal Logic
	Define Time Delays with Temporal Logic
	Example of Defining Time Delays
	Example of Detecting Elapsed Time
	Advantages of Using Absolute-Time Temporal Logic for Delays

	Examples of Absolute-Time Temporal Logic
	Run a Model That Uses Absolute-Time Temporal Logic
	Absolute-Time Temporal Logic in Conditionally Executed Subsystem
	Model with Absolute-Time Temporal Logic in an Enabled Subsystem

	How Sample Time Affects Chart Execution
	Best Practices for Absolute-Time Temporal Logic
	Use the after Operator to Replace the at Operator
	Use an Outer Self-Loop Transition with the after Operator to Rep
	Use Charts with Discrete Sample Times for More Efficient Code Ge

	Detect Changes in Data Values
	Types of Data Value Changes That You Can Detect
	Run a Model That Uses Change Detection
	How Change Detection Works
	Handle Transient Changes in Local Variables
	Handle Changes When Multiple Input Events Occur

	Change Detection Operators
	hasChanged Operator
	hasChangedFrom Operator
	hasChangedTo Operator

	Chart with Change Detection

	Check State Activity
	When to Check State Activity
	How to Check State Activity
	The in Operator
	Purpose
	Syntax
	Description
	Example

	How Checking State Activity Works
	State Resolution for Identically Named Substates
	Best Practices for Checking State Activity
	Use a Specific Search Path
	Use Unique State Names

	Control Function-Call Subsystems Using Bind Actions
	What Are Bind Actions?
	Bind a Function-Call Subsystem to a State
	Handle Outputs When the Subsystem is Disabled
	Control Behavior of States When the Subsystem is Enabled

	Model That Binds a Function-Call Subsystem to a State
	Behavior of a Bound Function-Call Subsystem
	Why Avoid Muxed Trigger Events with Binding

	MATLAB Syntax Support for States and Transitions
	Modify the Action Language for a Chart
	Change the default action language
	C to MATLAB syntax conversion
	Rules for using MATLAB as the action language
	Use unique names for data in a chart
	Use unique names for functions in a chart
	Include a type prefix for identifiers of enumerated values
	Use the MATLAB format for comments
	Use one-based indexing for vectors and matrices
	Use parentheses instead of brackets to index into vectors and ma
	Do not use control flow logic in condition actions and transitio
	Do not use transition actions in graphical functions
	Enclose transition actions with braces
	Do not declare global or persistent variables in state actions
	To generate code from your model, use MATLAB language features s
	Assign an initial value to local and output data

	Action Language Auto Correction
	Differences Between MATLAB and C as Action Language Syntax
	Model Event-Driven System
	Typical Approaches to Chart Programming
	Design Requirements
	Identify System Attributes
	Build the Model Yourself or Use the Supplied Model
	Add a Stateflow Chart to the Feeder Model
	Add States to Represent Operating Modes
	Implement State Actions
	Decide the Type of State Action
	Syntax for an entry action
	Syntax for during actions

	Specify Transition Conditions
	Define Data for Your System
	Verify the Chart Data Properties

	Verify the System Representation
	Alternative Approach: Event-Based Chart
	Identify System Attributes for Event-Driven Systems

	Feeder Chart Activated by Input Events

	Tabular Expression of Modal Logic
	What Is a State Transition Table?
	Differences Between State Transition Tables and Charts
	Anatomy of a State Transition Table
	Create State Transition Table and Specify Properties
	How to Create a New State Transition Table
	Properties for State Transition Tables

	Generate Diagrams from State Transition Tables
	Highlight Flow of Logic
	When to Use Automatically Generated Diagrams
	State Transition Table Editor Operations
	Insert Rows and Columns
	Move Rows and Cells
	Copy Rows and Transition Cells
	Set Default State
	Add History Junction
	Print State Transition Tables
	Select and Deselect Table Elements
	Undo and Redo Edit Operations

	Rules for Using State Transition Tables
	State Transition Table Diagnostics
	Traceability of State Transition Tables
	Model Bang-Bang Controller with State Transition Table
	Why Use State Transition Tables?
	Design Requirements
	Identify System Attributes
	Operating Modes
	Data Requirements

	Build the Controller or Use the Supplied Model
	Create a New State Transition Table
	Add States and Hierarchy
	How do I set a default state?
	Specify State Actions
	Specify Transition Conditions and Actions
	Define Data
	Connect the Transition Table and Run the Model
	View the Graphical Representation

	Make States Reusable with Atomic Subcharts
	What Is an Atomic Subchart?
	When to Use Atomic Subcharts
	Benefits of Using Atomic Subcharts
	Comparison of Modeling Methods
	Model Without Atomic Subcharts
	Model With Atomic Subcharts

	Comparison of Simulation Methods
	Simulation Without Atomic Subcharts
	Simulation With Atomic Subcharts

	Comparison of Editing Methods
	Edit Without Atomic Subcharts
	Edit With Atomic Subcharts

	Comparison of Code Generation Methods
	Code Generation Without Atomic Subcharts
	Code Generation With Atomic Subcharts

	Restrictions for Converting to Atomic Subcharts
	Rationale for Restrictions
	Access to Data, Graphical Functions, and Events
	Use of Event Broadcasts
	Access to Local Data with a Nonzero First Index
	Use of Machine-Parented Data
	Use of Strong Data Typing with Simulink Inputs and Outputs
	Use of Supertransitions
	Masked Library Chart

	Convert to and from Atomic Subcharts
	Convert a State or Subchart to an Atomic Subchart
	Convert an Atomic Subchart to a State or Subchart
	When an Atomic Subchart Is a Library Link
	When an Atomic Subchart Is Not a Library Link

	Restrictions for Converting an Atomic Subchart to a State or Sub

	Map Variables for Atomic Subcharts
	Why Map Variables for Atomic Subcharts?
	How to Map Variables in an Atomic Subchart
	Map Input and Output Data for an Atomic Subchart
	Map Data Store Memory for an Atomic Subchart
	Map Parameter Data for an Atomic Subchart
	Map Input Events for an Atomic Subchart

	Generate Reusable Code for Unit Testing
	How to Generate Reusable Code for Linked Atomic Subcharts
	How to Generate Reusable Code for Unlinked Atomic Subcharts

	Rules for Using Atomic Subcharts
	Define data in an atomic subchart explicitly
	Map variables of linked atomic subcharts
	Match size, type, and complexity of variables in linked atomic s
	Export chart-level functions if called from an atomic subchart
	Do not mix edge-triggered and function-call input events in the
	Do not map multiple input events in an atomic subchart to the sa
	Match the trigger type when mapping input events
	Do not use atomic subcharts in continuous-time Stateflow charts
	Do not use Moore charts as atomic subcharts
	Do not use outgoing transitions when an atomic subchart uses top
	Avoid using execute-at-initialization with atomic subcharts
	Avoid using the names of subsystem parameters in atomic subchart
	Restrict use of machine-parented data
	Use Dataset format for signal logging in atomic subcharts
	Do not change the first index of local data to a nonzero value
	Use consistent settings for super-step semantics
	Reuse a State Multiple Times in a Chart
	Goal of the Tutorial
	Edit a Model to Use Atomic Subcharts
	Convert a State to an Atomic Subchart
	Create a Library for the Atomic Subchart
	Replace States with Linked Atomic Subcharts
	Edit the Mapping of Input and Output Variables

	Run the New Model
	Propagate a Change in the Library Chart

	Reduce the Compilation Time of a Chart
	Goal of the Tutorial
	Edit a Model to Use Atomic Subcharts

	Divide a Chart into Separate Units
	Goal of the Tutorial
	Edit a Model to Use Atomic Subcharts

	Generate Reusable Code for Unit Testing
	Goal of the Tutorial
	Convert a State to an Atomic Subchart
	Specify Code Generation Parameters
	Set Up a Standalone C File for the Atomic Subchart
	Set Up the Code Generation Report
	Customize the Generated Function Names

	Generate Code for Only the Atomic Subchart

	Save and Restore Simulations with SimState
	What Is a SimState?
	Benefits of Using a Snapshot of the Simulation State
	Division of a Long Simulation into Segments
	Test of a Chart Response to Different Settings

	Divide a Long Simulation into Segments
	Goal of the Tutorial
	Define the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Load the SimState
	Programmatic equivalent
	Programmatic equivalent
	Simulate the Specific Segment

	Test a Unique Chart Configuration
	Goal of the Tutorial
	Define the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Load the SimState and Modify Values
	Programmatic equivalent
	What does the getBlockSimState method do?
	Test the Modified SimState
	Programmatic equivalent

	Test a Chart with Fault Detection and Redundant Logic
	Goal of the Tutorial
	Define the SimState
	Programmatic equivalent
	Programmatic equivalent
	Programmatic equivalent
	Modify SimState Values for One Actuator Failure
	Programmatic equivalent
	What does the getBlockSimState method do?
	Test the SimState for One Failure
	Programmatic equivalent
	Modify SimState Values for Two Actuator Failures
	Test the SimState for Two Failures

	Methods for Interacting with the SimState of a Chart
	Rules for Using the SimState of a Chart
	Limitations on Values You Can Modify
	Rules for Modifying Data Values
	Rules for Modifying State Activity
	Restriction on Continuous-Time Charts
	No Partial Loading of a SimState
	Restriction on Copying SimState Values
	SimState Limitations That Apply to All Blocks in a Model

	Best Practices for Using the SimState of a Chart
	Use MAT-Files to Save a SimState for Future Use
	Use Scripts to Save SimState Commands for Future Use

	Vectors and Matrices in C Charts
	How Vectors and Matrices Work in C Charts
	When to Use Vectors and Matrices
	Where You Can Use Vectors and Matrices

	Define Vectors and Matrices
	Define a Vector
	Define a Matrix

	Scalar Expansion for Converting Scalars to Nonscalars
	What Is Scalar Expansion?
	How Scalar Expansion Works for Functions

	Assign and Access Vector and Matrix Values
	Notation for Vectors and Matrices
	Assign and Access Values of Vectors
	Assign and Access Values of Matrices
	Assign Values of a Vector or Matrix Using Scalar Expansion

	Operations For Vectors and Matrices in C Charts
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Rules for Vectors and Matrices in C Charts
	Use only operands of equal dimensions for element-wise operation
	Do not define vectors and matrices with ml base type
	Use only real numbers to set initial values of vectors and matri
	Do not use vectors and matrices with temporal logic operators
	Best Practices for Vectors and Matrices in C Charts
	Perform Matrix Multiplication and Division Using MATLAB Function
	Index a Vector Using the temporalCount Operator

	Find Pattern in Data Transmission Using Vectors
	Storage of Complex Data in a Vector
	Scalar Expansion of a Vector

	Calculate Motion Using Matrices
	How the Model Works
	Storage of Two-Dimensional Data in Matrices
	Calculation of Two-Dimensional Dynamics of Each Ball
	Run the Model

	Variable-Size Data in Stateflow Charts
	What Is Variable-Size Data?
	How Charts Implement Variable-Size Data
	Enable Support for Variable-Size Data
	Declare Variable-Size Inputs and Outputs
	Compute Output Based on Size of Input Signal
	About the Model
	Chart: VarSizeSignalSource
	How the Chart Works with the Variable-Size Output
	How the MATLAB Function Works with the Variable-Size Output

	Chart: size_based_processing
	MATLAB Function: is_scalar_input
	MATLAB Function: compute_input
	MATLAB Function: reset_output

	Simulate the Model

	Rules for Using Variable-Size Data in Stateflow Charts

	Enumerated Data in Charts
	What Is Enumerated Data?
	Benefits of Using Enumerated Data in a Chart
	Where to Use Enumerated Data
	Elements of an Enumerated Data Type Definition
	Define Enumerated Data in a Chart
	Tasks for Defining Enumerated Data in a Chart
	Define an Enumerated Data Type in a File
	Add Enumerated Data to a Chart

	Ensure That Changes in Data Type Definition Take Effect
	Notation for Enumerated Values in C Charts
	Nonprefixed Notation for Enumerated Values
	Requirements for Using Nonprefixed Notation in C Charts
	Example of Nonprefixed Notation in C Charts

	Prefixed Notation for Enumerated Values
	Requirement for Using Prefixed Notation in C Charts
	Example of Prefixed Notation in C Charts

	Enumerated Data Operations for C Charts
	View Enumerated Values in a Chart
	View Values of Enumerated Data During Simulation
	View Values of Enumerated Data After Simulation

	Rules for Using Enumerated Data in a Chart
	Use the name of the enumerated data type as the name of the MATL
	Use a unique name for an enumerated data type
	Do not define enumerated data at the machine level of the hierar
	Do not use enumerated data for inputs and outputs of exported fu
	Do not assign enumerated values to constant data
	Ensure unique name resolution for nonprefixed identifiers
	Assign to enumerated data only expressions that evaluate to enum
	Use a prefixed identifier to set the initial value of enumerated
	Do not use the ml namespace operator to access enumerated data f
	Do not enter minimum or maximum values for enumerated data
	Include custom header information for enumerated types in the Mo
	Best Practices for Using Enumerated Data in a Chart
	Add prefixes to enumerated names to enhance readability of gener
	Use unique identifiers to refer to enumerated values
	Model CD Player Using Enumerated Data
	Overview of CD Player Model
	Benefits of Using Enumerated Types in This Model
	Run the CD Player Model
	How the UserRequest Chart Works
	How the CdPlayerModeManager Chart Works
	Behavior of the CdPlayerModeManager Chart
	Control of CD Player Operating Mode

	How the CdPlayerBehaviorModel Chart Works
	Behavior of the CdPlayerBehaviorModel Chart
	Update of CD Player Behavior

	Assign Enumerated Values in a Chart
	Goal of the Tutorial
	Build the Chart
	Add States and Transitions to the Chart
	Define an Enumerated Data Type for the Chart
	Add Enumerated Data to the Chart
	Add Integer Data to the Chart

	View Results for Simulation
	Add Scopes to View Output
	Set the Sample Time for Simulation
	Simulate the Model

	How the Chart Works
	Stage 1: Execution of State A
	Stage 2: Execution of State B
	Stage 3: Repeat of State Execution

	Continuous-Time Systems in Stateflow Charts
	About Continuous-Time Modeling
	What Is Continuous-Time Modeling?
	When To Use Stateflow Charts for Continuous-Time Modeling
	Model Continuous-Time Using Zero-Crossing Detection

	Model Hybrid Systems with Model Logic
	Configure a Stateflow Chart to Update in Continuous Time
	When to Enable Zero-Crossing Detection
	Define Continuous-Time Variables
	Purpose of Continuous-Time Variables
	Implicit Time Derivatives
	Rules for Using Continuous-Time Variables
	How to Define Continuous-Time Variables
	Expose Continuous States to a Simulink Model

	Model a Bouncing Ball in Continuous Time
	Try It
	Dynamics of a Bouncing Ball
	Model the Bouncing Ball
	Task 1: Configure the Bouncing Ball Chart for Continuous Updatin
	Task 2: Decide Whether to Enable Zero-Crossing Detection for the
	Task 3: Define Continuous-Time Variables for Position and Veloci
	Task 4: Choose a Solver for the Bouncing Ball Chart
	Task 5: Add Dynamics for a Free-Falling Ball
	Task 6: Expose Ball Position and Velocity to the Simulink Model
	Task 7: Validate Semantics of Bouncing Ball Chart
	Task 8: Simulate Bouncing Ball Chart
	Task 9: Check for the Bounce
	Why not just check for p == 0?
	Why add the second check for v < 0?

	Design Considerations for Continuous-Time Modeling in Stateflow
	Rationale for Design Considerations
	Summary of Rules for Continuous-Time Modeling
	Update local data only in transition, entry, and exit actions
	Do not call Simulink functions in state during actions or transi
	Compute derivatives only in during actions
	Do not read outputs and derivatives in state during actions or t
	Use discrete variables to govern conditions in during actions
	Do not use input events in continuous-time charts
	Do not use inner transitions
	Limit use of temporal logic
	The chart must have at least one substate
	Do not use change detection operators in continuous charts
	Do not modify any SimState values for continuous-time charts

	Fixed-Point Data in Stateflow Charts
	What Is Fixed-Point Data?
	Before You Begin
	Fixed-Point Numbers
	Fixed-Point Operations

	How Fixed-Point Data Works in Stateflow Charts
	How Stateflow Software Defines Fixed-Point Data
	Specify Fixed-Point Data
	Rules for Specifying Fixed-Point Word Length
	Fixed-Point Context-Sensitive Constants
	Tips for Using Fixed-Point Data
	Detect Overflow for Fixed-Point Types
	Share Fixed-Point Data with Simulink Models

	Use Fixed-Point Chart Inputs
	Run the Fixed-Point "Bang-Bang Control" Model
	Explore the Fixed-Point "Bang-Bang Control" Model
	sensor Block
	ADC Block
	Linear fixed point conversion Block

	Use Fixed-Point Parameters and Local Data
	Goal of the Tutorial
	Build the Fixed-Point Butterworth Filter
	Define the Model Callback Function
	Add Other Blocks to the Model
	Set Model Configuration Parameters
	Run the Model

	Operations with Fixed-Point Data
	Supported Operations with Fixed-Point Operands
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Promotion Rules for Fixed-Point Operations
	Default Selection of the Number of Bits of the Result Type
	Set the Integer Word Size for a Target
	Unary Promotions
	Binary Operation Promotion for Integer Operand with Fixed-Point
	Binary Operation Promotion for Double Operand with Fixed-Point O
	Binary Operation Promotion for Single Operand with Fixed-Point O
	Binary Operation Promotion for Two Fixed-Point Operands

	Assignment (=, :=) Operations
	Assignment Operator =
	Assignment Operator :=
	When to Use the := Operator Instead of the = Operator
	Avoid Overflow Using the := Operator for Addition and Subtractio
	Avoid Overflow Using the := Operator for Multiplication
	Improve Precision Using the := Operator for Division
	:= Assignment and Context-Sensitive Constants

	Fixed-Point Conversion Operations
	Offline Conversions for Initialized Data
	Online Conversions for Casting Operations
	Offline and Online Conversion Examples

	Automatic Scaling of Stateflow Fixed-Point Data

	Complex Data in C Charts
	How Complex Data Works in C Charts
	What Is Complex Data?
	When to Use Complex Data
	Where You Can Use Complex Data
	How You Can Use Complex Data

	Define Complex Data Using the Editor
	Complex Data Operations for Charts That Support C Expressions
	Binary Operations
	Unary Operations and Actions
	Assignment Operations

	Define Complex Data Using Operators
	Why Use Operators for Complex Numbers?
	Define a Complex Number
	complex Operator

	Access Real and Imaginary Parts of a Complex Number
	real Operator
	imag Operator

	Work with Vector Arguments

	Rules for Using Complex Data in C Charts
	Do not use complex number notation in actions
	Do not perform math function operations on complex data in C cha
	Mix complex and real operands only for addition, subtraction, an
	Do not define complex data with constant scope
	Do not define complex data with ml, struct, or boolean base type
	Use only real values to set initial values of complex data
	Do not enter minimum or maximum values for complex data
	Assign complex values only to data of complex type
	Do not pass real values to function inputs of complex type
	Do not use complex data with temporal logic operators
	Best Practices for Using Complex Data in C Charts
	Perform Math Function Operations with a MATLAB Function
	A Simple Example
	How to Calculate Absolute Value

	Perform Complex Division with a MATLAB Function
	A Simple Example
	How to Perform Complex Division

	Detect Valid Transmission Data Using Frame Synchronization
	What Is Frame Synchronization?
	Model Structure
	Simulation Results
	How the C Chart Works
	Measure Frequency Response Using a Spectrum Analyzer
	What Is a Spectrum Analyzer?
	Model Structure
	Simulation Results
	How the Sinusoid Generator Block Works
	How the Analyzer Chart Works
	How the Unwrap Chart Works

	Define Interfaces to Simulink Models and the MATLAB Workspace
	Overview of Stateflow Block Interfaces
	Stateflow Block Interfaces
	Typical Tasks to Define Stateflow Block Interfaces
	Where to Find More Information on Events and Data

	Specify Chart Properties
	About Chart Properties
	Set Properties for a Single Chart
	Set Properties for All Charts in the Model

	Set the Stateflow Block Update Method
	Implement Interfaces to Simulink Models
	Define a Triggered Stateflow Block
	Triggered Stateflow Block Example

	Define a Sampled Stateflow Block
	Sampled Stateflow Block Example

	Define an Inherited Stateflow Block
	Inherited Stateflow Block Example

	Define a Continuous Stateflow Block
	Define Function-Call Output Events
	Define Edge-Triggered Output Events

	When to Use Chart Libraries
	Create Specialized Chart Libraries for Large-Scale Modeling
	Properties You Can Specialize Across Instances of Library Blocks
	Limitations of Library Charts
	MATLAB Workspace Interfaces
	About the MATLAB Workspace
	Examine the MATLAB Workspace
	Interface the MATLAB Workspace with Charts

	About Masks
	Limitations on Stateflow Masks
	Mask Parameters
	Look Under a Mask
	Mask a Stateflow Block
	Create Mask
	Change the Icon
	Add a Parameter
	View the New Mask
	Edit the Mask

	About Active State Output
	State Activity Type
	State Activity Data Type
	Leaf state activity and parallel states

	When to Use Active State Output
	Limitations for Active State Output
	Use Active State Output
	Change the Port Name
	Define the Enum Name and Type

	Structures and Bus Signals in Stateflow Charts
	About Stateflow Structures
	What Is a Stateflow Structure?
	What You Can Do with Structures

	Connect Structures in Charts to External Bus Signals
	Structure Definitions in sfbus_demo Stateflow Chart
	Structure Definitions in sfbus_demo Stateflow Graphical Function
	Simulink Bus Objects Define Stateflow Structures

	Rules for Defining Structure Data Types in Charts
	Define Stateflow Structures
	Define Structure Inputs and Outputs
	Interface Stateflow Structures with Simulink Bus Signals
	Work with Virtual and Nonvirtual Buses

	Define Local Structures
	Define Structures of Parameter Scope
	Define Temporary Structures
	Define Structure Types with Expressions

	Structure Operations
	Index Sub-Structures and Fields
	Guidelines for Assignment of Values
	Get Addresses

	Integrate Custom Structures in Stateflow Charts
	Debug Structures

	Stateflow Design Patterns
	Debounce Signals
	Why Debounce Signals
	The Debouncer Model
	Key Behaviors of Debouncer Chart
	Intermediate Debounce State Isolates Transients
	Temporal Logic Determines True State

	Run the Debouncer

	Schedule Function Calls
	Schedule Execution of Simulink Subsystems
	When to Implement Schedulers
	Types of Schedulers

	Schedule Multiple Subsystems in a Single Step
	Key Behaviors of Ladder Logic Scheduler
	Function-Call Output Events Trigger Multiple Subsystems
	Flow Chart Determines Order of Execution

	Run the Ladder Logic Scheduler

	Schedule One Subsystem in a Single Step
	Key Behaviors of Loop Scheduler
	Function-Call Output Event Triggers Subsystem Multiple Times
	Flow Chart Implements For Loop

	Run the Loop Scheduler

	Schedule Subsystems to Execute at Specific Times
	Key Behaviors of Temporal Logic Scheduler
	Run the Temporal Logic Scheduler

	Implement Dynamic Test Vectors
	When to Implement Test Vectors
	A Dynamic Test Vector Chart
	Key Behaviors of the Chart and Model
	Chart Represents Test Cases as States
	Chart Uses Conditional Logic to Respond to Dynamic Changes
	Model Provides an Interface for Selecting Test Cases

	Run the Model with Stateflow Test Vectors

	Map Fault Conditions to Actions in Truth Tables
	Design for Isolation and Recovery in a Chart
	Mode Logic for the Elevator Actuators
	States for Failure and Isolation
	Transitions for Recovery

	Truth Table Functions for Decision-Making Logic
	What Is a Truth Table?
	Why Use a Truth Table in a Stateflow Chart?
	Where to Use a Truth Table
	Language Options for Stateflow Truth Tables
	C Truth Tables
	MATLAB Truth Tables
	Select a Language for Stateflow Truth Tables
	Migration from C to MATLAB Truth Tables

	Represent Combinatorial Logic Using Truth Tables
	Build Model with Stateflow Truth Table
	Methods for Adding Truth Tables to Simulink Models
	Add a Stateflow Block that Calls a Truth Table Function
	Create a Simulink Model
	Create a Stateflow Truth Table
	Specify Properties of Truth Table Functions in Stateflow Charts
	Call a Truth Table in a Stateflow Action
	Create Truth Table Data in Stateflow Charts and Simulink Models
	How do I enable the third pane in the Model Explorer?
	How do I verify type and size?

	Program a Truth Table
	Open a Truth Table for Editing
	Select An Action Language
	Enter Truth Table Conditions
	Enter Truth Table Decisions
	The Default Decision Column

	Enter Truth Table Actions
	Set Up the Action Table
	Program Actions Using C Expressions
	Program Actions Using MATLAB Expressions

	Assign Truth Table Actions to Decisions
	Rules for Assigning Actions to Decisions
	How to Assign Actions to Decisions

	Add Initial and Final Actions

	Debug a Truth Table
	Check Truth Tables for Errors
	Debug a Truth Table During Simulation
	Use Stateflow Debugging Tools
	Use MATLAB Debugging Tools

	Correct Overspecified and Underspecified Truth Tables
	Example of an Overspecified Truth Table
	Example of an Underspecified Truth Table

	How Stateflow Generates Content for Truth Tables
	Types of Generated Content
	View Generated Content
	How Stateflow Software Generates Graphical Functions for Truth T
	How Stateflow Software Generates MATLAB Code for Truth Tables

	Truth Table Editor Operations
	Add or Modify Stateflow Data
	Append Rows and Columns
	Compact the Table
	Delete Text, Rows, and Columns
	Diagnose the Truth Table
	View Generated Content
	Edit Tables
	Insert Rows and Columns
	Move Rows and Columns
	Print Tables
	Select and Deselect Table Elements
	Undo and Redo Edit Operations
	View the Stateflow Chart for the Truth Table

	MATLAB Functions in Stateflow Charts
	MATLAB Functions in a Chart
	Why Use a MATLAB Function in a Chart?
	Where to Use a MATLAB Function
	MATLAB Functions in a Stateflow Chart
	Build Model with MATLAB Function in a Chart
	Specify MATLAB Function Properties in a Chart
	Set MATLAB Function Properties

	Program a MATLAB Function in a Chart
	Debug a MATLAB Function in a Chart
	Check MATLAB Functions for Syntax Errors
	Run-Time Debugging for MATLAB Functions in Charts
	Check for Data Range Violations
	Specify a Range
	Control Data Range Checking

	Connect Structures in MATLAB Functions to Bus Signals in Simulin
	About Structures in MATLAB Functions
	Define Structures in MATLAB Functions
	Rules for Defining Structures in MATLAB Functions
	Define Structure Inputs and Outputs to Interface with Bus Signal
	Define Local and Persistent Structure Variables

	Define Enumerated Data in MATLAB Functions
	Declare Variable-Size Data in MATLAB Functions
	Enhance Readability of Generated Code for MATLAB Functions

	Simulink Functions in Stateflow Charts
	What Is a Simulink Function?
	Differences Between Simulink Functions and Function-Call Subsyst
	Why Use a Simulink Function in a Stateflow Chart?
	Advantages of Using Simulink Functions in a Stateflow Chart
	Benefits of Using a Simulink Function to Access Simulink Blocks
	Model Method Without a Simulink Function
	Model Method With a Simulink Function

	Benefits of Using a Simulink Function to Schedule Execution of M
	Model Method Without Simulink Functions
	Model Method With Simulink Functions

	Where to Use a Simulink Function
	Basic Approach to Defining Simulink Functions in Stateflow Chart
	Task 1: Add a Function to the Chart
	Task 2: Define the Subsystem Elements of the Simulink Function
	Task 3: Configure the Function Inputs

	How a Simulink Function Binds to a State
	Bind Behavior of a Simulink Function
	Control Subsystem Variables When the Simulink Function Is Disabl
	Example of Binding a Simulink Function to a State
	Simulation Behavior of the Chart
	How the Function Behaves When Variables Are Held
	How the Function Behaves When Variables Are Reset

	How a Simulink Function Behaves When Called from Multiple Sites
	Rules for Using Simulink Functions in Stateflow Charts
	Do not call Simulink functions in state during actions or transi
	Do not call Simulink functions in default transitions if you ena
	Use only alphanumeric characters or underscores when naming inpu
	Convert discontiguous signals to contiguous signals for Simulink
	Do not export Simulink functions
	Use the Stateflow Editor to rename a Simulink function
	Do not use Simulink functions in Moore charts
	Do not generate HDL code for Simulink functions
	Best Practices for Using Simulink Functions
	Place a Simulink function at the lowest possible level of the St
	Set properties of input ports explicitly for a Simulink function
	Verify that function-call expressions have inputs and outputs of
	Avoid using machine-parented data with Simulink functions
	Define a Function That Uses Simulink Blocks
	Goal of the Tutorial
	Rationale for Improving the Model Design

	Edit a Model to Use a Simulink Function
	Open the Model
	Add a Simulink Function to the Chart
	Change the Scope of Chart Data
	Update State Action in the Chart
	Add Data to the Chart
	Remove Unused Items in the Model

	Run the New Model

	Schedule Execution of Multiple Controllers
	Goal of the Tutorial
	Rationale for Improving the Model Design

	Edit a Model to Use Simulink Functions
	Open the Model
	Add Simulink Functions to the Chart
	Change the Scope of Chart Data
	Update State Actions in the Chart
	Add Data to the Chart
	Remove Unused Items in the Model

	Run the New Model

	Build Targets
	Targets You Can Build
	Code Generation for Stateflow Blocks
	Code Generation for Simulation
	Code Generation for Production and Rapid Prototyping

	Software Requirements for Building Targets

	Choose a Procedure to Simulate a Model
	Guidelines for Simulation
	Choose the Right Procedure for Simulation

	Integrate Custom C/C++ Code for Simulation
	Start Simulation
	Integrate Custom C++ Code for Simulation
	Task 1: Prepare Code Files
	Task 2: Include Custom C++ Source and Header Files for Simulatio
	Task 3: Choose a C++ Compiler
	Task 4: Simulate the Model

	Integrate Custom C Code for Nonlibrary Charts for Simulation
	Task 1: Include Custom C Code in the Simulation Target
	Task 2: Simulate the Model

	Integrate Custom C Code for Library Charts for Simulation
	Task 1: Include Custom C Code in Simulation Targets for Library
	Task 2: Simulate the Model

	Integrate Custom C Code for All Charts for Simulation
	Task 1: Include Custom C Code in the Simulation Target for the M
	Task 2: Ensure That Custom C Code for the Main Model Applies to
	Task 3: Simulate the Model

	Speed Up Simulation
	Disable Simulation Target Options That Impact Execution Speed
	Keep Charts Closed During Simulation
	Keep Scope Blocks Closed During Simulation
	Use Library Charts in Your Model

	Choose a Procedure to Generate Embeddable Code
	Guidelines for Embeddable Code Generation
	Choose the Right Procedure for Embeddable Code Generation

	Integrate Custom C/C++ Code for Code Generation
	Generate Code
	Integrate Custom C++ Code for Code Generation
	Task 1: Prepare Code Files
	Task 2: Include Custom C++ Source and Header Files for Code Gene
	Task 3: Choose a C++ Compiler
	Task 4: Generate Code

	Integrate Custom C Code for Nonlibrary Charts for Code Generatio
	Task 1: Include Custom C Code for Embeddable Code Generation
	Task 2: Generate Code

	Integrate Custom C Code for Library Charts for Code Generation
	Task 1: Include Custom C Code in Embeddable Targets for Library
	Task 2: Generate Code

	Integrate Custom C Code for All Charts for Code Generation
	Task 1: Include Custom C Code for Embeddable Code Generation of
	Task 2: Ensure That Custom C Code for the Main Model Applies to
	Task 3: Generate Code

	Optimize Generated Code
	How to Optimize Generated Code for Embeddable Targets
	Design Tips for Optimizing Generated Code
	Do not access machine-parented data in a graphical function
	Be explicit about the inline option of a graphical function
	Avoid using multiple edge-triggered events in Stateflow charts
	Combine input signals of a chart into a single bus object

	Command-Line API to Set Simulation and Code Generation Parameter
	How to Set Parameters at the Command Line
	Simulation Parameters for Nonlibrary Models
	Simulation Parameters for Library Models
	Code Generation Parameters for Nonlibrary Models
	Code Generation Parameters for Library Models

	Specify Relative Paths for Custom Code
	Why Use Relative Paths?
	Search Relative Paths
	Path Syntax Rules

	Choose a Compiler
	Share Data Using Custom C Code
	Use Custom Code to Define Global Constants
	Use Custom Code to Define Global Constants, Variables, and Funct

	What Happens During the Target Building Process?
	Parse Stateflow Charts
	How the Stateflow Parser Works
	Calling the Stateflow Parser

	Resolve Undefined Symbols in Your Chart
	Search for Undefined Symbols
	Define Chart Symbols Using the Symbol Wizard
	Rules for Inferring the Scope of Unresolved Symbols
	Inference of Size, Type, and Complexity

	Generated Code Files for Targets You Build
	S-Function MEX-Files
	Folder Structure of Generated Files
	Code Files for a Simulation Target
	Code Files for an Embeddable Target
	Makefiles

	Traceability of Stateflow Objects in Generated Code
	What Is Traceability?
	Traceability Requirements
	Traceable Stateflow Objects
	When to Use Traceability
	Comments for Large-Scale Models
	Validation of Generated Code

	Basic Workflow for Using Traceability
	Examples of Using Traceability
	Bidirectional Traceability for States and Transitions
	Bidirectional Traceability for Truth Table Blocks
	Bidirectional Traceability for Graphical Functions
	Code-to-Model Traceability for Events
	Model-to-Code Traceability for Junctions

	Format of Traceability Comments
	State
	Transition
	MATLAB Function
	Truth Table Block
	Truth Table Function
	Graphical Function
	Simulink Function
	Event

	Inline State Functions in Generated Code
	How Stateflow Software Inlines Generated Code for State Function
	What Happens When You Force Inlining
	What Happens When You Prevent Inlining

	How to Set the State Function Inline Option
	Best Practices for Controlling State Function Inlining

	Debug and Test Stateflow Charts
	Basic Approach to Debugging Charts
	When to Use the Stateflow Debugger
	Open the Stateflow Debugger
	How to Open the Debugger Using the Editor
	How to Open the Debugger at the Command Line

	Animate Stateflow Charts
	Animation Modes
	Animate Stateflow Charts in Normal Mode
	Animate Stateflow Charts in External Mode
	Animate States During Simulation in External Mode
	View Test Point Data in Floating Scopes and Signal Viewers

	Set Breakpoints to Debug Charts
	Types of Breakpoints
	Set Local Breakpoints
	Set Global Breakpoints
	Edit Breakpoints
	Disable Local Breakpoints
	Disable All Breakpoints
	Clear All Breakpoints
	How to Clear Breakpoints Using the Editor
	How to Clear Breakpoints at the Command Line

	Visual Indication of Execution at Breakpoints

	Relationship Between Breakpoints and the Debugger
	Enable Debugging for Charts
	Enable Debugging for Charts in a Model
	Configure a Model to Debug a Single Chart

	Control Chart Execution in the Debugger
	Start Simulation in the Debugger
	Control Execution Rate in the Debugger
	Error Checking in the Debugger
	Control Chart Animation
	Control the Output Display Pane

	Control Chart Execution from the Stateflow Editor
	Debug Run-Time Errors in a Chart
	Create the Model and the Stateflow Chart
	Debug the Stateflow Chart
	Correct the Run-Time Error
	Identify Stateflow Objects in Error Messages

	Common Modeling Errors the Debugger Can Detect
	State Inconsistencies in a Chart
	Definition of State Inconsistency
	Causes of State Inconsistency
	State Inconsistency Example

	Conflicting Transitions in a Chart
	What Are Conflicting Transitions?
	Detect Conflicting Transitions
	Example of Conflicting Transitions

	Data Range Violations in a Chart
	Types of Data Range Violations
	Detect Data Range Violations
	Data Range Violation Example

	Cyclic Behavior in a Chart
	What Is Cyclic Behavior?
	Detect Cyclic Behavior During Simulation
	Cyclic Behavior Example
	Flow Cyclic Behavior Not Detected Example
	Noncyclic Behavior Flagged as a Cycle Example

	Guidelines for Avoiding Unwanted Recursion in a Chart
	Do not call functions recursively
	Do not use undirected local event broadcasts
	Watch Data Values During Simulation
	Watch Data in the Stateflow Chart
	Watch Data in the Stateflow Debugger
	Watch Stateflow Data in the MATLAB Command Window

	Change Data Values During Simulation
	How to Change Values of Stateflow Data
	Examples of Changing Data Values
	Scalar Example
	Multidimensional Example
	Variable-Size Example
	Fixed-Point Example
	Enumerated Example

	Limitations on Changing Data Values
	Data That Is Read-Only During Simulation
	Limitations on Changing Type and Size
	Limitations for Fixed-Point Data
	Limitations for Structures
	Cases When Casting Is Necessary

	Monitor Test Points in Stateflow Charts
	About Test Points in Stateflow Charts
	Set Test Points for Stateflow States and Local Data with the Mod
	Monitor Data Values and State Self Activity Using a Floating Sco

	What You Can Log During Chart Simulation
	See Also

	Basic Approach to Logging States and Local Data
	Enable Signal Logging
	Configure States and Local Data for Logging
	Properties to Configure for Logging
	See Also

	Choose a Configuration Method for Logging
	Log Individual States and Data
	See Also

	Log Multiple Signals At Once
	Log Chart Signals Using the Command-Line API
	See Also

	Access Logged Data
	Signal Logging Object
	See Also

	Access Logged Data Saved in Dataset Format

	View Logged Data
	Log Data in Library Charts
	How Library Log Settings Influence Linked Instances
	Override Logging Properties in Chart Instances
	Override Logging Properties in Atomic Subcharts
	Override Logging Properties with the Logging Selector
	Override Logging Properties with the Command-Line API

	How Stateflow Logs Multidimensional Data
	Limitations on Logging Data

	Explore and Modify Charts
	Use the Model Explorer with Stateflow Objects
	View Stateflow Objects in the Model Explorer
	Edit Chart Objects in the Model Explorer
	Add Data and Events in the Model Explorer
	Rename Objects in the Model Explorer
	Set Properties for Chart Objects in the Model Explorer
	Move and Copy Data and Events in the Model Explorer
	Change the Port Order of Input and Output Data and Events
	Delete Data and Events in the Model Explorer

	Use the Search & Replace Tool
	Open the Search & Replace Tool
	Refine Searches
	Match case
	Preserve case
	Contains word
	Match whole word
	Regular expression

	Specify the Search Scope
	Search in
	Object Types
	Field Types

	Use the Search Button and View Area
	A Breakdown of the View Area
	The Search Order

	Specify the Replacement Text
	Replacing with Case Preservation

	Use Replace Buttons
	Replace
	Replace All
	Replace All in This Object

	Search and Replace Messages
	Please specify a search string
	No Matches Found
	Search Completed
	Invalid option set
	Match object not currently editable
	Search object not found
	Match object not found
	Match not found
	Search string changed

	Find Stateflow Objects

	Semantic Rules Summary
	Summary of Chart Semantic Rules
	Enter a Chart
	Execute an Active Chart
	Enter a State
	Execute an Active State
	Exit an Active State
	Execute a Set of Flow Charts
	Execute an Event Broadcast

	Semantic Examples
	Categories of Semantic Examples
	Transition to and from Exclusive (OR) States
	Label Format for a State-to-State Transition
	Transition from State to State with Events
	Process a First Event
	Process a Second Event
	Process a Third Event

	Transition from a Substate to a Substate with Events

	Control Chart Execution Using Condition Actions
	Condition Action Behavior
	Condition and Transition Action Behavior
	Create Condition Actions Using a For-Loop
	Broadcast Events to Parallel (AND) States Using Condition Action
	Avoid Cyclic Behavior

	Control Chart Execution Using Default Transitions
	Default Transition in Exclusive (OR) Decomposition
	Default Transition to a Junction
	Default Transition and a History Junction
	Labeled Default Transitions

	Process Events Using Inner Transitions
	Process Events with an Inner Transition in an Exclusive (OR) Sta
	Process One Event in an Exclusive (OR) State
	Process a Second Event in an Exclusive (OR) State
	Process a Third Event in an Exclusive (OR) State

	Process Events with an Inner Transition to a Connective Junction
	Process the First Event with an Inner Transition to a Connective
	Process a Second Event with an Inner Transition to a Connective

	Inner Transition to a History Junction

	Use Connective Junctions to Represent Multiple Paths
	Label Format for Transition Segments
	If-Then-Else Decision Construct
	Self-Loop Transition
	For-Loop Construct
	Flow Chart Notation
	Transition from a Common Source to Multiple Destinations
	Transition from Multiple Sources to a Common Destination
	Transition from a Source to a Destination Based on a Common Even
	Backtrack in Flow Charts

	Control Chart Execution Using Event Actions in a Superstate
	Broadcast Events in Parallel (AND) States
	Broadcast Events in Parallel States
	Broadcast Events in a Transition Action with a Nested Event Broa
	Start of Event E_one Processing
	Event E_two Preempts E_one
	Event E_one Processing Resumes

	Broadcast Condition Action Event in Parallel State

	Directly Broadcast Events
	Directed Event Broadcast Using Send
	Directed Event Broadcast Using Qualified Event Name

	Glossary

	tables
	How do I specify the order?
	How does this transition occur?
	How does this transition occur?
	What if my chart objects are grouped?

